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Abstract—This paper analyzes the relationship between the
performance of the local search operator within a Memetic
Algorithm and its final results in constrained numerical optimi-
zation problems by adapting an improvement index measure,
which indicates the rate of fitness improvement made by the
local search operator. To perform this analysis, adaptations of
Nealder-Mead, Hooke-Jeeves and Hill Climber algorithms are
used as local search operators, separately, in a Memetic DE-based
structure, where the best solution in the population is used to
exploit promising areas in the search space by the aforementioned
local search operators. The ε-constrained method is adopted as
a constraint-handling technique. The approaches are tested on
thirty six benchmark problems used in the special session on
“Single Objective Constrained Real-Parameter Optimization” in
CEC’2010. The results suggest that the algorithm coordination
proposed is suitable to solve constrained problems and those
results also show that a poor value of the improvement index
measure does not necessarily reflect on poor final results obtained
by the MA in a constrained search space.

I. INTRODUCTION

Evolutionary algorithms (EAs) [1] and swarm intelli-
gence algorithms (SIAs) [2] have been widely used to solve
constrained numerical optimization problems (CNOPs) also
known as constrained nonlinear optimization problems [3].
However, the complexity of many CNOPs has led to the
emergence of more sophisticated algorithms either combining
operators or mixing different algorithms, which help to get
better results. Within this range of algorithms are those which
are based on the interaction of two processes, global and
local search, where the local search is activated within the
generation cycle of the global search, to get the advantage of
both searches. This kind of algorithms are known as Memetic
Algorithms (MAs).

There are many studies where MAs have been used to solve
different type of optimization problems [4], [5]. However,
particularly for CNOPs, there is an issue which is not usually
analyzed, to the best of the authors’ knowledge, and it is the
relationship between the performance of the local search and
the competitive final results obtained by the MA. This is the
main motivation for this work, where three direct local search
operators (Nealder-Mead, Hooke-Jeeves and Hill Climber) are
added, separately, to Differential Evolution (DE), a highly
competitive global search algorithm, with the aim to analyze

the performance of each local search operator and the final
results obtained by each MA variant. The success of the local
search operator is computed by a measure taken from the
specialized literature and explained later in the document.

In this work, the ε-constrained method [6] is adopted as
constraint-handling mechanism because it is the same used
in the best approach presented in the CEC’2010 competition
on constrained-real parameter optimization. The ε-constrained
method transforms the CNOP into an unconstrained numerical
optimization problem by using a so-called ε level comparison.

The contents of this paper are organized as follows: the
problem statement is described in Section II. Section III
presents a brief review of DE-based memetic algorithms for
CNOPs, while in Section IV the proposed approaches in this
work are detailed. The performance measure adopted in this
comparison is presented in Section V. The experiments and
results are summarized in Section VI. Finally, in Section VII,
some conclusions are shown and the future work is defined.

II. PROBLEM STATEMENT

The problem tackled in this paper is the constrained numer-
ical optimization problem (CNOPs), which is defined, without
loss of generality, as follows:
Minimize

F (~x), ~x = [x1, x2, . . . , xn] ∈ Rn (1)

Subject to
gi(~x) ≤ 0, i = 1, . . . ,m (2)

hj(~x) = 0, j = 1, . . . , p (3)

where ~x is the vector of solutions, m is the number of inequal-
ity constraints, and p is the number of equality constraints.
The search space S is defined by lower and upper limits
Lk ≤ xk ≤ Uk for each xk ∈ R. The feasible region
F is the set of all solutions which satisfy the constraints
functions (Equations 2 and 3). Usually the equality constraints
are transformed into inequality constraints as follows [7]:
|hj(~x)| − δ ≤ 0, where δ is the tolerance allowed.

III. RELATED WORK

The integration of local search operators in evolutionary
algorithms is a good alternative to improve results in different



types of optimization problems including CNOPs. Therefore,
in this Section a set of Differential-Evolution-based MAs for
CNOPs are described below.

