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Abstract—A systematic approach to the comparison of the graphics processor (GPU) and reconfigurable logic is defined in terms of

three throughput drivers. The approach is applied to five case study algorithms, characterized by their arithmetic complexity, memory

access requirements, and data dependence, and two target devices: the nVidia GeForce 7900 GTX GPU and a Xilinx Virtex-4 field

programmable gate array (FPGA). Two orders of magnitude speedup, over a general-purpose processor, is observed for each device

for arithmetic intensive algorithms. An FPGA is superior, over a GPU, for algorithms requiring large numbers of regular memory

accesses, while the GPU is superior for algorithms with variable data reuse. In the presence of data dependence, the implementation

of a customized data path in an FPGA exceeds GPU performance by up to eight times. The trends of the analysis to newer and future

technologies are analyzed.

Index Terms—Graphics processors, reconfigurable hardware, real-time and embedded systems, signal processing systems,

performance measures, video.
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1 INTRODUCTION

AN exciting emerging trend is the use of homogeneous
multiprocessor architectures to accelerate video proces-

sing applications [1], [2], [3]. Examples include graphics
processors (GPUs) and the Cell Broadband Engine. These
devices compete with digital signal processors and SRAM-
based field programmable gate arrays (FPGAs) as accel-
erators to a general-purpose processor (GPP). An FPGA is a
device based on reconfigurable logic fabric. This work
quantifies the comparison of the GPU and FPGA to explore
which is the superior video processing accelerator. The
approach is demonstratedusing annVidiaGeForce 7900GTX
and the Xilinx Virtex-4 FPGA.

A practical application of the comparison results is to
provide a heuristic by which one may choose between
alternate accelerators for a target application domain.
Alternatively, a theoretical basis for hardware-software
codesign between FPGA and GPU cores in a multicore
system-on-chip. To exemplify, the case studies presented in
Table 4 may each form a block in a video acquisition,
enhancement, and encoding system. From the analysis in this
work, it is observed that it is desirable to implement primary
color correction (PCCR) and resizing on the GPU. The FPGA
is most suited to histogram generation and motion vector
estimation. For small 2D convolution kernels the GPU is
favorable, however, for larger kernels an FPGA is most

suited. A novel and exciting finding in this work is a
structured comparison approach which can be used to
qualitatively reason the preferences stated here. The transfer
of theapproachandresults toupdatedGPUarchitectures and
other applicationdomains ispresented throughout thepaper.

The case study implementations originate from a com-
parison study of the graphics processor and reconfigurable
logic devices for the implementation of video processing
algorithms [1] and further novel implementations in [2]. The
FPGA implementation of motion vector estimation is taken
from work by Sedcole [4].

The following original contributions are made:

1. Formulation of the performance comparison of a
GPU to an FPGA. The motivation is to adapt work
by Guo et al. [5] on GPP and FPGA comparison to
address the challenges and interpretations of com-
paring GPUs and FPGAs (Section 3).

2. A case study of the performance comparison using
the nVidia GeForce 7900 GTX GPU and the Xilinx
Virtex-4 FPGA. The following contributory points
are made:

a. Analysis of five case study algorithms which
populate the design space of arithmetic com-
plexity, memory access requirements, and data
dependencies (Section 4).

b. Quantitative comparison of the three through-
put rate drivers of iteration level parallelism
(ItLP), clock speed, and clock cycles per output
(CPO) (as summary in Section 6).

c. Astudyof the speedupof eachdevice, over aGPP,
in regard to arithmetic complexity (Section 5.1).

d. Comparison of on-chip and off-chip memory
access requirements (Section 5.2).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 4, APRIL 2010 433

. B. Cope and P.Y.K. Cheung are with the Department of Electrical and
Electronic Engineering, Imperial College London, London SW7 2BT, UK.

. W. Luk and L. Howes are with the Department of Computing, Imperial
College London, London SW7 2BZ, UK.

Manuscript received 5 May 2008; revised 12 Mar. 2009; accepted 9 Sept.
2009; published online 11 Dec. 2009.
Recommended for acceptance by W. Najjar.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-05-0196.
Digital Object Identifier no. 10.1109/TC.2009.179.

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



e. The methods used to map algorithms with data
dependencies onto a GPU and FPGA are
compared in Section 5.3.

f. Comparison limitations are discussed in Sec-
tion 5.4.

3. Thework is applied to theGeForce 8 and9generations
of GPUs in Sections 3.3, 5.1.3, 5.2.5, 5.3.3, and 6.2.

4. A projection of the scalability of device architectures
with respect to Ahmdahl’s Law (Section 7.1).

The paper is arranged as follows: Section 2 discusses
related work. Section 3 formulates the performance com-
parison. Section 4 presents five case study algorithms.
Section 5 includes the case study performance comparison.
The results from Section 5 are combined in summarizing the
throughput rate drivers in Section 6. Section 7 summarizes
the key findings.

2 RELATED WORK

A number of prior works present a quantitative comparison
of FPGA and GPU [1], [2], [6], [7], [8], [9], [10].

Xue et al. [6] compare the implementation of a Fluoro-CT
Reconstruction algorithm on an FPGA and a GPU. Perfor-
mance is shown to be approximately equal. Updatedwork by
Mueller [7] on Computed Tomography shows a four to five
times speedup from a GeForce 8800 GTX device over older
generations of FPGAs. A like-for-like hardware comparison
is absent from the results.

Howes et al. [8] present the automated compilation of
source code for GPU, FPGA, and Playstation 2 using the
ASC compiler. The GPU is shown to be superior for Monte
Carlo computation. Performance figures are highly sensitive
to the ASC compiler.

Baker et al. [9] compare device cost, power, and perfor-
mance. It is shown that in speedup over a GPP, the GPU is
superior in terms of price per unit speedup and an FPGA in
speedup per unit of energy. These results suggest that a GPU
is beneficial for super computing systems and the FPGA is
beneficial for embedded systems.

Morris and Aubury [10] compare GPU, Cell, and FPGA
performance for financial applications. For a moderate
FPGA clock speed of up to one fifth the speed of a GPU, the
FPGA solution provides a superior trade-off of performance
and accuracy over similar GPU generations (to the FPGA)
and a Cell; as an example up to 4.5 times higher than a GPU
for a 50 percent drop in precision. For equal precision, the
FPGA has marginally higher performance.

Kelmelis et al. [11] discuss the combination of a Cell B.E.,
GPU, and FPGA together to form a high-performance
computing cluster. No performance figures or benchmarks
are considered to justify comment. Mueller et al. [7] also
present a discussion of all three architectures from work on
Computed Tomography. In giga-flop performance, the GPU
is superior [7], [11]. A Cell B.E. has a peak 256 GFLOPS
performance whereas a GeForce 8 series GPU has a peak of
approximately double this value. A Cell B.E. provides
increased flexibility over the GPU because parallel multi-
processors (SPEs) can be individually controlled. The benefit
is that an application can be pipelined across SPEs. An FPGA
provides further flexibility over the Cell B.E.

Owens et al. [12] present a survey of the use of GPUs for
general-purpose applications. Memory access reduction
operations, as analyzed in Section 5.3, and the lack ofmemory
scatter capability are cited as weaknesses of GPUs. Owens’
results concur with observations made by the authors in [1],
[2]. (In a later publication, Owen et al. observe that GeForce 8
series GPUs provide limited support for implementing
scatter and reduction operations [13].)

Govindaraju et al. [14] analyze GPU memory system
behavior. Using the 3C’s cache model FFT (GPU-FFT) and
sorting implementations are optimized. For FFT, a GeForce
7900 GTX provides a 1.5-2 times improvement over an
Intel processor. An equivalent Virtex-4 FPGA implementa-
tionwith the Sundance floating point FFT core [15], operating
at 200 MHz, performs a 1 M sample FFT in 21 ms. The GPU-
FFT algorithm run by the author on a GeForce 7900 GTX card
performs a 1 M sample FFT in 19 ms. The GPU implementa-
tion is fractionally superior.

Angelopoulou et al. [16] present a discrete wavelet
transform (DWT) implementation on a Virtex-4 FPGA, and
Wong et al. [17] an equivalent DWT on a GeForce 7800 GT
GPU. An 89 times performance benefit is observed for the
FPGA over a GPP [16], and a 3 times benefit for the GPU over
a GPP [17]. The FPGA has a superior performance due to a
specialized data path and optimized memory reuse strategy.

