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Until recently, amajority ofmodeling tasks of transportation planning, especially in discrete choicemodeling, is conductedwith the
help of commercial so	ware and only concerned about the result of parameter estimates to get a policy-sensitive interpretation.�is
common practice prevents researchers from gaining a systematic knowledge involved in estimation mechanism. In this research,
to shed a light on these limited modeling practices, a standard discrete choice model’s parameter is estimated using Quasi-Newton
method, DFP, and BFGS. Two extended algorithms, called DFP-GSM and BFGS-GSM, are proposed for the 
rst time to overcome
the weakness of the Quasi-Newton method. �e golden section method (GSM) incorporates a nonlinear programming technique
to choose an optimal step size automatically. Partial derivatives of log-likelihood function are derived and coded using Visual
Basic Application (VBA). �rough extensive numerical evaluation, estimation capability of each proposed estimation algorithms
is compared in terms of performance measures. �e proposed algorithms show a stable estimation performance and the reasons
were studied and discussed. Furthermore, useful insights educated in custom-built modeling are present.

1. Introduction

Discrete choice modeling is widely used across disciplines
to predict a certain choice situation through a mathematical
inferring of a choicemodel’s parameters [1]. In transportation
demand forecasting, this choice analysis method is generally
used to describe a variety of choices. Applications of discrete
choice theory in various 
elds are very useful tool for policy
analysis and planning. Applications in the transportation
sector are very active and diverse and apply to almost every
choice situation where alternatives exist, for example, the
choice of travel mode [2–7], mode and departure time
selection [8, 9], route selection [10–13], and airport selection
[14–16]. It is common practice to estimate model parameters
by relying on commercially available so	ware.

Until recently, a concern of discrete choice modelers is
mainly about to 
nd an interpretable parameter estimates
sound in their statistical accuracy level and in their re�ected
meaning in a policy-sensitive way. Estimation algorithm

and calculation mechanism are actually not concern of
researchers. However, as a speci
cation of model becomes
more complicated to model a real situation in a persuasive
way, and as a more realistic assumption is frequently adopted
in a model developing process, researchers (or modelers)
might meet di�culties in dealing with modeling tasks.
Employing a new probability distribution function (PDF)
for describing an unobserved part of a choice model can be
prohibited by a limitation of so	ware packages. Choosing
and applying a speci
c algorithm for satisfying a number of
occasions in modeling tasks are not easy to practice with a
normal so	ware package. In particular, opportunity to have
access to all the details of calculation that enable researchers
to have a systematic understanding of modeling mechanism
is hardly to get unless modeling is in custom-built procedure.
A few literature items on this topic can be found in the
econometrics 
eld [17–23], but these studies have addressed a
di�erent application environment and, therefore, it is di�cult
to apply these to modeling transportation related decisions
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[24, 25]. To tackle this kind of challenges that can occur
in model developing, researchers must have a capability of
doing modeling with custom-built computer codes that are
tailored for each unique modeling case. To be able to reach
this level of stage, researchers should be more familiar with
a calculation mechanism and a �ow to be undertaken before

nal parameter estimates are taken.

In this research, a standard discrete choice model is
estimated using self-made computer code that is developed
by using Visual Basic Application (VBA) in EXCEL [26–
28]. In order to guarantee convergence of a test model,
excellent and robust in convergence properties even for the
problems that cannot be solved in satisfactory manner [29,
30], two practically and pedagogically important estimation
algorithms are employed to calculate parameter estimates in
every iteration stage. �ese are DFP and BFGS algorithms.
More importantly, for the 
rst time, two new estimation
algorithms are proposed to improve a way of 
nding an
optimal step size by incorporating a golden section method
(GSM) into general routine of both DFP and BFGS. �ese
are DFP-GSM and BFGS-GSM. �ese four algorithms are
compared in terms of performance measures to show a
di�erent operational characteristic according to application
of several critical factors that are identi
ed and experimented
through extensive numerical trials.

�e next parts of this document consist of the fol-
lowing. Section 2 is about a model speci
cation assumed
within a concept of multinomial logit choice model and
data utilized in this research. Section 3 is dedicated to the
issues that researchers should have knowledge on in making
custom-built modeling procedures. Section 4 deals with the
results obtained from extensive numerical experiments that
show a relative operational performance among algorithms,
responding to changing of criteria. �e last section summa-
rizes the results obtained from this research and presents
conclusions.

2. Model and Data

As a standard discrete choice model, multinomial logit
(MNL) model has been widely applied to describe a choice
behavior of decision maker due to its simplicity of its
probabilistic choice function, which is the results derived
based on two big assumptions, 
rst one is about an utility
maximization which explains a choice mechanism based on
an utility concept and second one is about an probability dis-
tribution function applied to the distribution of unobserved
part of total utility. �e simple choice function is shown
below:

�� (�) = ����
∑� ���� , (1)

where ��(�) is a choice probability of mode � and ��� and ���
are a representative utility function of mode �, � respectively.
�e 
nal form of the multinomial logit model is composed of
two parts, a denominator which is the sum of the systematic
utility of all the alternatives in the choice set and a numerator
which is the systematic utility of the alternative chosen by
decision makers.