According to the local search operator, the related ap-
proaches can be grouped into three sets: (1) direct-based op-
erators, (2) gradient-based operators and (3) special operators.

A. Direct-Based Operators

Muelas et al. in [8]. proposed a MA based on DE to
solve continuous optimization problems. The authors used the
multiple trajectory search algorithm as local search operator
which was activated after a certain number of generations
and was applied to the best solution of the population. Man-
dal et al. in [9] used an hybrid-mutation strategy to solve
real-world optimization problems. The authors combined two
techniques in the mutation process (DE/current-to-best/2 and
DE/rand/1/bin). Moreover, the authors used the Solis and Wet’s
algorithm [10] as local search operator, which was applied
using an activation frequency criterion. Hernández et al. in
[11] proposed a MA based on DE as global search and a hill
climber method as local search operator to solve CNOPs. After
the selection process in DE, the local search was activated for
the best solution of the population. In a recent proposal [12]
the authors improved the algorithm combining two mutation
operators. Domı́nguez et al. in [13] proposed a MA to solve
CNOPs, the algorithm combined DE as global search and
Powell’s conjugate direction method as local search operator.
The local search was activated during the main cycle of DE
and was applied to the best, the worst and a random selected
solution. Zhang et al. in [14] proposed a MA that used DE
and Hooke-Jeeves as local search operator to solve continuous
optimization problems. The local search was activated by
means of a probability for each solutions of the population
during the DE process. Piotrowski in [15] combined DE and
a local search operator inspired by the Nealder-Mead method
to solve continuous optimization problems. The local search
operator was activated by a probability and was applied to
the best solution of the population during the DE generations.
Vakil et al. in [16] proposed a memetic DE with a differential-
bidirectional-random-search method as local search operator
which was applied to all solutions during the global search
process. The algorithm was tested in continuous optimization
problems.

B. Gradient-Based Operators

Takahama and Sakai in [17] used DE with exponential
crossover (known as DE/rand/1/exp) and the ε-constrained
method to solve CNOPs. They also adapted a gradient-based
mutation as local search mechanism, which was activated for
the solutions after applying the crossover operator. The authors
presented an improved version based on a new control for the
ε-tolerance. In a recent work [18], they proposed two novel
mechanisms to control boundary constraints to further improve
their approach.

C. Special Operators

Liu et al. in [19] proposed a co-evolution-memetic-based
algorithm to solve CNOPs. They used two different population
within DE. One population aimed to minimize the objective

function regardless of constraints, and the other one ensured to
minimize the constraints violation regardless of the objective
function. The authors used a Gaussian mutation originally
adopted in real coded genetic algorithms GAs as local-search-
like operator, which was applied to the population when the
best solution kept unchanged for several generations. Men-
chaca and Coello in [20] proposed a hybrid DE algorithm
to solve CNOPs. They combined DE with a Nealder-Mead
based operator (called simplex operator). Using a frequency,
the simplex operator was activated to generate new solutions
of the population. Zhao et al. in [21] proposed a MA based
on DE as global search and Cauchy distribution used as
local search operator which was applied to the best solution
at each generation. The algorithm was designed to solve
continuous optimization problems. Pescador and Coello in [22]
implemented a crossover-memetic-based algorithm to solve
CNOPs. They proposed a DE with simplex crossover as local
search mechanism. The authors applied the local search on
the neighborhood of the best and the worst solutions of the
population and was activated at each generation of the DE
algorithm. Pan et al. in [23] proposed a DE algorithm with
a local search operator based on Cauchy mutation to solve
large-scale optimization problems. The local search operator
was activated inside the DE generations when the global best
solution did not improve on a certain number of generations.

IV. PROPOSED APPROACH

Section III included different approaches where DE was
combined with a local search operator to solve different type of
problems including CNOPs. All studies reported competitive
results and good performance of the MAs. However, the
performance of the local search operator was not measured so
as to get a better understanding about its contribution to the
competitive final results. Therefore, this research is focused
on measuring the performance of three direct local search
operators (Nealder-Mead, Hooke-Jeeves and Hill Climber)
added separately into Differential Evolution, with the aim to
relate it to the final results obtained by each MA variant
in a constrained search space. The goal is to get a better
understanding of the type of performance required by a local
search operator in presence of constraints.