In [18], a binomial American pricing option implementa-
tion is analyzed. A GeForce 7900 GT GPU is observed in this
setup to provide equivalent performance to a Virtex-4 FPGA
for a “like-for-like” numerical precision. For a GeForce 8600,
the GPU provides three times performance improvement
over the Virtex-4. If fixed-point representation is used for the
FPGA, the performance is comparable to the GeForce 8.

To the authors’ knowledge, this paper presents the first
detailed analysis of the performance drivers for the GPU
and FPGA. Related work above offers motivations and
analysis but provides no systematic approach to perfor-
mance comparison.

Section 3.2 is an adaptation of Guo et al.’s [5] analysis
of the speedup factors of an FPGA over GPPs, as
summarized below.

In their speedup analysis, Guo et al. consider clock cycle
efficiency in isolation. The number of GPP and FPGA clock
cycles required for a given application are shown in (1) and
(2), respectively. In Table 1, the terminology is summarized.

Cyclegpp ¼ Instriter:gpp �Niter � CPIgpp; ð1Þ

Cyclefpga ¼ Niter

ItLPfpga
: ð2Þ

The relative speedup of FPGA devices over a GPP is
shown in (3) as the ratio of the clock cycle requirements.

Speedupfpga!gpp ¼ Cyclegpp
Cyclefpga

: ð3Þ

Equation (4) expresses instruction inefficiency (Ineffgpp)
which is the fraction of instructions not related directly
to computation. The instruction count per operation
(Instriter:gpp) is separated into support instructions
(Instrsppt:gpp) and those related directly to computation
(Instroper:gpp). Through substitution of (1), (2), and (4), the
speedup of an FPGA is given in (5).
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Ineffgpp ¼ Instrsppt:gpp þ Instroper:gpp
Instroper:gpp

; ð4Þ

Speedupfpga!gpp ¼ ItLPfpga � Instroper:gpp � Ineffgpp

� CPIgpp:
ð5Þ

Equation (5) expresses three advantages of an FPGA.
First, the capability to run multiple pipeline instances
concurrently (ItLPfpga). Second, the number of operation
specific instructions (Instroper:gpp) for a GPP is often higher
than FPGA ALU operations. This is due to the requirement
to map an algorithm to the fixed ISA on the GPP. Also, some
functions are “free” on an FPGA, e.g., “divide by two.”
Third, the inefficiency of a GPP (Ineffgpp) due to a need for
“support” instructions, e.g., program counter manipulation.
Cycles per instruction (CPI) for a GPP may be less than one
to indicate support for multiple instructions per clock cycle;
this represents an advantage.

3 THE PERFORMANCE COMPARISON CHALLENGE

In this section, the performance comparison of the GPU and
FPGA is motivated. Three performance drivers are ex-
plained in Section 3.1. The relationship is quantified in
Section 3.2.

3.1 Throughput Rate Drivers

The peak throughput rate (Tpeak) of a video processing
system is the maximum number of pixels that can be input,
output, and processed per second. To understand the
architectural features which influence Tpeak, the relationship
in (6) is used. Tpeak is proportional to: ItLP , clock rate (C),
and inversely CPO. Cycles per output is the average
number of clock cycles between outputs for a single,
iteration level, pipeline.

Tpeak / ItLP � C

CPO
: ð6Þ

GPPs are designed with a high clock rate to implement a
large instruction set of operations largely sequentially. A
6-15 times higher clock rate than FPGA implementations [5],
and a six to eight times higher clock rate than a GPU [19], is
typical of a GPP. For the case studies in this work, GPU
clock rate is two to six times higher than that of FPGA
implementations. Clock rate is compromised for reconfigur-
ability on an FPGA.

For a GPU, ItLPgpu equals the number of fragment
processing pipelines. For example, the nVidia GeForce 6800
GT and 7900 GTX have an ItLPgpu of 16 and 24, respectively.
In comparison, a GPP has an ItLPgpp of one. (Current devices
have up to eight cores, which remain small with respect to a
GPU.) An FPGA implementation is a trade-off between
iteration level parallelism and operation level parallelism to
best suit algorithmic requirements within device size
constraints.

The number of cycles per output in an FPGA imple-
mentation is typically one to two orders of magnitude lower
than for a processor [5]. There are two reasons for this: an
FPGA has no instruction fetch and decode overheads; and
operation level parallelism can be arbitrarily exploited
(within resource constraints).

FPGA implementations achieve high peak throughput
through the astute use of parallelism. This results in a low
number of cycles per output. For moderately sized im-
plementations, the number of cycles per output and iteration
level parallelism often equals one. In this scenario, peak
throughput equals the clock rate.

The GPU has a lower cycle per output count than a GPP
due to a reduced instruction overhead.

Table 2 summarizes each architectures strengths in
achieving a high throughput. The iteration level parallelism
of the GPU is medium-high because, in general, a greater
degree of iteration level parallelism may be exploited on an
FPGA. This is exemplified in histogram bin calculation (case
study HEqu) in which 256 “output” values are computed in
parallel (ItLPfpga ¼ 256). In reality, the iteration level
parallelism for the FPGA may also be higher than one for
the other benchmarks in Table 4.

It is observed that the GPU provides a trade-off between
the GPP and FPGA with respect to all factors.

3.2 Analysis of the Factors which Affect Speedup

The three factors in Table 2 are now used to quantify the
relative performance, or speedup, of using a GPU, FPGA,
or GPP.

Guo et al. [5] provide a useful starting point for comparing
the GPU and FPGA. However, a number of differences
between aGPP and aGPUmust be addressed. A summary of
key GPP architectural features detrimental to implementing
videoprocessingalgorithms, is shown inTable 3, columnone.
The second column includes a summary of the differences,
mostly beneficial, for a GPU.

Instruction inefficiency requires further explanation.
The GPU’s single program multiple data (SPMD) archi-
tecture model addresses the overhead of program counter
manipulation. However, the SPMD model also introduces
increased flow control overheads. Of particular concern is
the performance penalty of conditional branching due to
a large degree of multithreading [20].
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The data load instruction inefficiency overhead can also
be reduced on a GPU throughmultithreading. The latency of
a particular data fetch is “hidden” behind the processing or
data fetches for other pixels within the same thread batch.

From initial consideration of the benefits in Table 3, the
GPU appears a more favorable platform for implementing
video processing algorithms than the GPP. Similar to an
FPGA, the GPU can exploit a large degree of iteration level
parallelism, while instruction inefficiency issues are over-
come and instruction count (Instroper:gpu) minimized. The
flow control overhead of a GPU is an equivalent disadvan-
tage to the pipeline stalls observed for input-dependent
flow control in FPGA implementations.

Equivalent formulations to (5), for the factors effecting the
speedup of theGPUover aGPP, and of an FPGAover aGPU,
are now derived. The latter is chosen arbitrarily and the GPU
performance may exceed that of an FPGA (a “slowdown”).

First an expression for the number of GPU clock cycles
(Cyclesgpu) must be obtained. A GPU is referred to as a
multiprocessor system. For this work, each “processor” is a
single pipeline (ItLPgpu). Parallel pipelines in the GPU are, in
fact, closely coupled by SPMD andmultithreaded operation.
Equation (7) shows the representation of number of cycles for
the GPU which includes the iteration level parallelism. The
remainder of (7) is similar to the GPP cycle definition in (1).

Cyclegpu ¼ Instriter:gpu �Niter � CPIgpu
ItLPgpu

: ð7Þ

The inefficiency factor for the GPU is the same as that for the
GPP in (4)with gpp substituted for gpu. A keydifference in the
interpretation of inefficiency is that GPU support instructions
include only memory read and flow control operations.
Swizzle flow control operations reorder data in processor
registers and are often free (have no clock cycle penalty) [20].

A GPU’s speedup over a GPP is shown in (8). This is the
ratio of GPU (Cyclesgpu) to GPP (Cyclesgpp) clock cycles. The
GPU speedup factors, over a GPP, can occur from: reduced
instruction inefficiency (a fixed processor pipeline), reduced
instructions per operation (ISA efficiency), reduced clock
cycle per instruction (increased operation level parallelism),
and iteration level parallelism (multiple fragment pipelines).

Speedupgpu!gpp ¼ Ineffgpp
Ineffgpu

Instroper:gpp
Instroper:gpu

� CPIgpp
CPIgpu

ItLPgpu:

ð8Þ

Equations (9)-(11) show the derivation of the “speedup” of
an FPGA over a GPU. A setup where FPGA clock cycles
per output equals one is assumed. Equation (11) includes

the effects of instruction inefficiency, cycles per instruc-
tion, number of instructions, and iteration level parallelism
in isolation.