As a revealed preference (RP) type data, 540 travels
interviewed on site for passengers who travel to airport using
possible modes are used to estimate a mode choice model.
Five alternatives are considered and the representative utility
function of each alternative has a speci
cation as follows:

�car = �1	
� + �2		� + �3Acco� + �4Sex�
+ �5Age 340

�taxi = �1	
� + �2		� + �6	��
�subway = �1	
� + �2		� + �7���

�bus = �1	
	 + �2			 + �8���
�limousine = �1	

 + �2		
 + �9���.

(2)

3. Components in Custom-Built
Discrete Choice Modeling

3.1. Formulating Log-Likelihood Function. To describe esti-
mation process with computer codes using maximum like-
lihood estimator (MLE), a high-order nonlinear likelihood
function containing whole information of the surveyed data
is to be built. Likelihood function speci
c this research is
below:

� (�1, �2, . . . , �8, �9) = ∏
�
∏
�
�� (�)��� = ∏

�
[�� (
)���

⋅ �� (	)��� ⋅ �� (�)��� ⋅ �� (�)��� ⋅ �� (�)�	�]
(3)

By a log transformation, the above equation (3) changed into
a tractable form from the mathematical standpoint as shown
in (4). By di�erentiating the equation in 
rst and secondorder
with respect to each parameter, all elements contained in a
vector of gradients and the Hessian matrix can be expressed
with mathematical expressions that provide a numeric value
in iterative estimation process.�is estimation process will be
discussed in detail in the following section:

LL (�1, �2, . . . , �8, �9) = �∑
�=1

[���
⋅ ln( ��car

��car + ��taxi + ��subway + ��bus + ��limousine

)

+ ��� ln( ��taxi
��car + ��taxi + ��subway + ��bus + ��limousine

)

+ ��� ln( ��subway
��car + ��taxi + ��subway + ��bus + ��limousine

)

+ �	� ln( ��bus
��car + ��taxi + ��subway + ��bus + ��limousine

)
+ �
�
⋅ ln( ��limousine

��car + ��taxi + ��subway + ��bus + ��limousine

)] .

(4)
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Table 1: Di�erent way of acquiring the Hessian matrix between algorithms.

Algorithms NR BHHH BHHH-2 SA DFP BFGS

Hessian matrix (�) (−�NR
Real)−1 (�BHHH

AP )−1 (�BHHH-2
AP )−1 �SA (−�DFP

AP ) (−�BFGS
AP )

3.2. Iteration Rule. As the most frequently adopted in com-
mercial statistical package, Quasi-Newton method shows a
better performance in running time and is considered to
be robust in convergence properties compared to any other
algorithms [30]. More importantly, this method might be
excellent in convergence properties even for problems that
cannot be solved by other algorithms in a satisfactorymanner
[29]. As noted in the text of Train [30], this unique excellence
of the algorithm is the results of selecting a di�erent approach
in updating theHessianmatrix, compared to other estimation
algorithms such as Newton Raphson, BHHH, BHHH-2, and
Steepest Ascent.

A general iteration rule applied in this research for
estimating parameters of discrete choice model is shown
below:

�+1 = � +  (�) !, (5)

where � is the parameter estimates a	er " iterations, �+1
is the parameter estimates a	er " + 1 iterations,  is a step
size (can be assumed by a researcher at the initial time of
model parameter estimation), � is the Hessian matrix in
iteration " in each algorithm, and ! is a vector of gradient
in iteration ". �is rule is commonly applied to DFP and
BFGS.

As compared in Table 1, each algorithm might be gen-
erally tried in custom-built modeling and it is important to
know how these algorithms work in estimation process from
the pedagogical aspect [30]. In fact, they have been widely
adopted as an estimation routine in commercial so	ware
packages. �e 
rst four algorithms (i.e., Newton Raphson,
BHHH, BHHH-2, and Steepest Ascent) are referred from
the earlier research of Roh and Khan [25] and Train [30].
For more details refer to the above two researches. In this
research, Quasi-Newton method (the last two algorithms
of Table 1) is mainly considered in 
nding parameters of
the test model with developed computer codes for this
speci
c purpose. Furthermore, an extension of the method is
proposed to present a new technique of searching a step size
automatically.

�e second iteration rule experimented for the 
rst time
in this research shows a di�erence in a way of adopting a step
size ( ) which is adjusted repeatedly during estimation of
the test model. More details will be discussed in the following
section.�is iteration rule is commonly applied to DFP-GSM
and BFGS-GSM algorithms.

�+1 = � +   (�) !. (6)

A slight, but notable di�erence of two iteration rules
described in both (5) and (6) is of acquiring a step size ( ,  )
during iteration.

3.3. Estimation Algorithms

3.3.1. Davidon-Fletcher-Powell (DFP) Algorithm. �e two
algorithms, DFP and BFGS, included in the two following
sections depend on the description of Greene [29]. Updating
rule of approximate Hessian of DFP is introduced below and
it is called variable metric algorithm or rank two correction
[29], written as

�DFP
+1(AP) = �DFP

 + ##�#�$ −
�DFP
 $$��DFP

$��DFP
 $ , (7)

where �DFP
+1(AP) is the approximate Hessian matrix of DFP

algorithm in " + 1 iteration, replacing the real Hessian matrix

appeared as (�NR
Real)− in Newton Raphson algorithm,�DFP

 is
the approximate Hessian matrix in t iteration (if " = 1 then�DFP
 = �), in the context of this research � is 9 × 9 dimension

identity matrix, # is equal to the value of  (−�DFP
 )! in

iteration ", #� is transposedmatrix of #, $ is equal to the value
of!+1 −!, the di�erence of value between a gradient vector
in iteration " = 1, !+1, and a gradient vector in iteration ",!, and $� is transposed matrix of $.