A. Algorithmic Coordination

The interaction between global and local search in this
research work is the same for each approach compared. Three
issues were considered in the global-local search coordination:
(1) exploitation area, (2) application frequency and (3) type of
replacement.

1) Exploitation Area: According to Mezura-Montes et al.
in [24] the DE variant used in this work (DE/rand/1/bin)
has a good performance regarding exploration capabilities in
constrained spaces. Due to that, in this proposal the best
solution in the population was used to exploit promising areas
in the search space by applying it the local search operator
while using DE/rand/1/bin as the global search algorithm.

2) Application Frequency: Inspired in [19], [23] the lo-
cal search operator is activated if the best solution in the
population does not improve after T generations. Besides,
the algorithm considers a probability ψ given by Eq. (4) to



activate the local search operator. Although ψ was designed for
a particular combinatorial optimization problem, in previous
experiments (not reported here due to space restrictions) it
worked well in CNOPs.

ψ = 1−
∣∣∣∣ Javg − JbestJworst − Jbest

∣∣∣∣ (4)

where Jbest, Jworst and Javg are the best, worst and average
of the fitness function values in the population, respectively.
According to Neri et al. in [25] ψ is a population diversity
index which measures it in terms of fitness. The population
has high diversity when ψ ≈ 1 and low diversity when ψ ≈ 0.
In this work, a higher diversity index value means a higher
probability to apply local search.

3) Type of Replacement: In this work, Lamarckian learning
is used, i.e., the solution generated by the local search operator
(Xnew) is always kept for the next generation. The algorithm
randomly selects a solution of the population (except the
solution with the best fitness value) to be replaced by Xnew.
This is because it could be the case that Xnew is worse than
the best solution in the current population.

B. Global Search Algorithm

The MAs proposed in this work are based on DE which
was proposed by Storn and Price [26]. According to the
algorithmic coordination presented in Section IV-A the global
search is described in Algorithm 1, where the gray lines
mark the elements to integrate the local search operator within
DE/rand/1/bin.

In DE, a solution to the optimization problem is known
as a vector XG,i = (xG,i,j , . . . , xG,i,D) where XG,i rep-
resents a vector i at generation G, and D is the number
of decision variables (i.e. the search space dimensionality,
D = n). In the same way, a population is represented
as PG = (XG,i, . . . , XG,Pmax) where Pmax is the fixed
population size at each generation G. MaxFEs is the maximum
number of fitness evaluations allowed for the algorithm.

C. Memetic DE and Nealder-Mead (MDE+NM)

In this approach, the Nealder-Mead method [27] was
integrated in Algorithm 1 as local search operator. The algo-
rithm needs three user-defined parameters: (1) the expansion
factor γ, (2) the contraction factor β and (3) the termination
criteria maxIter. This method works through expansions and
contractions during the main loop, see Eq. (5):

Xnew =


(1 + γ)Xc − γXh if f(Xr) < f(Xl) (expansion)
(1− β)Xc + βXh if f(Xr) ≥ f(Xh) (contraction)
(1 + β)Xc − βXh if f(Xg) < f(Xr) < f(Xh)(contraction)

Xr , otherwise
(5)

where Xh, Xl and Xg are the worst, the best and the next to
the worst vector of the simplex population respectively. Xr is
the reflected point which is calculated by Xr = 2Xc − Xh.
Finally Xc is the centroid vector, see Eq. (6).