Speedupfpga!gpu ¼ Cyclegpu
Cyclefpga

; ð9Þ

¼ Instriter:gpu � CPIgpu � ItLPfpga

ItLPgpu
; ð10Þ

¼ Ineffgpu � Instroper:gpu � CPIgpu � ItLPfpga

ItLPgpu
; ð11Þ

¼ ItLPfpga

ItLPgpu
� Ineffgpu � Instroper:gpu � CPIgpu

CPOfpga
: ð12Þ

If FPGA cycles per output is not equal to one, for example,
the non-full-search motion vector estimation (NFS-MVE)
case study, speedup is as shown in (12). The numerator in
the second fraction is GPU clock cycles per output.

The speedup factors presented above capture the
performance differences between the GPU, FPGA, and the
GPP. The primary concern is the performance difference
between the GPU and FPGA in (11) and (12). The speedup
factors over a “host” GPP are shown in (5) and (8). These
formulae express the justification for using each device as
an accelerator.

3.3 What About GeForce 8 Series GPUs?

The comparisonmethodology is unchanged for newerGPUs.
Fundamentally, the architecture is unchanged in regard to
iteration level parallelism, clock cycles per instruction, and
instruction efficiencies. One note is that the processor cores
operate at a faster clock rate (for example, 1,500 MHz in
GeForce 9 series) in comparison to the remainder of the
graphics core (600 MHz in GeForce 9 series). In the
comparison methodology in Section 3, the processor core
clock rate shouldbe consideredas the reference clock rate. It is
observed that thiswill increase (by2.5 times for theGeForce9)
the processor memory access time (in clock cycles).

4 CASE STUDY ALGORITHMS

The five case study algorithms considered in this work are
characterized by arithmetic complexity, memory access
requirements, and data dependence as shown in Table 4. A
detailed discussion of each algorithm is omitted because the
characterization in Table 4 is sufficient to understand this
paper. The reader is directed to [1], [2], [21], [22] for further
algorithm details.

Arithmetic complexity includes the proportion of mathe-
matic, branching, and vector operations.

Memory access requirements are analyzed as total
number, access pattern, reuse potential, and memory in-
tensity. Reuse potential for video processing is the number of
input frame pixels which are used to compute two outputs
with a Manhattan distance of one pixel location. Memory
intensity is the proportion of memory accesses to the number
of arithmetic instructions.

Data dependence identifies the operations which must
be computed before the next operand. An example is the
creation of histogram bins which requires an accumulate for
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each memory access before the next accessed memory
location can be processed.

It is observed that Table 4 shows five algorithmswhich fill
a broad spectrum of the characterization space. The algo-
rithms and their characteristics will be referenced through-
out this paper.

Fig. 1 shows a summary of throughput performance for
the case studies. The performance is expressed in millions of
generated output pixels per second. An exception is three-
step NFS-MVE where performance is expressed relative to
input frame pixels processed per second.

The GPU exhibits a large degree of variance in
throughput performance over the case study algorithms.
In contrast, FPGA implementations have a more uniform
performance trend. This is due to two factors. First, the
exploitation of arbitrary data-path pipelining and paralle-
lism in FPGA implementations. Second, the constraint on
GPU throughput rate of the temporal processing nature of

software implementations. Other factors include the beha-
vior of the memory subsystem and device clock speed.

The performance for each algorithm will be interrogated
later in the paper. However, the following questions emerge,
from the performance results in Fig. 1, which motivate
further analysis.

1. What is the source of high throughput for the GPU
and FPGA for “compute bound” algorithms, parti-
cularly in comparison to a GPP?

2. The GPU performance degrades sharply with
window size for 2D convolution. What is the clock
cycle overhead of “memory access bound” algo-
rithms for the GPU?

3. What factors affect the variability, for each device,
in throughput for resizing algorithms? Put more
generally, how does variable data reuse affect
performance?
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Algorithm Characterization for Five Case Studies (Algorithms Taken from [1], [2], [21], [22])

Fig. 1. A summary of throughput performance for case study algorithms implemented on sample nVidia GPUs and Xilinx FPGAs. Hereafter, the
algorithms are referred to as: primary color correction (PCCR), 2D convolution (Conv), video frame resizing (Resizing), interpolation (Interp),
decimation (Deci), histogram equalization (HEqu), and three-step non-full-search motion vector estimation (NFS-MVE).



4. What GPU features lead to a low performance for
a NFS-MVE implementation with respect to the
HEqu case study?

Further analysis is concerned with quantifying key
performance drivers. We focus on the Virtex-4 and GeForce
7900 GTX. Both adopt 90-nm technology and are used as a
case study comparison. It would be straightforward, given
equivalent implementations, to extend the comparison to
newer technologies, including the nVidia GeForce 9, Xilinx
Virtex-5, or Altera Stratix IV devices.

Throughput rate alone is insufficient for a detailed
analysis. Therefore, to answer questions 1-4, the analysis
proceeds as follows: In Section 5.1, arithmetic complexity
is considered to address question 1. Questions 2 and 3 are
addressed through exploring memory access requirements
in Section 5.2. In Section 5.3, question 4 is addressed though
considering performance implications of data dependence.
The formulation from Section 3.2 is used throughout.
Throughput rate drivers are quantified in summary of the
results in Section 6.

5 CASE STUDY: FACTORS AFFECTING SPEEDUP ON

THE GEFORCE 7900 GTX AND VIRTEX-4

5.1 Experimental Setup

For the FPGA, VHDL and Xilinx ISE 8.2i are used. Post
place and route timing is taken to determine throughput.
The results are verified using high definition video samples
[23]. Uniform input variables for the case studies are chosen
to be 18-bit fixed-point representation and the design is
bit width optimized to less than 1

2LSB of error. This setup
maximally utilizes the functional bit width of embedded
multipliers. Aesthetically satisfying results are observed for
all case studies.

All FPGA case studies, with the exception of NFS-MVE
for which the off-chip memory access requirements for the
performance quoted here are justified in [4], are streamed
raster-scan implementation. It can be assumed that enough
off-chip FPGA memory access bandwidth is available to
stream the video data. Therefore, in-system performance
analysis results are omitted.

For the GPU, the nVidia cgc compiler 1.5 and OpenGL are
used. The results are verified against a “golden” C++model.
Video frames are uploaded as image textures to on-card
video memory and results written back to the same video
memory. In turn, the results are read back to the host CPU
for verification. The storage format for video frame data is
8-bit per three-component RGB. For intermediate processing
results, the floating point format is used to satisfy the
dynamic range. Storage format affects video card data
upload and download time, also the cache and memory
access behavior of the GPU. Four factors, of upload,
download, execution, and pipeline setup time, contribute
to GPU compute time. In this work, execution time, obtained
using the OpenGL timing query extension, is quoted. A
mean of 200 samples is taken to improve accuracy.
Additionally, pipeline setup time is considered for multi-
pass algorithms in Sections 5.2 and 5.3. Fig. 1 includes both
execution and pipeline setup time.

A single core 3.0 GHz Pentium 4 with 1 GB of RAM is
the “host” CPU. For PCCR case study, CPU [GPP]
implementations are coded in C++ and utilize the MMX/
SSE instruction set.

For each design, sensible performance optimizations
are made.

Board upload and download time is omitted for each
device. The aim is to compare the advantages of each
device, abstract from a given implementation in for
example a video card.

5.1.1 Feature 1: Arithmetic Complexity

The capability of a GPU or FPGA to achieve “speedup,” for
arithmetic operations, over a GPP is determined by the
parallelism which can be extracted from an algorithm. Of
fortune is that video processing algorithms are often
amenable to large degrees of parallelization. There are,
however, constraints for each device.

An FPGA is constrained by the efficiency with which
an algorithm is mapped onto computational resources. For
a GPU, a fixed instruction set architecture must be
exploited efficiently.

The arithmetic capabilities of the GPU and FPGA are
now analyzed through considering the arithmetic intensive
subblocks of the PCCR case study. These include those
detailed in Table 4 plus two color space conversions (R2Y
and Y2R [1]).

The factors affecting speedup, specifically processor
instruction inefficiency issues, are explored in Section 5.1.1.
In Section 5.1.2, nonarithmetic intensive algorithms are
considered.

5.1.2 Intrinsic Computational Benefits over a GPP

First features of the GPU ISA which result in an impressive
speedup over a GPP, rivaling or exceeding that of an FPGA,
are presented.