�e iteration rule can be written as

�+1 = � +  (−�DFP
AP )!. (8)

A	er su�cient iterations before convergence, �DFP
AP is

assumed to approximate inverse of real Hessian of NR. In
this 
rst DFP method, we can try a variety of  , a step size,
to 
nd the best  with which the iteration shows the best
performance.

3.3.2. Broyden-Fletcher-Goldfarb-Shanno (BFGS) Algorithm.
�e BFGS algorithm is slightly di�erent in terms of its
updating rule of approximate Hessian compared to that
of DFP. �e updating formula of approximate Hessian is
presented below and it shows almost the same formula as for
that of DFP except the last term:

�BFGS
+1(AP) = (�BFGS

 + ##�#�$ −
�BFGS
 $$��BFGS

$��BFGS
 $ )

− V''�,
(9)

where �BFGS
+1(AP) is the approximate Hessian matrix of BFGS

algorithm in " + 1 iteration, replacing the real Hessian matrix

appeared as (�NR
Real)−1 in Newton Raphson algorithm,�BFGS


is the approximate Hessian matrix in " iteration (if " = 1
then �BFGS

 = �), in the context of this research � is 9× 9 dimension identity matrix, ' is equal to the value of(1/#�$)# − (1/$��BFGS
 $)�BFGS

 $, '� is transposed matrix

of ', and V is equal to the value of $��BFGS
 $.
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�e additional term (i.e., V''�) can be calculated using
the information of the 
rst term already provided in paren-

thesis. As in the case ofDFPmethod,�BFGS
AP would be another

approximate Hessian matrix a	er su�cient iteration. A	er
inputting �BFGS

AP into iteration formula, it has the form as
below:

�+1 = � +  (−�BFGS
AP )!. (10)

In this formula, like the iteration rule of DFP, we can employ
several values to 
nd an optimal  that shows the best
estimation performance in terms of several measures such as
one iteration time, the number of iterations, and convergence
time before convergence.

An strong advantage of the methods, DFP and BFGS, is
to accept $ = !+1 − ! in updating procedures, which is
the di�erence between continuous gradient in iteration " + 1
(i.e., !+1) and iteration " (i.e., !). �is means that $ might
contain more information on the shape of the log-likelihood
function and it makes it easier to reach the optimal value that
maximizes the log-likelihood function [30].

�e following section will suggest the way of 
nding  
automatically with the help of line search method. In this
research, we adopted the golden section method (GSM) as a
line search tool.�ismethod was successful in the estimation
of parameter estimates.

3.3.3. Golden Section Method (GSM). Especially in custom-
built discrete choice modeling, the problem of using estima-
tion algorithm for the estimation of model’s parameter is that
the researchers have no preliminary knowledge of choosing
a step size ( ) that guarantees the best performance of the
estimation procedure. To address this problem, we put a new
module of line search, which uses golden section method
(GSM) between codes of both DFP and BFGS methods.
Incorporating the golden section method (GSM) for a line
search was tried.

As a line search method which is implemented without
using derivatives for the targeted function for 
nding an
optimal value that maximizes or minimizes the function, the
basic concept of golden section method (GSM) is to reduce
the interval of uncertainty during the search procedure to 
x
a point for minimizing, in this research, the given function.
Let LL(�1⋅⋅⋅9) be the function to be minimized and � ≤� ≤ - is the interval of uncertainty. To 
nd a point
for minimizing the function we can exclude portions of
the interval of uncertainty that do not contain the optimal
point through the line search procedure. A	er a number of
iterations for elimination, in
nitesimally small portions are
le	. By averaging lower and upper bounds of the remaining
portions, the optimal point for the given function, the current
iteration is calculated.

�e following summary of the golden section method
(GSM) is of description for minimizing a strictly quasi-
convex function over the uncertain interval (�1, -1) [31].
(i) Initialization Step. Researchers determine an 
nal interval
of uncertainty 2 > 0, designating (�1, -1) as the initial interval
of uncertainty, and let $1 = �1 + (1 − 5)(-1 − �1) and 61 =�1 + 5(-1 − �1), where 5 = 0.618 (i.e., reduction ratio; the

Table 2: Hessian matrix of DFP-GSM and BFGS-GSM algorithms.

Algorithms DFP-GSM BFGS-GSM

Hessian matrix (�) (−�DFP
AP ) (−�BFGS

AP )

interval of uncertainty is reduced by a factor of 0.618). Next
we calculate LL($1) and LL(61). We let ! = 1, and go to main
routine.

(ii) Main Routines

Step 1. If -� − �� < 2, stop. �e optimal value is between(��, -�). Otherwise, if LL($�) > LL(6�), go to Step 2; and if
LL($�) < LL(6�), go to Step 3.

Step 2. Let ��+1 = 6� and -�+1 = -�. Furthermore, let $�+1 =6�, and let 6�+1 = ��+1 + 5(-�+1 − ��+1). Calculate LL(6�+1)
and go to Step 4.