Xc =
1

D

D+1∑
i=1,i6=h

Xi (6)

Algorithm 1 Memetic DE
1: Randomly generate an initial population of vectors P0 =

(X0,i, . . . , X0,Pmax)
2: Calculate the fitness of each vector in the initial population.
3: Set the ε value using Eq. (12)
4: repeat
5: for i← 1, Pmax do
6: Randomly select r0,r1,r2 ∈ [1, Pmax] and r0 6= r1 6=

r2 6= i
7: Randomly select Jrand ∈ [1, D]
8: for j ← 1, D do
9: if randj ≤ Cr Or j = Jrand then

10: uG,i,j = xG,r0,j + F (xG,r1,j − xG,r2,j)
11: else
12: uG,i,j = xG,i,j

13: end if
14: end for
15: if UG,i ≤ε XG,i using Eq. (10) then
16: XG+1,i = UG,i

17: else
18: XG+1,i = XG,i

19: end if
20: end for
21: if No improvement counter ≥ T then
22: Reset the no improvement counter

23: Calculate ψ value using Eq. (4)
24: if rand(0,1) ≤ ψ then
25: Set Xnew ← Local Search Operator(XG,best)

26: Set XG,rand ← Xnew where XG,rand 6= XG,best

27: end if
28: end if
29: if There are equality constraints then
30: Modify δ using Eq. (13)
31: end if
32: Update ε value using Eq. (11)
33: G = G+ 1
34: until MaxFEs is reached

where D + 1 corresponds to the number of vectors in the
simplex array and D is the number of decision variables of
each vector, i.e, D = N . The whole process is shown in
Algorithm 2.

Algorithm 2 Nealder-Mead Local search
1: Create an initial simplex applying Eq. (7)
2: repeat
3: Find Xh, Xl and Xg

4: Calculate Xc using Eq. (6)
5: Calculate the reflected vector Xr = 2Xc −Xh

6: Set Xnew using Eq. (5)
7: Set Xh ← Xnew

8: until MaxIter
9: return Xl

In this approach the initial simplex is an array of vectors
S = X0, X1, . . . XN generated from a initial vector Xs, see
Eq. (7):

Xi,j =

{
Xsj + rand[0, 1] if rand(0, 1) ≤ 0.5

Xsj − rand[0, 1] , otherwise
(7)



D. Memetic DE and Hooke-Jeeves (MDE+HJ)

The Hooke-Jeeves method [27] was combined with Al-
gorithm 1 as local search operator. The algorithm works by
creating a set of search directions iteratively. Basically, the
algorithm needs three user-defined parameters: (1) the variable
increments ∆, (2) a step reduction factor α > 1 and (3)
the termination criteria maxIter. Hooke-Jeeves has two types
of moves in the search space: the exploratory move and the
pattern move.

1) Exploratory move: The current vector is perturbed in
positive and negative directions along each variable one at a
time and the best vector is recorded, see Algorithm 3, where
X(k) is the vector at iteration k and D is the vector dimension.

Algorithm 3 Exploratory Move
1: X ← X(k)

2: for i← 1, D do
3: Calculate X ← (Xi), U ← (Xi + ∆), V ← (Xi −∆)
4: Set Xi ← getBest(X ,U ,V )
5: end for
6: if The new vector is different than the initial vector then
7: return success
8: else
9: return failure

10: end if

2) Pattern move: This movement is applied to the best
vector X(k) at iteration k to find a new vector Xp, see Eq.
(8).

Xp = X(k) + (X(k) −X(k−1)) (8)

The complete local search operator is described in Algorithm
4.

Algorithm 4 Hooke-Jeeves Local search
1: Set Xk by exploratory move with Xs using Algorithm 3
2: repeat
3: if Success then
4: repeat
5: Perform a pattern move using Eq. (8)
6: Perform an exploratory move with Xp using Algorithm

3.
Let the result be the new vector.

7: until New vector is worse than the previous vector
8: end if
9: Set ∆← ∆/α

10: Set X(k+1) by exploratory move with X(k) using Algorithm
3

11: until MaxIter
12: return X(k)

E. Memetic DE and Hill Climber (MDE+HC)

Hill Climber was coupled with Algorithm 1 as local search
operator as well. This method consists of random perturbations
of the variables in a vector, if a new vector generated is better
than the original vector, it is replaced. The process is repeated
until a maximum number of iterations maxIter is reached.
It is the only user-defined parameter. The complete process is
shown in Algorithm 5, where Xs is the initial vector, k is
the number of iteration, D is the vector dimension, i.e., the

number of decision variables in the vector. Finally p is the
position within the vector (selected randomly) to be modified
by a random value σ ∈ [0, 1].