A summary of the ISA efficiency features of the GPU,
relative to a GPP, are shown in Table 5. The key features are
the cycles per instruction and the inefficiency factor of each
processor as defined in Section 3.2. Number of operational
instructions is shown in Table 6. Instruction disassembly for
the Pentium 4 GPP is taken using Intel VTune 3.0.
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Relative to an Intel 3.0 GHz Pentium 4 Processor

TABLE 6
Number of MacroBlock Operations versus
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The number of operational instructions required by the
GPP is lower than that for the GPU. There are two reasons.
First, four pixels are processed in parallel on the GPP. This
fully utilizes the 4-vector nature of SSE instructions. On the
GPU output pixel values are calculated in isolation and
typically only three of the maximum four ALU inputs are
utilized. Second, the GPU instruction set is smaller than that
of the GPP and may require more than one ALU or math
instruction to implement the same operation. For example,
a square root operation requires a reciprocal square root
followed by a reciprocal instruction.

Despite the increase in operational instructions by
approximately 50 percent, a 2 times decrease in CPI, and
12 times decrease in CPO are observed for the GPU over a
GPP. The difference in cycles per instruction is attributed to
the large operation level parallelism of the GPU [20]. A
reduction of up to 10 times in the instruction inefficiency
(Ineffxx) measure contributes to the remainder of the
difference.

Next, we compare processor instruction count (Instroper:xx)
to the number of “macroblock” ALU operations in an FPGA
implementation. This is exemplified for PCCR in Table 6.
FPGA macroblock operations are counted as, for example,
single add, multiply, and comparison instantiations. A three
to four times higher number of operations is required for an
FPGA than the processors. This is due to the fine granularity
of FPGA macroblocks with respect to the vectorized ISA of
the processors.

For a more precise comparison, the total instructions per
iteration (Instriter:xx) is included in Table 6. A GPP requires
a total number of instructions up to four times higher than
the number of FPGA operations. This is similar to observa-
tions made by Guo et al. [5]. The total instruction count is
lower for a GPU than for FPGA operations. This is due to
the GPU’s low instruction inefficiency of up to a factor of
10 times relative to the GPP.

The speedup factors for the PCCR case study are shown
in Table 7, where ItLPfpga ¼ 1 and ItLPgpu ¼ 24. A GPU
provides up to a 280 times speedup over a GPP. If iteration
level parallelism is removed, peak speedup is 12 times.

A peak 445 times speedup is observed for an FPGA over
the GPP. The speedup is due to the high instruction
inefficiency of the GPP and higher operation level paralle-
lism on the FPGA.

The speedup of an FPGA over the GPU is significantly
less than that for each device over the GPP. A range of two
times speedup for the FPGA to five times slow down is
observed. This is expected because both provide a large
arithmetic operation speedup over the GPP. A high degree
of iteration level parallelism and a low number of cycles per
instruction on the GPU are a good match to an FPGA’s

operation level parallelism. Note ItLPfpga ¼ 1, the FPGA is
quite underutilized for all but “Full.”

It is interesting to observe the product of CPIgpu and
Ineffgpu as shown in the fourth column of Table 7. This
product represents the average number of clock cycles taken
per operational instruction (Instrgpu:oper). It is observed that
for each PCCR block, the GPU produces up to two
computational results per clock cycle per iteration. This is
the origin of the impressive performance observed for the
GPU for implementations of computationally intensive
algorithms.

5.1.3 Nonarithmetic Intensive Algorithms

The above results focus on the scenario where GPU support
instruction overhead is negligible. For the general case, this
condition may not hold. The overall cycle per instruction
(CPIgpu), inefficiency (Ineffgpu), and cycles per operational
instruction (CPIgpu � Ineffgpu) for all algorithms is sum-
marized in Table 8.

The GPU inefficiency is observed, in Table 8, to be
consistently low from 1.24 to 1.91. This is an order of
magnitude lower than the GPP inefficiency observed by
Guo et al. of 6-47 [5].

The computationally bound PCCR algorithm requires
the lowest clock cycle per GPU instruction (CPIgpu) of all
case studies.

A small rise in cycles per instruction (CPIgpu) is observed
with increasing convolution size. With all other factors
constant, this translates to a marginal rise in the memory
access “cost.” A more significant difference is observed
between interpolation and decimation of a factor of two
times. This represents a significant rise in the memory access
instruction overhead.

TheHEqu andNFS-MVE case studies both contain a large
proportion of memory access and flow control. This results
in a large inefficiency factor. The instruction per operational
instruction for NFS-MVE is two times that for HEqu.

Decimation and NFS-MVE have a high cycle per opera-
tional instruction count (CPIgpu � Ineffgpu) relative to the
other algorithms, of less than one operation result per cycle.
This is investigated in Sections 5.2 and 5.3, respectively.
Other case studies produce up to two results per clock cycle.

5.1.4 GeForce 8 Series GPUs

For GeForce 8 GPUs instruction inefficiency would reduce
due to the scalar processing units. This is because of the
prior under utilization of 4-vector ISA as cited in Section 5.1.
A downside of this is that the GPU instruction count will
increase due to scalar computation. However, this overhead
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Speedup for Primary Color Correction
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A Summary of Number of Cycles per Operational Instruction

(CPIgpu � Ineffgpu) for the GPU for the Case Studies



is likely to be hidden by the SIMD nature of the GPU
architecture.

One important point to highlight about the scalar
processors on GeForce 8 GPUs is that operation level
parallelism (peak bandwidth) is reduced from the 4-vector
ISA of the GeForce 7. This, however, has the additional
intrinsic benefit of a higher clock frequency due to a simpler
processor architecture.

The overhead of flow control, as mentioned in Section 3.2,
remains in newer generations of GPUs [3]. For arithmetic
intensive algorithms it is expected that number of cycles
per output will only reduce slightly due to a small increased
in instruction efficiency from the scalar ISA.

5.2 Feature 2: Memory Access Requirements

Memory access requirements are considered in terms of on-
chip and off-chip accesses. For an FPGA implementation,
the memory system is a part of a specially designed data
path. The GPU memory system is fixed and optimized for
graphics rendering.

The challenges associated with on-chip and off-chip
memory accesses for the target devices are described in
Sections 5.2.1 and 5.2.2, respectively. Two specific memory
access case study issues are subsequently considered.
GPU input bandwidth limitations are explored through
the 2D convolution case study in Section 5.2.3. In Sec-
tion 5.2.4, the effect of variable data reuse is analyzed using
the video frame resizing case study.

5.2.1 On-Chip Memory Accesses

GPU on-chip memory access refers to texture accesses for
each output pixel in each fragment pipeline. The memory
hierarchy includes L1 cache local to texture filter blocks and
multiple shared L2 cache blocks [14]. Input memory
bandwidth (IBWgpu) can be estimated from the number of
clock cycles per internal memory accesses (CPIMA) as
shown in (13) and (14). The term “input bandwidth” is used
because off-chip bandwidth also affect this value.

CPIMAgpu ¼ CPOgpu

Instrmem:gpu
: ð13Þ

IBWgpu ¼ 1

CPIMAgpu
� ItLPgpu � Cgpu � 4 Bytes per pixel:

ð14Þ
An FPGA is often considered to have infinite on-chip
bandwidth, because an FPGA is fundamentally memory
(lookup tables and registers). Consider on-chip memory as
only on-chip embedded RAM (named Block Select RAM
(BRAM) on Xilinx devices). The peak on-chip bandwidth,
on the moderately sized XC4VSX25 Virtex-4, is then
288 GB/s. This is five times higher than the value estimated
for the GeForce 7900 GTX (68 GB/sec, estimated through
repeated reads to one memory location).

The total on-chip memory access requirements for each
case study are shown in Table 9. GPU and FPGA require-
ments are equal for PCCR, 2D convolution, and resizing.
Differences occur in the multipass implementations of HEqu
and NFS-MVE. An increase of approximately 10 and 2 times,
respectively, for the GPU, relative to FPGA, is required.
These overheads are due to data dependencies as explained
in Section 5.3.

5.2.2 Off-Chip Memory Accesses

Off-chip memory accesses are to a large quantity of DRAM
located “off-die” from a device.

Traditionally, GPUs require a highmemory bandwidth to
support graphics rendering. Object vertices, input textures,
intermediate fragment information, render target pixels, and
processor instruction code must be stored. The GeForce 7900
GTX has a peak memory bandwidth of 51.2 GB/sec [19]. For
comparison, this is an order of magnitude higher than a GPP
(6 GB/sec for a 3 GHz Pentium 4 [24]). The capability to
efficiently utilize this off-chip “pin speed” dictates achiev-
able bandwidth.