Step 3. Let ��+1 = �� and -�+1 = $�. Furthermore, let6�+1 = $�, and let $�+1 = ��+1+(1−5)(-�+1−��+1). Calculate
LL($�+1) and go to Step 4.

Step 4. ! = ! + 1; go to Step 1.

3.3.4. An Application of GSM to�is Research. Table 3 shows
the example computation of DFP-GSM. In this speci
c
example, we adopt 3 as the interval of uncertainty, and
use -� − �� < 0.01 as stopping criterion. In Table 3, the
initial interval of uncertainty is of length 3(2), and a	er
13 iterations involving fourteen observations (see ∗), the
interval of uncertainty is [0.024402711, 0.033719691], so that
the minimum point can be calculated to be the midpoint of
two values. �is midpoint may be considered as an optimal
step size   searched by the golden section method in certain
iteration before convergence. In particular, in the context
of this research, the log-likelihood function of multinomial
logit is globally concave [32], and to apply the golden section
method (GSM) limited to a strictly quasi-convex function
[31], we transform the log-likelihood function made in this
research into a symmetry function to :-axis by adding (–)
sign, −LL(�1⋅⋅⋅9).
3.3.5. DFP-GSM Algorithm. Iteration formula is nearly the
same as for the DFP method, other than adopting   instead
of  , which is continuously having di�erent values in every
iteration. Line search has an important role of 
nding
optimum value (i.e.,  ) within the interval of uncertainty. In
every iteration,   which minimizes the given log-likelihood
function is founded and used in the iteration formula shown
below:

�+1 = � +   (−�DFP
AP )!. (11)

3.3.6. BFGS-GSM Algorithm. In the case of BFGS-GSM,
all operations are the same as applied to DFP-GSM. �e
approximateHessian,�BFGS

AP , can be obtained in the sameway
as for the BFGS method in Table 2. �e iteration rule is as
presented below:

�+1 = � +   (−�BFGS
AP )!. (12)



Modelling and Simulation in Engineering 5

Table 3: Example of computation of GSM in the case of DFP-GSM algorithm.

Iteration �� -� $� 6� LL($G) LL(6�)
1 0 3 1.146 1.854 3493.476457∗ 5476.740529∗

2 0 1.854 0.708228 1.146 2297.447729∗ 3493.476457

3 0 1.146 0.437772 0.708228 1595.81076∗ 2297.447729

4 0 0.708228 0.270543096 0.437772 1206.102109∗ 1595.81076

5 0 0.437772 0.167228904 0.270543096 1005.500045∗ 1206.102109

6 0 0.270543096 0.103347463 0.167228904 910.8710041∗ 1005.500045

7 0 0.167228904 0.063881441 0.103347463 871.3625899∗ 910.8710041

8 0 0.103347463 0.039478731 0.063881441 858.3072898∗ 871.3625899

9 0 0.063881441 0.024402711 0.039478731 856.576918∗ 858.3072898

10 0 0.039478731 0.015080875 0.024402711 858.7347619∗ 856.576918

11 0.015080875 0.039478731 0.024402711 0.03015875 856.576918 856.5491249∗

12 0.024402711 0.039478731 0.03015875 0.033719691 856.5491249 856.9727219∗

13 0.024402711 0.033719691 0.027961797 0.03015875 856.4520154∗ 856.5491249
∗Values of function evaluated newly in each iteration.

Table 4: Serial number assigned to each of four algorithms.

Algorithms Unique serial number of each algorithm

Four algorithms
DFP-A BFGS-B

DFP-GSM-C BFGS-GSM-D

All the details of estimation procedures involved in the above
iteration rules are coded by using Visual Basic Application
(VBA) in EXCEL, Microso	 Inc. All experimental estima-
tions are runwith a personal computer (Intel Pentium4, CPU
2.80GHz, 512MB Ram).

4. Experimental Results

Four algorithms mentioned in this research are used to
estimate the test model. �e same data are input in the
estimation in order to compare their estimation performance
between algorithms. �ree performance measures such as
one iteration time, the number of iterations, and convergence
time are considered in measuring the performance di�er-
ences between algorithms.

Various step sizes are selected randomly in the 
rst
two algorithms (e.g., DFP and BFGS); all those runs that
converged successfully were chosen and summarized. As
shown in Table 4, for the last two algorithms (e.g., DFP-GSM
and BFGS-GSM), instead of choosing a random step size, we
need to guess an uncertain interval. With these conditions,
we conducted three categories of experiment as follows. (1)
�e 
rst category is about choosing di�erent convergence
criteria; it is tested in experiments 1.1 and 1.2. (2)�e second
category is about a subject of di�erent initial guessing of the
parameters; this work is tried in experiment 2. (3)�e third
category is about adopting a new method for guessing of
initial Hessian instead of using identity matrix at the initial
estimation stage; it is implemented by using amethod of both
BHHH and BHHH-2.

�e four estimation algorithms can be recognized with
the unique serial number as shown in Table 4, and three

categories used to compare the estimation performance are
presented in Table 5.