Algorithm 5 Hill Climber Local search
1: Set X(k) ← Xs
2: repeat
3: Select σ ← random(0, 1)
4: Select p← random(1, D)
5: Set U ← X(k) and V ← X(k)

6: Calculate U ← X(k),p + σ and V ← X(k),p − σ
7: Set X(k+1) ← getBest(X(k),U ,V )
8: until MaxIter
9: return X(k)

F. Constraint-Handling

The MAs implemented in this work adopted the ε-
constrained method proposed in [6] which transforms a CNOP
into an unconstrained optimization problem. The constraint
violation φ of a given vector XG,k is computed as the sum
of the amounts of all violated constraints, see Eq. (9).

φ(XG,k) =

m∑
i=1

max(0, gi(XG,k)) +

p∑
j=1

max(0, |hj(XG,k)| − δ)

(9)
The ε tolerance allows the so-called ≤ε comparison between
two vectors by using only their fitness function values, see Eq.
(10).

XG,k ≤ε XG,l ⇔


f(XG,k) ≤ f(XG,l) if φ(XG,k), φ(XG,l) ≤ ε
f(XG,k) ≤ f(XG,l) if φ(XG,k) = φ(XG,l)

φ(XG,k) ≤ φ(XG,l) ,otherwise
(10)

The ε level is dynamically decreased at each generation as
indicated in Eq. (11).

ε(G) =

{
ε(0)(1− G

Gc
)cp , 0 < G < Gc

0 , G ≥ Gc (11)

where cp is a user-defined parameter to control the reduction
speed of the ε tolerance, G is the current generation number
and Gc is the generation number when the ε value is set to
zero. The initial ε value (i.e., ε(0)) is the constraint violation
of the θth solution in the initial population, see Eq. (12).

ε(0) = φ(Xθ) (12)

G. Tolerance Value for Equality Constraints

In this work, the equality constraints are transformed into
inequality constraints using a δ tolerance which decreases at
each iteration as indicated in Eq. 13 until a suitable value is
reached.

δ(G+ 1) =
δ(G)

dec
(13)

where dec is a user-defined parameter which determines how
fast the δ value decreases over time and δ(0) is also a user-
defined parameter.

V. LOCAL SEARCH PERFORMANCE MEASURE

The improvement Index (I.I.) proposed by Barkat et al.
in [28] is adapted in this work to measure the local search



performance. I.I. indicates the rate of fitness improvement
made by a particular local search operator. The value of
I.I. is restricted in the range −1 ≤ I.I. ≤ +1, the values
outside these ranges are bounded to the limits permitted.
When the local search operator starts with an infeasible vector
and becomes feasible after the application, the I.I. gets the
value +1. If the situation is the opposite, i.e., from feasible
to infeasible then I.I. is assigned -1. However, if the vector
remains feasible before and after the local search operator, I.I.
is calculated by Eq. (14)

I.I. =
f(X)before − f(X)after

f(X)before
(14)

where f(X)before and f(X)after are the fitness value of the
vector X before and after the application of the local search
operator respectively. In the same way, if the local search
operator starts with an infeasible vector and still results an
infeasible one, I.I. is obtained by Eq. (15)

I.I. =
φ(X)before − φ(X)after

φ(X)before
(15)

where φ(X)before and φ(X)after are the constraint violation
of the vector X before and after the application of the local
search operator, respectively. A positive value of I.I. indicates
that fitness was improved by the local search operator. On the
other hand, a negative value indicates a fitness decrease.