The predictable nature of video processing memory
access patterns can be exploited to minimize FPGA off-chip
memory access requirements. The required off-chip band-
width is often one or two orders of magnitude less than that
required for a GPP [24] and a GPU, respectively. As a result,
FPGA memory PHYs may be run at a half or quarter the
data rate of GPU DRAM interfaces.

Off-chip memory access requirements, for each case
study, are shown in Table 10. FPGA implementations
exploit maximal data reuse. The FPGA on-chip memory
can be tailored application specifically, whereas GPU on-
chip memory arrangement is fixed. Each off-chip location is
written to or read from once. Only the minimum off-chip
read requirements of the GPU are shown in Table 10. The
actual number is subject to cache behavior.

For PCCR, Conv and Resizing (2D), off-chip memory
access requirements are comparable between the FPGA
and GPU.

A difference in off-chip access requirements occurs for 1D
(separable) resizing. This is due to the intermediate write
of results to off-chip memory between “1D” passes. In an
FPGA implementation, these data are buffered in on-chip
line buffers. Themultipass HEqu andNFS-MVE case studies
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On-Chip Memory Access Requirements for GPU and
FPGA Implementations of the Case Study Algorithms

TABLE 10
Off-Chip Memory Access Requirements for GPU and
FPGA Implementations of the Case Study Algorithms



also require a large GPU off-chip memory bandwidth of up
to 4 times for reads and 2� 162 times for writes. The effect is
minimized in our performance comparison due to the high
(51.2 GB/sec) off-chip memory bandwidth of the GPU. For
future systems, for example a system-on-chip, off-chip
memory access overhead is an increasingly significant
factor. On GeForce 8 GPU off-chip memory access require-
ment is reduced by an advanced on-chip memory system.
The support for this has its own overheads and multipass
implementations are still required [13].

5.2.3 Case Study: Input Bandwidth

For 2D convolution, the memory access requirements are
comparable for both devices. This makes it a desirable case
study to compare performance impacts of changing number
of internal memory accesses.

In Table 8, it is shown that the GPU CPI are approxi-
mately the same for all 2D convolution kernel sizes. (A
marginal rise occurs, from a value of 0.50 to 0.63, between
3� 3 and 11� 11 sized kernels.) The inefficiency measure is
identical over all kernel sizes at a value of 1.5. Instruction set
inefficiency, therefore, has no effect on the 0:07n2 speedup
for the FPGA implementation over the GPU. To identify the
factors which do influence the speedup, the number of
cycles per output is plotted over varying 2D convolution
sizes in Fig. 2.

The GPU has a consistent cache performance for 2D
convolutionovervaryingsizes and isboundedby thenumber
of memory access requests. From this observation, the GPU
performance is estimated using the trend lines in Fig. 2.

A performance trend of 1:7n2 and 2:4n2 matches the
performance of the GeForce 7900 GTX and GeForce 6800 GT,
respectively. This value (1.7 or 2.4) is the clock cycles per
internal memory access (CPIMAgpu) shown in (13). It
follows that the achieved internal bandwidth (IBWgpu) of
the GeForce 7900 GTX and GeForce 6800 GT is estimated,
using (14), to be 36.7 and 9.33 GB/s, respectively.

For the FPGA, an unbounded input bandwidth is
observed due to pipelined line buffer reads, so there is no
clock cycle penalty as n is increased. The clock cycle cost is,
in fact, an increased latency. The result is a throughput, for
FPGA implementations, which is approximately linear
when compared to the GPU. This is due to flexible
parallelism, pipelining, and streaming of data. The penalty
is an increasing resource requirement.

For maximum data reuse, the FPGA implementation
stores pixels in line buffers. For a 720p frame size, 720�
ðn� 1Þ � 24 bits (8 bits per color space component) are
required, if a vertical raster-scan input is assumed. The
memory resource requirement exceeds theGeForce7900GTX

predicted cache size (128 KBytes [14]) for convolution kernel
sizes greater than 7� 7 pixels. As convolution size increases,
on-chip blockmemory usage and routing resources increase.
This results in timing closure at lower frequencies for
increasing n in Fig. 1.

The worst case scenario computational resource require-
ment (multipliers and addition) for FPGA increases as a
factor of Oðn2Þ. However, this factor is in practice reduced
due to resource usage optimizations [25], [26], [27] and
convolution matrix sparsity.

5.2.4 Case Study: The Effect of Variable Data Reuse

Potential

The variable data reuse requirements of the resizing case
study make it suitable for analyzing on-chip memory
flexibility.

An FPGA implementation of interpolation is limited by
off-chip memory writes. The required output bandwidth is
higher than the required input bandwidth. For decimation,
this scenario is reversed and the limiting factor is input
bandwidth. The setup used here is a single pipeline
(ItLPfpga ¼ 1) with a system clock rate fixed at the output
bandwidth requirement. For interpolation, one pixel is
clocked out per clock cycle. For decimation, 1=sxsy pixels
are clocked out per clock cycle, where sx and sy are the
horizontal and vertical resizing factors, respectively.

Separability of the resizing algorithm into two 1D passes
is shown above to result in a variation in on-chip and off-
chip memory access requirements. For the FPGA imple-
mentation, the effect of this is a reduction in multiplier
resource usage proportional to two times. The effect on the
GPU is observed to be a significant change in input
bandwidth as explained below.

A summary of the performance improvement from the
1D method is shown in Table 11. The clock cycles per
output of the separable implementation is the combination
of the two 1D passes. A significant 11 GB/sec of variation in
input bandwidth is observed between the 2D methods for
interpolation and decimation. The memory access perfor-
mance drops by a factor of two times over the sample
resizing ratios.

Between differing interpolation ratios, memory access
behavior is consistent. Considering the data reuse potential
characteristic (in Table 4), this is because full data reuse or a
step of one Manhattan location occurs between neighboring
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Fig. 2. Clock cycles per output for 2D convolution implementations on

the GPU (determining GPU input bandwidth).

TABLE 11
Input Bandwidth (IBWgpu in GB/sec) for 2D and 1D Resizing

Implementation Methods on a GeForce 7900 GTX GPU



outputs. With an increased interpolation factor, the ratio of
the occurrence of full data reuse to a step of one rises. This
results in a small increase in performance as one traverses
down Table 11. For decimation, the pattern is different. The
lower data reuse potential of decimation, with respect to
interpolation, is the reason for this increase. As the
decimation factor falls (moving down Table 11) perfor-
mance improves. This is due to an increase in the average
data reuse potential between neighboring output pixels.

Up to 1.6 times improvement in internal memory
bandwidth is observed for the 1D method of decimation.
This is due to improved cache performance where cache
misses only occur due to one resizing dimension on each
pass. The result is up to 2.5 times reduction in number of
cycles per output. For interpolation, a 1.1 times lower
achievable input bandwidth is observed. The reduction is
due to the cache performance already being efficient for
interpolation. Separation into two passes actually reduces
reuse potential by necessitating steps of one location between
output pixels, in one dimension, on each pass. Despite this,
the result is over two times reduction in cycles per output.

A peak 2.5 times improvement is achieved from using
the 1D resizing method. A limitation of the separation of an
algorithm on a GPU is an increase in the overhead from the
host processor setup and pipeline control. A difference of
the order of one to two milliseconds is observed between 1D
and 2D case studies.

The speedup of an FPGA over a GPU for varying
resizing ratios is shown in Table 12 with the multipass
overhead omitted.

A factor of up to 2.6 times speedup in favor of the GPU

is observed between the two devices. The FPGA perfor-

mance is bound by the number of cycles per output

(CPOfpga ¼ 1
sxsy

) for decimation. Although the cycles per

output for the FPGA is up to 21 times lower than the GPU,

this is insufficient to surpass the GPU’s iteration level

parallelism benefit of 24 times.
If the clock speed ratio of over three times is included,

the GPU has up to eight times performance benefit over
the FPGA.

5.2.5 GeForce 8 and 9 Series GPUs

Memory organization and flexibility is cited as a major
improvement in GeForce 8 GPUs.

In [28], nVidia promote their 2D convolution perfor-
mance. Additionally to improvements in clock speed,
memory bandwidth, and iteration level parallelism, a
two times performance improvement is observed between
using a naive and optimized algorithm. In this case, the
naive approach is equivalent to the standard approach taken
for convolution and resizing in Section 5.2. This shows that
for filter algorithms approximately two times performance
improvement is observed from the change in architecture.