4.1. Numerical Experiment 1

4.1.1. An Experiment 1-1 (
? = 10−4). As given in Table 5,
a vector of the test model’s parameters is estimated with a
convergence criterion represented by 1 in the table in its

mathematical expression, having CR = 10−4 as the level of
precision of parameter estimates. �is convergence criterion
is referred from Ben-Akiva and Lermans [1]. �e results of
the experimental estimation for the four di�erent algorithms
are summarized in Table 6 for only experimental trials that
converged.

As shown in Table 6 diverse step sizes were tried for the

rst two algorithms to 
nd the best value of step size for
making the log-likelihood function to increase in the fastest
way until it reaches themaximum. In the 
rst two algorithms,
the step size is 
xed at the initial stage of estimation and
changed to other values by a researcher.

In the last two algorithms, DFP-GSM, BFGS-GSM, the
step size is calculated automatically with the function which
is imbedded in the general estimation routine and is operated
with the golden section line search method. Instead of
choosing step size manually, a researcher must establish
interval of uncertainty in which the best step size is searched
by the golden section line search method. In this research,
eight di�erent uncertain intervals are used and compared.
Typically, there are no certain limitations in choosing the
uncertain intervals, where choosing the value above 0 is
common [31].

Figure 1 shows the estimation performances of the four
algorithms in terms of three performance measures. �e 
rst
two algorithms converge or do not converge in di�erent step
sizes. Only converged runs appear in both upper part of
Table 6 and le	 part of Figure 1. In contrast, the last two
algorithms converge in the every uncertain interval and their
results are presented in lower parts of Table 6 and right part
of Figure 1.
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Table 5: �ree categories used in experimental runs.

Experiment scheme

�ree categories

Experiment 1 (1) Convergence criteria
Experiment 1-1
(applied to four algorithms)

�0 = [�01 = 0, �02 = 0, �03 = 0, . . . , �09 = 0]�
A [1A

�∑
�=1
(�+1,� − �,�)2]

1/2

< CR = 10−4
Experiment 1-2
(applied to four algorithms)

�0 = [�01 = 0, �02 = 0, �03 = 0, . . . , �09 = 0]�
B !�(−�)−1! < CR

CR = 10−4, 10−5, 10−6
Experiment 2

(applied to four algorithms)

(2) Initial guessing of parameters

�0 = [�01 = −0.01, �02 = −0.1, �03 = 0, . . . , �09 = 0]�
!�(−�)−1! < CR = 10−4

Experiment 3
(applied to four algorithms)

(3) Initial Hessian matrix

BHHH, BHHH-2

For the 
rst performance measure, one iteration time,
there are somewhat large di�erences between the 
rst two
algorithms and the last two algorithms. �is re�ects the fact
that the last two algorithms take more one iteration time
due to the procedure added for conducting a line search. It
takes about 1∼2 minutes for DFP-GSM and BFGS-GSM to

nish one iteration. �e values of one iteration time can be
used to recognize the operational superiority or inferiority
of algorithm because it dominates the overall convergence
time for all algorithms, even though it is more reasonable
to consider simultaneously both one iteration time and the
number of iterations in decision of operational performance
of algorithm.

For the second performance measure, the number of
iterations, obviously there are big di�erences both between
the step sizes in the same algorithm and between the
four di�erent algorithms. In case of DFP, BFGS, for runs
converged, as the step size increases, the number of iterations
decreases.�e result indicates that there is a close relationship
between the step size and the number of iterations. Choosing
a step size randomly at the initial stage of the estimation can
a�ect the estimation performance negatively if the selection
is poor or a�ect positively if the selection is fortunately good.
To address the problem of choosing initial step size and to
improve the estimation performance, in this research, a new
systematic method, namely, golden section method for a line
search, is incorporated in algorithms, DFP and BFGS. As a
result, DFP-GSM and BFGS-GSM algorithms show a stable
estimation performance in terms of the number of iterations.
�e iteration numbers presented in the right part of Figure 1
are nearly similar for the all uncertain interval considered
in experimental runs except one run of DFP-GSM using
LowerLimit(0), UpperLimit(1) as an uncertain interval. Stated
simply, the DFP-GSM and BFGS-GSM algorithms compared
to the DFP and BFGS in Figure 1 de
nitely make a decrease
in the number of iterations. Moreover, the iteration number
converges to around a certain value: these new algorithms are
stable in terms of the number of iterations.

�e third performance measure, the convergence time,
is used to compare the estimation performance of the four
algorithms. �is measure is the most important measure in
order to decide the excellence of an algorithm because the
operational time before convergence is of much interest to
researchers; especially in large scale modeling it can be very
critical.

As a Quasi-Newton method, DFP and BFGS algorithms
use a similar updating process for the Hessian matrix as
explained in earlier section. �e BFGS algorithm takes less
convergence time (e.g.,  = 1/4 or  = 1/16) or more
convergence time (e.g.,  = 1/8,  = 1/2) than DFP when
compared in the same step size. Key point is that, even though
the number of iterations is much less in BFGS than that
in DFP for the estimation using the same step sizes, the
di�erence in convergence time between two algorithms is
not signi
cant. �is phenomenon might be attributed to the
updating process of the Hessian matrix: BFGS uses a more
complicated process than that of DFP and it takes more time
in 
nishing one iteration. �e last two algorithms used for
the 
rst time in this research, namely, DFP-GSM and BFGS-
GSM, show stable estimation performance. In other words,
the convergence times are distributed more evenly than
other two algorithms. �e BFGS-GSM shows slightly better
performance than the DFP-GSM in terms of convergence
time.