VI. EXPERIMENTS AND RESULTS

The experiments are divided in two phases: (1) The MAs
mentioned in Sections IV-C, IV-D and IV-E are tested on
18 benchmark problems, with different search space dimen-
sionality (10 and 30 dimensions), used in the special session on
“Single Objective Constrained Real-Parameter Optimization”
in CEC’2010 [29], to analyze the performance of each local
search using the Improvement Index (I.I) measure, and (2) the
final results obtained by each MA are analyzed and are also
compared against those obtained by the εDEga [18], the most
competitive approach in the aforementioned special session.
The parameter values used for each algorithm are described
in Table I. The dimensionalities used in the test problems
were D = 10 and D = 30, as defined in the special session.
Likewise, the maximum number of fitness evaluations maxFEs
(200,000 and 600,000 respectively). The parameters marked
with (*) in Table I were fine-tuned by using the IRACE tool
[30] with four representative test problems as a training set for
the parameter tuning processes, the parameters suggested in
[18] and [27] were used as the starting point for such process.

The results of the first experiment (analyzing the per-
formance of local search using the Improvement Index (I.I)
measure) are presented in Figures 1 and 2. In all cases the
95%-confidence Wilcoxon test showed significant differences
with the exception of MDE-HJ and MDE-HC in 10D problems.
The results suggest that MDE+HC has a better overall average
performance in most problems with respect to MDE+NM
(10D and 30D) and MDE+HJ (only in 30D). Only in test
problem C13 for 10D, MDE+HC had a negative I.I. average
performance. On the other hand, MDE+NM obtained positive
I.I. values for 10D in only four test problems (C04, C05, C06
and C12) and was clearly outperformed by MDE+HC. It is
important to remark MDE+NM’s clear improvement from 10D
to 30D (most negative I.I. values in 10D and most positive

TABLE I. PARAMETERS VALUES. (*) INDICATES THE VALUES
OBTAINED USING IRACE.

Algorithm Parameter Value
10 D 30 D

maxFEs 2.0E + 05 6.0E + 05
Pmax 20 50

DE *Cr 0.7890 0.8830
*F 0.8587 0.9989
T D
*β 0.7683

Nealder-Mead *γ 1.2030
maxIter D×20
*∆ 0.6986

Hooke-Jeeves *α 1.0001
maxIter D×2

Hill Climber maxIter D×50
θ 0.2

Epsilon-Constraint cp 46
Gc 1600
δ 1.8E+100

Equality Constraint Tolerance dec 1.1002

 

Test functions

Fig. 1. Average of improvement index (I.I) measure for 10D problems

 

Test functions

Fig. 2. Average of improvement index (I.I) measure for 30D problems

I.I.values in 30D). In contrast, MDE+HJ shows an opposite
behavior, i.e. most positive I.I. values in 10D but most negative
I.I. values in 30D.



The results of the second experiment are summarized in
Table III, where the best and average function values for each
MA, besides the standard deviation values, are shown for 10D
and 30D. The aforementioned results suggest that MDE+NM,
MDE+HJ and MDE+HC are able to find feasible solutions for
all test problems in 10D and 30D.

The results of the Wilcoxon test applied to the best and av-
erage overall results between εDEga vs MDE+NM, εDEga vs
MDE+HJ and εDEga vs MDE+HC are presented in Table II. It
can be noted that no significant differences were obtained, i.e.
the performance of the three MAs with local search operators
based on direct search methods is similar to that observed by a
MA with gradient based local search. This finding, besides the
one that feasible solutions were found by the three MAs in all
test problems, mean that the algorithm coordination proposed
in this research and mentioned in Section IV-A works favorably
to solve CNOPs.