The off-chip bandwidth performance has doubled to
64 GB/s for the GeForce 9 series GPU. This is likely to
improve performance for off-chip bandwidth limited appli-
cations such as decimation and histogram equalization.

5.3 Feature 3: Data Dependence

In this section, the effect of data dependence is analyzed.
An FPGA has an inherent advantage for achieving

speedup under data dependence constraints. The fine-
grained architecture means that a specially designed data
path can be implemented to exploit parallelism in the
dimension that data dependence does not restrict. For NFS-
MVE, four motion vectors are computed in parallel proces-
sing elements. Each processing element computes opera-
tions serially. For histogram generation, all 256 intensity bins
are calculated in parallel. Data-path specialization provides
favorable flexibility for these two case studies.

For a GPU, the architecture has a fixed degree of iteration
and operation level parallelism determined by the number
and nature of fragment pipelines. The fixed memory
hierarchy, multithreading, and feed-forward programming
model, also affect design choice. The design constraints and
considerations are numerous. However, with astute im-
plementation choice an impressive performance is achieved
for HEqu and NFS-MVE. These are algorithms one may
consider unmatched to the GPU.

Section 5.3.1 presents working examples of GPU optimi-
zation in the presence of data dependence using the HEqu
and NFS-MVE case studies. The techniques are compared to
the FPGA strategy in Section 5.3.2.

5.3.1 Optimizing for Data Dependence

The key component of the NFS-MVE algorithm implemen-
tation on a GPU is a reduction function [29], in which a
nonoverlapping or partially overlapping window of input
frame pixels is required from search and reference frames to
calculate each output pixel. For HEqu, a similar scenario
exists from one input frame. Overlaps can be controlled to
be larger for HEqu than for NFS-MVE because input frame
pixel order is not important. In both cases, a large reduction
operation is required. A method 1 and method 2 scenario is
considered for each case study as follows:

In method 1, the inner reduction is performed in full for
each case study. For HEqu, this results in an on-chip read
over a 16� 9 window of pixels. For NFS-MVE, this results
in a read over a window of 16� 16 pixels (in both search
and reference frames).

In method 2, each reduction is divided into two nested
rendering passes with equally sized reductions.

Table 13 summarizes the performance for each method.
The CPO difference between methods 1 and 2 for NFS-

MVE, in Table 13, is approximately three times. This is
significantly greater than that for HEqu, for which a
negligible difference is observed. For each case study, the
total number of instructions per output and inefficiency
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Speedup of FPGA (Virtex-4) versus the GPU (GeForce 7900

GTX) for Varying Bi-Cubic Resizing Ratios (1D Method)



factors are approximately equal for each method. The
performance deviation is a result of memory access
behavior. This is reflected directly in the change in CPI
and CPIMA in columns five and six of Table 13.

The HEqu case study has equal number of on-chip and
off-chip reads for each method. The total on-chip reads, per
output, for NFS-MVE actually rises between methods 1 and
2, despite this the performance improves. Total number of
off-chip memory writes also increases between methods 1
and 2 for NFS-MVE. The NFS-MVE case study is now
analyzed further.

The range of required memory locations for MVE step 1.1
is summarized, for a 1D case, on the left-hand side of Fig. 3.
Each kernel function (output) requires 16 search framepixels.
This is the same number of pixels for three neighboring
outputs (e.g., between outputs 1, 2, and 3) but nonoverlap-
ping betweenneighboring sets of three outputs (e.g., between
sets f1; 2; 3g and f4; 5; 6g). For the same kernel, 16 pixels from
a reference frame are required. For three neighboring
outputs, an increasing overlap of 8, 12, or 14 pixels occurs
for passes 1, 2 and 3, respectively. It is important to note the
large steps in memory access locations, for reference and
search frames, between neighboring outputs.

On the right-hand side of Fig. 3, the access pattern for
method 2 is summarized. This is an expansion of outputs 1,
2, and 3 from method 1, which now require a total of
12 outputs. The important feature to notice is that the range
of required search and reference frame locations between
n outputs is reduced by a factor of three and four for the
reference and search frames, respectively. This reduces the
large memory access steps from method 1. The memory
access jumps between each set of 3 outputs is now a jump
between sets of 12 outputs. The penalty is the need to
combine these results in step 2.2 (see Table 13).

The issues associated with the full 2D memory access are
an extension of the representation in Fig. 3. In the 2D case,
the reduction in memory access range and increase in
required number of outputs is the square of the 1D case.

It is observed in Table 13, when comparing steps 1.1 and
2.1 for the NFS-MVE case study, that the optimization

detailed above provides a three times improvement in
memory system performance (CPIMA). The penalty is
observed in step 2.2 where the memory access performance
is actually worsened. No data reuse is possible between
outputs. This is because in the 1D case of Fig. 3, there is no
overlap when accumulating the sets of outputs fA;B;C;Dg,
fE;F ;G;Hg, and fI; J;K; Lg. For the 2D case, the reduction
is over nonoverlapping 4� 4 windows. Despite this, the
required number of reads per output and instruction count
is significantly low such that the penalty is amortized by the
performance benefit provided by step 2.1.

5.3.2 A Comparison to the FPGA “Strategy”

It is interesting to consider how similar memory access
challenges are overcome in a customized data-path im-
plementation on an FPGA. The key difference is that the
content of memory, and the organization of memory, is fully
controllable. This produces a large design space of possible
optimizations for the memory hierarchy, as shown by
Liu et al. [30]. Of interest, here is that data are presented
at the compute elements by some overall control logic, in
contrast to relying on the performance of a fixed cache
hierarchy.

A further benefit is that the degree of parallelism can be
controlled. For NFS-MVE, only four outputs are computed
in parallel (ItLPfpga ¼ 4). Despite this, a large speedup over
the GPU is observed. This is due to a lower instantaneous
on-chip memory buffer requirement. The off-chip reads are
minimized by reducing the amount of input frame data that
is required, and may later be reused, at any one time. In
contrast, the GPU has a larger iteration level parallelism in
the number of fragment pipelines. If one considers the
number of concurrently live threads (estimated experimen-
tally to be 1,200) parallelism is even greater. A GPU has too
much parallelism for an efficient direct implementation of
NFS-MVE to be achievable for the given cache size.

A heuristically controlled memory system and a choice
of the degree of iteration level parallelism are inherent
benefits of the FPGA over the GPU under data depen-
dence constraints.

5.3.3 Data Dependencies in the GeForce 8/9

An impressive performance improvement for histogram
generation on GeForce 8 GPUs is cited in [31]. The
advantageous improvements are cited as the shared
memory (between “warps” of 32 threads) and lock-step
thread execution which enables synchronization of threads.
The peak throughput is quoted as 5.5 GB/s. It is clear that for
algorithms with the localized but data-dependent memory
access characteristics of histogram equalization the newer
GPUs provides substantial performance improvements.
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TABLE 13
Performance Summary for Alternative Reduction Options for
Implementing Histogram Equalization and Non-Full-Search

MVE on the GeForce 7900 GTX GPU for a 720p Video Frame

Fig. 3. 1D representation of the memory access requirement for the
motion vector estimation case study for methods 1 and 2 (pass 1).



5.4 Limitations of the Performance Comparison

5.4.1 FPGA Resource Usage

If one considers the alternative use of each device in a
system-on-chip architecture, then it may be desirable to
compare target devices of equivalent die area.

It is assumed that FPGA manufacturers fabricate their
largest device on the maximum feasible die area
(1:5 inch� 1:5 inch) and one may scale die size approxi-
mately with CLB (the fundamental logic unit in Xilinx
FPGAs) count [32]. For the GPU, the international technol-
ogy road map for semiconductors states that GPUs are of
size 220 mm2 [33]. The largest FPGA device is of the order of
6.5 times the size of a GPU.

Subsequently, the Virtex-4 XC4VSX25, which has ap-
proximately 12 percent of the CLBs of the XC4VLX200
device, is assumed to have an equivalent die area to a
GeForce 7900 GTX. Case study resource utilization of this
device is shown in Table 14.

The resizing and primary color correction algorithm
resource utilization requirements are met by the XC4VSX25
device. In [4], NFS-MVE is successfully targeted at the
XC4VSX25 device. For HEqu, the device is over-mapped by
27 percent in slice logic. However, the utilization may be
significantly reduced by implementing a proportion of the
256 accumulators and the LUT decoder within the
XtremeDSP slices and BRAM.

2D convolution is over-mapped in XtremeDSP slices. For
this case study, the addition tree is implemented in slice
logic; therefore, XtremeDSP slices represent only multiplier
logic. Optimizations to reduce the number of multipliers, or
transfer functionality to BRAMs, can reduce this require-
ment significantly [25], [34].