In conclusion, in experiment 1, compared to DFP and
BFGS, DFP-GSM and BFGS-GSM show stable performance
in terms of both the number of iterations and the convergence
time irrespective of the choice of any uncertain interval. DFP
and BFGS show somewhat large di�erences in estimation
performance, depending on the selection of di�erent step
sizes at the initial stage of estimation.

As shown in Figure 2, the line graphs of the experimental
estimations are drawn to show the trace of log-likelihood
function values during the iterations and moreover to com-
pare clearly the di�erent convergence behaviors both between
step sizes and uncertain interval in each algorithm. Table 7
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Figure 1: �e results of estimation for four algorithms (exp. 1-1) (CR = 10−4).

summarizes critical values in iterations such as starting log-
likelihood value and convergence log-likelihood value and
number of iterations according to both di�erent step sizes
and uncertain interval. As shown in Table 7, all starting
log-likelihood values are exactly the same for the all four
algorithms and both for any step sizes and any uncertain
intervals within each algorithm because for exp. 1-1 (CR =10−4) the initial guess of parameters is assumed to be zero,�� = [�1 = 0, �2 = 0, �3 = 0, . . . , �9 = 0]�.

On the contrary, convergence values are slightly di�erent
both between algorithms and between step sizes for the 
rst
two algorithms. For the last two algorithms, they are exactly
the same in their values for almost all uncertain intervals
except some of them.

In the case of theDFP algorithm, there is a large di�erence
in its convergence behavior compared to the four estimation

algorithms discussed in the research of Roh and Khan [25].
�ey used exactly the same experimental setting except using
di�erent four estimation algorithms (i.e., Newton Raphson,
BHHH, BHHH-2, and Steepest Ascent). �e most obvious
di�erence is that the line graphs for all step sizes, except 1/16,
show much bigger �uctuations than the four algorithms [25]
in the initial part of iterations without a steady increase. �is
phenomenonmight be assumed as a result of the mechanism
used for updating the approximate Hessian matrix of DFP
algorithm. Train [30] indicates that this kind of algorithm,
including BFGS algorithm, uses information obtained at
more than one point on the log-likelihood function for a
calculation of approximate Hessian matrix in every iter-
ation. �e step size of 1/2 shows the best performance
with 115 iterations and its critical values are presented in
Table 7.
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Figure 2: Variances of log-likelihood values for four algorithms (exp. 1-1) (CR = 10−4).
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In the case of the BFGS algorithm, like theDFP algorithm,
there are large �uctuations for all step sizes except 1/32 and
1/16. Moreover, a similar reason used in DFP can be applied
to explain this phenomenon. Overall, there is only a slight
di�erence in the method to calculate updated approximate
Hessianmatrix for two algorithms,DFP andBFGS.Onemore
term is added to BFGS algorithm as was shown in earlier
section. A run with step size 1 outperforms the other runs,
as can be seen in Table 6. It can be noted that it experiences
an extreme change in value of log-likelihood at the initial
iterations.

In the last two algorithms, the use of a variety of step
sizes is not needed because the golden section line search
method (GSM) takes over the role of choosing an optimum
step size using an automatic method. Another task arises
instead, making an interval of uncertainty. In this research,
eight di�erent uncertain intervals are considered. It should
be noted that there are no rules and no guidance is available
from literature regarding the choice of uncertain interval.
Temporarily, eight di�erent intervals characterized by an
increasing of the same amount, namely 1, were applied to
simply examine the convergence behavior that might be
caused with di�erent uncertain intervals. Figure 2 shows
the convergence behavior of the DFP-GSM and BFGS-GSM
algorithms according to various intervals. All line graphs
show almost same convergence pro
le and thus they are
drawn in the same line irrespective of uncertain intervals
used temporarily. Almost the same results were obtained
from DFP-GSM and BFGS-GSM algorithm, as presented in
Figure 2.

4.1.2. An Experiment 1-2 (
? = 10−4). In an experiment
1-2, the test model estimates a vector of parameters based
on di�erent convergence criterion in both its mathematical
form and the degree of stooping criterion. �e mathematical
form of convergence criterion used for this experiment is
referred to from Besley [17]. �e di�erent degree of stopping

criterion applies gradually from CR = 10−4 to CR = 10−6 in
order to examine the impact of applying di�erent degree of
convergence precision on the operational behavior in discrete
choice model estimation. Table 8 shows the results of the
experimental estimation for the four di�erent algorithms for
all experimental trials that converged. Figure 3 shows the
results graphically in terms of three performance measures.

All conditions and environments applied in the exper-
imental estimation are exactly the same as experiment 1-1
except the formulation of the convergence criterion written

in the form of !�(−�)−1! < 10−4.
For all algorithms, the estimation performance is

improved as compared to experiment 1-1 in terms of three
performance measures. �is phenomenon can be seen in
Table 8. �ere are signi
cant improvements for the 
rst
two algorithms for all step sizes and for all performance
measures considered. For the last two algorithms, all
uncertain intervals except both LowerLimit(0), UpperLimit(2)
and LowerLimit(0), UpperLimit(3) show an improvement
of performance in terms of convergence time. Another
important point is that the last two algorithms show a better
performance in terms of both the number of iterations and

the convergence time as the uncertain intervals increase
gradually by an amount of unit, 1.