Regarding comparisons in particular test problems,
MDE+NM reaches the optimal function values obtained by
εDEga for 10D in nine test problems (C01, C03, C07, C08,
C09, C10, C13, C14 and C16). Furthermore, in functions
C02, C04, C05, C06, C11, and C17 MDE+NM outperforms
εDEga. For 30D, in seven test problems (C02, C04, C05,
C11, C12, C17 and C18) MDE+NM gets better solutions than
εDEga. Regarding MDE+HJ, it was able to outperform εDEga
for 10D in seven test problems (C02, C04, C05, C06, C11,
C12 and C17), and in C03, C07, C08, C09 C10, C13, C14
and C16 the optimal functions values are reached. For 30D,
MDE+HJ outperform εDEga in ten test problems (C02, C03,
C04, C05, C06, C10, C11, C12, C17 and C18). On the other
hand, MDE+HC was able to outperform εDEga in eight test
problems (C02, C04, C05, C06, C11, C12, C17 and C18) for
10D and 30D, adding C03 and C10 to the latter. However,
unlike MDE+NM and MDE+HJ, MDE+HC reaches only two
optimal function values for 10D (C03 and C09).

Finally, based on the 95%-confidence Wilcoxon test, no
significant differences among the three MAs studied in this
paper were obained.

TABLE II. 95%-CONFIDENCE STATISTICAL TEST RESULTS BETWEEN
εDEGA AND EACH MA COMPARED FOR 10D AND 30D TEST PROBLEMS.
(Y) MEANS SIGNIFICANT DIFFERENCE AND (N) MEANS NO SIGNIFICANT

DIFFERENCE.

Comparison Wilcoxon Test Results
p ≤ 0.05. 10 D 30 D

Best N N
εDEga vs MDE+NM Average N N

Best N N
εDEga vs MDE+HJ Average N N

Best N N
εDEga vs MDE+HC Average N N

Comparing the results of experiments 1 and 2, it can be
noted that MDE+HC had the best performance based on I.I.
for 10D and 30D test problems (Figures 1 and 2). However,
the final results in Table III show that MDE+HC provided a
similar performance with respect to MDE+NM and MDE+HJ.

On the other hand, MDE+NM had the worst performance
in 10D problems based on the I.I. measure (see Figure 1),
but obtained very competitive final results in the same 10D
test problems (Table III). MDE+NM improved its performance
for 30D based on the I.I. measure values (see Figure 2), but

such values were not better than those presented by MDE+HC.
Nevertheless, the final results obtained by MDE+NM in 30D
(Table III) were similar than those obtained by MDE+HC.

Finally, MDE+HJ, which obtained similar results (based
on the Wilcoxon test) with respect to MDE+HC based in the
I.I. values for 10D in Figure 1, obtained similar final results in
such dimension in Table III. A different behavior was observed
in 30D (Figure 2 and Table III), where most negative I.I. values
were obtained by MDE+HJ compared with the most positive
I.I. values by MDE+HC, but similar final results were obtained
by MDE+HJ and MDE+HC.

The results of both experiments imply that the positive
effect of a local search operator in a constrained search space
can not be only measured by the isolated improvement of
a single solution. A possible way to deal with this issue
is considering such improvement but with respect to the
improvement of the whole population.

VII. CONCLUSIONS AND FUTURE WORK

This paper analyzed the relationship between the perfor-
mance of the local search operator within a Memetic Algorithm
and its final results in CNOPs by adapting an improvement
index measure, which indicates the rate of fitness improvement
made by the local search operator. To perform this analysis,
adaptations of Nealder-Mead, Hooke-Jeeves and Hill Climber
algorithms were used as local search operators separately
within a Memetic DE-based structure, where the best solution
in the population was used to exploit promising areas in the
search space by the aforementioned local search operators. The
ε-constrained method was used as a constraint-handling tech-
nique. The algorithms solved eighteen benchmark problems in
10D and 30D (thirty six total test problems). Two experiments
were carried out, one centered on measuring the performance
of the local search operators and other focused on discussing
the final results reached by each MA. The results obtained
confirmed that the algorithm coordination proposed in this
work is suitable to get competitive MAs to solve CNOPs with
local search operators based on direct methods. The results also
suggested that a poor value of the improvement index measure
does not necessarily reflects on also poor final results obtained
by the MA in a constrained search space. Therefore, other
aspects such as the improvement of the local search operator
with respect to the improvement of the global search must be
considered and analyzed. This is precisely the initial topic of
future research.
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