With the exception of 2D convolution, device resource
constraints can be met for all algorithms for an FPGA device
of equal size to theGPU. This shows that per unit die area, the
GPU has superior performance, of up to three times, for all
but the NFS-MVE and HEqu case studies (see Fig. 1). These
are two examples where a specialized data path in an FPGA
implementation can outperform a GPU per unit die area.

Kuon and Rose identify an average 40 times die area
advantage for an ASIC over an FPGA [35]. This factor
reduces to 21 times when considering coarse-grained FPGA
resources [35]. The difference observed in this work is lower
for two reasons. First, the GPU contains a large portion of
redundant logic; only 50 percent of a GPU is dedicated to
the shader pipeline [36]. Second, FPGA implementations
use fixed-point-number representation.

5.4.2 Numerical Precision

The numerical precision adopted for FPGA in this work is
fixed-point representation. This exploits and demonstrates
an inherent advantage of the FPGA where accuracy is
traded for speedup. A brief theoretical observation is made
below regarding floating point format on the FPGA.

Consider floating point precision for the FPGA
implementation of the arithmetic intensive PCCR algo-
rithm. This is an equivalent numerical precision to the
GPU (also floating point).

PCCR requires 187 FPGA numerical operation blocks as
specified in Section 5.1. A moderate 15 percent CLB and
8 percent XtremeDSP utilization of the largest Virtex-4
(XCVSX512) device is required to implement this algorithm
in fixed-point 18-bit precision. The required operations are
43 multipliers plus 144 other operations including mainly
addition, comparators and two CORDIC blocks. A Xilinx
Coregen single-precision Virtex-4 floating point multiplier,
requires five XtremeDSP blocks and 48 CLBs. An adder,
requires four DSPs and 86 CLBs. If one counts DSP and
CLB utilization in multipliers and adders alone, the count is
695 DSPs and 12,384 CLBs. This exceeds the resources of
the XCVSX512 in CLBs (201 percent) and XtremeDSP slices
(136 percent). This is not counting additional resources to
route the block and to perform rotation (previously a
CORDIC block) and comparators.

A two to three times improvement in device density is
required to support floating point operations for the
primary color correction case study on even the largest
current device. This highlights that the computational
density factor for a GPU over an FPGA in a like-for-like
numerical precision comparison is in excess of 12 times.
This is due to a compound six times larger die area size and
an over-mapping of resources of at least two times.

The remainder of the case studies, with the exception
of HEqu, may for a given scenario also require floating
point precision.

5.4.3 Implementation Effort

Design time is currently omitted. Qualitative low to high
perceived effort is discussed below.

PCCR is low effort on a GPU and medium on an FPGA,
due to implementing low level functional blocks. A C to
gates high-level language may improve FPGA effort.
Convolution is low effort on each device. Resizing is low
effort on a GPU and medium-high on a FPGA, where the
reuse heuristic and multiple clock domains are required.
HEqu is low effort on FPGA. Both HEqu and MVE are high
effort on a GPU, due to optimization requirements. For the
FPGA, the effort is low-medium for MVE because the Sonic-
on-chip system-level design architecture is used [4].

Interestingly, a low effort correlates with higher perfor-
mance. This is intuitive in that in this case the algorithm
mapswell to the architecture and is thus easier to implement.

6 RESULT SUMMARY: THROUGHPUT RATE DRIVERS

To collate the results and analysis in this paper, the
throughput rate drivers for the case study in Section 5 are
summarized in Section 6.1. A GeForce 8 GPU case study,
with comparison to the results in Section 6.1, is discussed in
Section 6.2.

444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 4, APRIL 2010

TABLE 14
Resource Usage for Case Study Algorithms on a Virtex-4

FPGA Device (Percentage Utilization of the XC4VSX25 Device)



6.1 The GeForce 7800 GT and Virtex-4 Case Study

The range of observed values for the throughput rate
drivers for the case study presented in Section 5 are
summarized here.

A summary of the achieved clock rates for three FPGA
devices is shown in Table 15. The case study implementa-
tions reported here are not optimized for clock speed
performance; however, sensible design decisions are made
with respect to pipelining. The ratio to the clock rate of two
sample GPUs is included.

Comparing the Virtex-4 and GeForce 7900 GTX, up to
4.55 times speedup of the GPU over an FPGA is observed.
This occurs on the NFS-MVE case study. Evidently, a higher
clock rate does not always result in a higher throughput
performance.

A large difference in clock speed is observed for
convolution size 11� 11 on the Spartan-3 device. This occurs
because the slice usage, on the largest device, is 99 percent of
the total resources.

For the remainder of the case study algorithms, more
moderate clock speed differences are observed between
GPUs and FPGAs.

If the Spartan-3 device is neglected, the range of clock
cycle differences is a factor of 1.01-6.5 times higher for the
GPUwith respect to FPGA designs. An average of 2.86 times
clock speed benefit for the GPUs over FPGAs is observed.
This difference is comparable to the ratio observed by Kuon
and Rose for 90 nm dedicated ASICs over FPGAs of up to
five times [35]. A GPU may be considered as a dedicated
ASIC for computer graphics.

In summary, the GPU has an intrinsic clock cycle
performance benefit of up to 4.55 times for our case study
(V4 and GF7).

If the clock speed difference is removed, the speedup
relationship between the FPGA and the GPU is as summar-
ized in Table 16. This shows the inherent architectural
differences.

Despite a high degree of iteration level parallelism on
the GPU (ItLPgpu ¼ 24) and a vectorized ISA, a speedup of
two times, in favor of the FPGA, is observed for PCCR.
The key is the CPO advantage from arbitrary FPGA
operation level parallelism.

For Conv, “speedup” is approximately 0:07n2 for a
window size of n� n. An FPGA presents a speedup when n
is greater than 3.77. The CPO advantage rises sharply due to
the fixed memory access overhead in a GPU. An FPGA

facilitates a specialized data path for data reuse and
arbitrary operation level parallelization.

A GPU is superior for resizing. For interpolation, the
speedup is 1.2 times and for decimation the factor is
two times in favor of the GPU. The input and output
bandwidth requirements for the FPGA account for this
discrepancy, as explained in Section 5.2.

For histogram generation (the key part of HEqu), the
iteration level parallelism of the FPGA implementation is
256. The FPGA also has a large benefit in clock cycles per
output of 100 times.

For NFS-MVE, the speedup factor for the FPGA is
4.86 times. The FPGA implementation of NFS-MVE is
based on the Sonic-on-Chip platform, in which four
processing element cores calculate motion vectors in
parallel (ItLPfpga ¼ 4) [4]. Each processing core requires
1,664 clock cycles (CPOfpga) to compute a single motion
vector. The GPU has an iteration level parallelism
advantage of six times; however, this is surpassed by the
FPGA’s 30 times clock cycle per output advantage.

The GPU clock cycle per output figures in Table 16 do
not include the multipass overhead. If this is included, CPO
increases to 153 for HEqu and 86,667 for NFS-MVE. With
this included the speedup factor for FPGA increases to 6.4
and 8.7 times, respectively. The overhead is higher for NFS-
MVE due to a nine pass implementation; HEqu requires
only five passes.

An FPGA has a significant advantage over a GPU in CPO
of up to 230 times for our case study. The advantage for a
GPU is up to 24 times higher iteration level parallelism. For
all case studies, with the exception of resizing, a 1.5-9.6 times
speedup from using an FPGA is observed over the GPU.

6.2 Case Study: Application to a GeForce 8800 GTX

Consider applying the comparison in Section 6 to work by
Che et al. [3] as shown in Table 17. Che et al. compare a
Virtex-II Pro FPGA, GeForce 8800 GTX GPU, and Intel Xeon
GPP for the Gaussian Elimination, Data Encryption Stan-
dard (DES), and Needleman-Wunsch algorithms. These are
algorithms from 3 of the 13 Berkeley dwarves for successful
architectures.

In Che et al.’s setup, the GPU core clock rate is 575 MHz
(1,350 MHz processor performance) and FPGA clock rate is
100 MHz. The GPU has an iteration level parallelism of
128 cores and no iteration parallelism is employed on the
FPGA. Therefore, the GPU has a fixed clock cycle benefit of
13.5 times and iteration level parallelism benefit of 128 times.
The total is a 1,728 times intrinsic benefit for the GPU. For
newer FPGAdevices, more aligned to the generation of GPU,
timing closure at faster speeds is expected. Also Che et al. do
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TABLE 15
Clock Speed in Mega-Hertz (MHz) for FPGA Implementations

of Case Study Implementations on Three Target Devices

TABLE 16
A Speedup (Speedupfpga!gpu) Comparison between the
GeForce 7900 GTX GPU and the Virtex-4 FPGA Device



not use the full FPGA resource so these factors should be
considered when reading this analysis.