In conclusion, when a new convergence criterion that has
a di�erent mathematical form is applied, all algorithms show
an improvement in terms of three performance measures
compared to the case of experiment 1-1.

As shown in Table 9 for the 
rst two algorithms and
for any step sizes used within each algorithm, all calculated
starting log-likelihood values are exactly the same due to�� =[�1 = 0, �2 = 0, �3 = 0, . . . , �9 = 0]�. �e same condition
imposed as an initial guess of starting points in experiments
1-1, 1-2, and 3. On the contrary, convergence values are slightly
di�erent among the step sizes used in each algorithm and the
di�erences are so small that it can be considered as being
equal. As shown in Table 9 for the last two algorithms, all
starting log-likelihood values are exactly the same due to the
same reason explained for the 
rst two algorithms. In case of
the convergence log-likelihood values, slight di�erences exist
among uncertain intervals but these are also so small that
these can be considered to be converged at the same value
even though it is not exactly the same.

As we can see by comparing two 
gures, Figure 2 and
Figure 4, the most important point we can 
nd is that the
last part of iteration procedures has a di�erent pro
le in
graph. �at is, the overlap parts observed in experiment 1-
1 are less and simpli
ed in experiment 1-2. It means that a
researcher can control the termination timing by changing
the convergence criterion within a scienti
c way, of course,
if or only if the new given convergence criterion guarantees
the degree of accuracy of parameter estimates up to the level
which a researcher expects it must be.

4.1.3. An Experiment 1-2 (
? = 10−5). In this experiment,

the applied convergence criterion is!�(−�)−1! < 10−5.�e
degree of precision of parameter estimates is changed tomore

stringent value, from !�(−�)−1! < 10−4 to !�(−�)−1! <10−5. Information on this criterion was obtained from an
econometric modeling study of Besley [17] and Belsley [18].

�e results of the experimental estimation for the algo-
rithms are summarized in Table 10 in the same pattern and
style as used in previous presentations. Detailed results are
compared graphically in Figure 5 in terms of three perfor-
mance measures.

Generally, for all four algorithms, the estimation per-
formance of the current experiment 1-2 (CR = 10−5) has
improved compared to that of experiment exp. 1-1 (CR =10−4) but has slightly deteriorated as compared to that of

experiment 1-2 (CR = 10−4).�e poor performance observed
in this experiment can be attributed to the stopping criterion
moved in the stringent direction. It must be the fact that
a more stringent stopping criterion needs more calculation
time to 
nd a vector of parameter estimates satisfying the
stringent stopping criterion.

In conclusion, when a new more strict convergence
criterion is applied as a new stopping standard, all algorithms
show better estimation performance than experiment 1-
1 (CR = 10−4) but present poorer performance than
experiment 1-2 (CR = 10−4). If a more stringent stopping
criterion is applied, the time to convergence tends to increase.
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Figure 3: �e results of estimation for four algorithms (exp. 1-2) (CR = 10−4).

Moreover, the mathematical formula of stopping criterion
used in experiment 1-1 takesmore convergence time than that
of experiment 1-2.

For all estimation results, the graphs are drawn in order
to show a variation of the log-likelihood function values
following the iterations and moreover to compare clearly the
di�erent convergence behaviors between step sizes used in
each algorithm. Table 11 summarizes critical values such as
starting log-likelihood value and convergence log-likelihood
value and the number of iterations due to the di�erent
step sizes. As shown in Table 11, all calculated starting log-
likelihood values are exactly the same for the all four algo-
rithms and for any step sizes used within each algorithm due
to �� = [�1 = 0, �2 = 0, �3 = 0, . . . , �9 = 0]�, which implies
the same condition imposed as an initial guess of starting

points in experiments 1-1, experiment 1-2, and experiment 3.
On the other hand, convergence values are slightly di�erent
among the step sizes only below the decimal point and so the
di�erence can be ignored and all runs are considered to be
converged at the same log-likelihood value.

�e convergence behavior is identical with experiments 1-

1 (CR = 10−4) and 1-2 (CR = 10−4) except the fact that slight
di�erences happen over the three performance measures.
�ese experimental results are clearly presented in Figure 6.
Overall, the phenomena observed are that, with decreasing
step size, the slope also becomes small but the number of
iterations rises.

We can clearly identify the best performance among the
runs performed using various step sizes for the 
rst two
algorithms but in the last two algorithms almost all graph
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Figure 4: Variances of log-likelihood values for four algorithms (exp. 1-2) (CR = 10−4).
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Figure 5: �e results of estimation for four algorithms (exp. 1-2) (CR = 10−5).

drawn for each uncertain interval look to be drawn in the
same line graph (see Figure 6). Also, the pro
le of graph at
the last iteration is not as long as that of experiment 1-1 (CR =10−4) but as compared with experiment 1-2 (CR = 10−4), the
overlapped part becomes longer. It means that more iteration
is conducted in each algorithm to satisfy a new stringent
criterion charged for stopping the iteration process. It also
means that the iteration number and convergence time can
be adjusted to become suitable for each speci
c modeling
work or for maintaining the accuracy of parameters within
the desired accuracy demand.