For Gaussian Elimination in Table 17, the input size is
64� 64. Gaussian Elimination requires strided memory
accesses to a matrix which is poorly suited to a GPU
memory system. This is the reason for the three orders of
magnitude clock cycle deficit with respect to the FPGA. The
poor mapping is also emphasized by a two order of higher
clock cycle per output requirement than the GPP. A further
demonstration of the inefficiency is that as the input size is
increased, the FPGA clock cycle benefit is consistent. The
clock cycle benefit for the FPGA is almost eliminated if the
GPU intrinsic benefic of 1,728 is included.

DES requires bitwise operations and is thus well suited to
FPGA implementation. For a 64-bit block only 83 clock cycles
are required for computation on the FPGA which is much
smaller than the GPU. An FPGA has seven orders of
magnitude clock cycle benefit over a GPU in this case. This
reduces to approximately four orders of magnitude when
clock speed is considered. It is expected that GPU perfor-
mance will improve for larger input sample sizes, where the
GPU’s iteration level parallelism can be exploited [3].

For Needleman-Wunsch, the FPGA also has the lowest
clock cycle count in Table 17 for an input size of 64� 64. As
input size is increased, the GPU and FPGA clock cycle
difference narrows to two orders of magnitude. In this case,
the GPU outperforms the FPGA because of a 1,728 times
intrinsic benefit.

Che et al.’s work shows, albeit for a different application
domain, that for sample algorithms from 3 of the 13 Berkeley
dwarves for successful systems an FPGA remains beneficial
in clock cycles per output over a GPU. In each case, if the
iteration level parallelism is included both the FPGA and
GPU provide a speedup of at least five times over the GPP.

From the GeForce 7 to 9 series of GPUs there is an increase
in processor clock rate, by 2.5 times, and iteration level
parallelism, by 5 times. It is interesting to note that the core
graphics core clock rate actually drops from 650 MHz in the
GeForce 7 to 600MHz in theGeForce 9. This is demonstrative
of the current trend to strive for parallelism over increase
core performance.

For the results in Table 15, a GeForce 9 would have up to a
12 times benefit in clock cycle performance over the FPGA.
Also, in Table 16 the iteration level parallelism benefit of the
GeForce 9 (with 128 processor cores) over the Virtex-4 is
from 128 to a disadvantage of 0.5 times. The clock cycles per
output is a more difficult metric to approximate as was
reasoned in Sections 5.1.3, 5.2.5, and 5.3.3.

7 SUMMARY

Performance drivers for the graphics processor and recon-
figurable logic, which relate to algorithm characteristics,
have been presented using “off-the-shelf” devices. Three

algorithm characterization features have been proposed and
shown throughout, in particular in Section 7.2, to represent
the performance challenges of each architecture. This
analysis is possible due to the quantified performance
comparison proposed in Section 3.2.

To conclude the findings, the following summaries are
included. A projection of the scalability of the architectures
in Section 7.1. In Section 7.2, the questions from Section 4
are addressed. Throughput rate drivers are summarized in
Section 7.3. In Section 7.4, future work is proposed.

7.1 Future Scalability Implications

The progression of Moore’s Law will inevitably provide
increasing parallelism for both GPU and FPGA devices. A
number of interesting observations from the work in this
paper are made below.

For an FPGA, a key benefit is the choice of the degree of
parallelism to implement. In regards to Ahmdahl’s Law [37]
in (14) this is an arbitrary increase in parallelism (n) within
resource constraints, where rp and rs are parallel and serial
algorithm portions, respectively. The limitation in achieving
speedup is the design time and complexity in exploiting the
available resources. Also serial algorithm portions (rs) can
be supported to limit host processor intervention.

Speedup ¼ 1

rs þ rp
n

: ð15Þ

The key difference for the GPU is that parallelism is fixed in
operation and iteration dimensions. The density advantage
of the fixed architecture results in a higher value of n for
equivalent die area to an FPGA. The GPU data path and
memory system limit acceleration capabilities. This is
exemplified with the HEqu and NFS-MVE, where increased
serialization (multiple passes) must be introduced to
achieve a high GPU throughput performance. This funda-
mentally limits acceleration potential to be less than an
FPGA as n tends to infinity.

Newer multiprocessor architectures, for example, the
Cell and GeForce 8800 GTX, support increased on-chip
memory control. This alleviates some memory system
restrictions incidental to the GeForce 7 GPUs [13], as
discussed in part in Section 5.2.5. However, for each device,
a fixed degree of operation and iteration level parallelism
must be exploited. It is in this capacity that the FPGA is
inherently beneficial over all stated multiprocessors.

In raw compute power, the GPU is observed in Section 5.4
to be advantageous when compared with a fixed-point-
FPGA implementation. For a floating point FPGA imple-
mentation the GPU is superior by a further 12 times. The
potential value ofn on aGPU is evidently higher. An FPGA is
superior for algorithm characteristics of large degrees of data
dependence and number of memory accesses.

The GPU memory system, degree of multithreading, and
iteration parallelism are key architectural features which
result in both impressive algorithm acceleration and limita-
tions in the presence of large amounts of data dependence.
However, GPUs have been reported to be less power
efficient than FPGAs [18].

7.2 Answers to the Questions from Section 4

For compute bound algorithms, the exploitation of large
degrees of parallelism at an iteration and operation level
provides impressive speedup for both the GPU and FPGA
over a GPP. A GPU is benefited from a low clock cycle per
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TABLE 17
Throughput Rate Drivers for a Comparison of GeForce 8
and Virtex-II Pro (Quoting Clock Cycles per Iteration) [3]



computation instruction which is an order of magnitude
lower than that of a GPP (Question 1).

The memory bound 2D Convolution algorithm is used to
show the fixed clock cycle cost of a GPU. For the GeForce
7900 GTX the effective input bandwith is 36 GBytes/sec for
this case. The fixed clock cycle cost of this device results in
inferior performance to the FPGA beyond a window size of
4� 4 pixels (Question 2).

The GPU is highly sensitive to the amount of data reuse
which can be exploited. This results in up to two times drop
in input bandwidth for decimation. FPGA performance is
limited, for decimation, by the discrepancy between input
and output bandwidths. The presence of a variable data
reuse requirement for resizing increases the data-path delay
for the FPGA implementation. A GPU is superior for all
resizing options (Question 3).

The effect of data dependence has been analyzed. A large
number of required passes for NFS-MVE, nine in contrast to
five for HEqu, results in up to two times performance
degradation from pipeline setup costs alone. In trade-off on-
chip memory access performance can be increased at a cost
of extra rendering passes. Ultimately, the nature of the
memory access requirements, as for decimation, limits GPU
performance (Question 4).

7.3 Throughput Rate Drivers

The difference in device clock speed amounts to a peak
advantage of 4.55 times, and a minimum of 1.86 times, in
favor of the GPU. This represents an intrinsic benefit of the
fixed GPU architecture with respect to the interconnect
flexibility overhead of reconfigurable logic fabric.

In cycles per output, the FPGA implementations present
an advantage of up to 230 times, with a minimum of a
factor of 11.2 times, over GPU implementations. The innate
spacial processing nature of hardware implementations,
over the temporal nature of software, is the key contributor
to this benefit.

For a GPU, the degree of iteration level parallelism is fixed.
The GeForce 7900 GTX is observed to provide a benefit of
up to 24 times over FPGA implementations. A key factor is
evidently the design decision of single pipeline FPGA
implementations.

7.4 Future Work

This includes the exploration of alternative architectures;
for example, the GeForce 8 series of GPUs and Altera
Stratix-IV FPGAs. It would be interesting to discover by
how much the limited control of the on-chip memory on the
GeForce 8 can improve performance for the NFS-MVE case
study in particular. The application of the characterization
scheme to commonly used benchmark sets and new
application domains will also be explored. A perhaps
grander vision of the work is as a theoretical basis for
discerning, from a given “new algorithm,” the most suitable
target architecture or properties thereof. The envisioned
process is to first characterize the application using the
proposed three algorithm features. From a prior separation
of the space—into regions most suited to different archi-
tectural features—a suitable architecture is determined.
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