4.1.4. An Experiment 1-2 (
? = 10−6). Here, the applied

convergence criterion is !�(−�)−1! < 10−6. �e degree of
precision of parameter estimates is changed tomore stringent

value from !�(−�)−1! < 10−5 to !�(−�)−1! < 10−6.
Besley [17] is credited for showing the bene
ts of using this
criterion in econometric modeling.

�e results obtained from the experimental estimation
for the four algorithms are summarized in Table 12, and the
detailed results are presented graphically in Figure 7 in terms
of three performance measures.

As presented in Table 12, generally, for all four algorithms,
the estimation performance of the current experiment 1-
2 (CR = 10−6) has deteriorated as compared to that of
experiments 1-2 (CR = 10−4) and experiment 1-2 (CR =10−5) and even the performance is below that of experiment
1-1 (CR = 10−4). �e reason for the worst performance
witnessed in this experiment 1-2 (CR = 10−6), as was the
situation observed in experiment 1-2 (CR = 10−5), can be
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Figure 6: Variances of log-likelihood values for four algorithms (exp. 1-2) (CR = 10−5).



20 Modelling and Simulation in Engineering

T
a
b
le

12
:�

e
re
su
lt
s
o
f
fo
u
r
es
ti
m
at
io
n
al
go
ri
th
m
s
(e
xp
.1
-2
)
(C

R
=10
−6
).

A
lg
o
ri
th
m
s
&

p
er
fo
rm

an
ce

m
ea
su
re
s

St
ep

si
ze

( )
1/
32

1/
16

1/
8

1/
4

1/
2

1
2

4
D
F
P
-(1)

O
n
e
it
er
at
io
n
ti
m
e

-
0
:0
0
:2
0

0
:0
0
:1
9

0
:0
0
:2
0

0
:0
0
:2
6

-
-

-
N
u
m
b
er

o
f
it
er
at
io
n
s

-
21
6

13
9

95
6
9

-
-

-
C
o
n
ve
rg
en
ce

ti
m
e

-
1:
21
:1
1

0
:4
3:
39

0
:3
1:
4
5

0
:2
9
:2
0

-
-

-
B
F
G
S-
(2)

O
n
e
it
er
at
io
n
ti
m
e

0
:0
0
:1
7

0
:0
0
:1
9

0
:0
0
:1
8

0
:0
0
:1
9

0
:0
0
:1
9

0
:0
0
:1
8

-
-

N
u
m
b
er

o
f
it
er
at
io
n
s

27
4

15
8

10
0

6
6

4
8

36
-

-
C
o
n
ve
rg
en
ce

ti
m
e

1:
16
:0
1

0
:4
9
:1
5

0
:3
0
:3
9

0
:2
0
:2
2

0
:1
4
:5
5

0
:1
0
:4
4

-
-

A
lg
o
ri
th
m
s
&

p
er
fo
rm

an
ce

m
ea
su
re
s

In
te
rv
al
o
f
u
n
ce
rt
ai
n
ty

L
L
(0),

U
L
(1)

L
L
(0),

U
L
(2)

L
L
(0),

U
L
(3)

L
L
(0),

U
L
(4)

L
L
(0),

U
L
(5)

L
L
(0),

U
L
(6)

L
L
(0),

U
L
(7)

L
L
(0),

U
L
(8)

D
F
P
-G

SM
-(3)

O
n
e
it
er
at
io
n
ti
m
e

0
:0
2:
27

0
:0
2:
51

0
:0
1:
30

0
:0
1:
12

0
:0
1:
34

0
:0
1:
4
0

0
:0
1:
38

0
:0
1:
4
9

N
u
m
b
er

o
f
it
er
at
io
n
s

4
2

17
17

16
14

14
14

13
C
o
n
ve
rg
en
ce

ti
m
e

1:
4
3:
0
6

0
:4
8:
24

0
:2
5:
26

0
:1
9
:0
8

0
:2
1:
53

0
:2
0
:1
0

0
:2
2:
4
7

0
:2
3:
26

B
F
G
S-
G
SM

-(4)
O
n
e
it
er
at
io
n
ti
m
e

0
:0
1:
16

0
:0
1:
21

0
:0
1:
28

0
:0
1:
22

0
:0
1:
22

0
:0
1:
28

0
:0
1:
29

0
:0
1:
29

N
u
m
b
er

o
f
it
er
at
io
n
s

26
15

16
13

13
12

14
14

C
o
n
ve
rg
en
ce

ti
m
e

0
:3
2:
51

0
:2
0
:1
3

0
:2
3:
29

0
:1
7:
4
0

0
:1
7:
32

0
:1
7:
26

0
:2
0
:4
5

0
:2
0
:3
2



Modelling and Simulation in Engineering 21

Step size for DFP, BFGS
Uncertain interval for DFP-GSM, BFGS-GSM

1/32 - step size
LL(0), UL(1) - uncertain interval

1/16 - step size
LL(0), UL(2) - uncertain interval
1/8 - step size
LL(0), UL(3) - uncertain interval
1/4 - step size
LL(0), UL(4) - uncertain interval

1/2 - step size
LL(0), UL(5) - uncertain interval
1 - step size
LL(0), UL(6) - uncertain interval
2 - step size
LL(0), UL(7) - uncertain interval
4 - step size
LL(0), UL(8) - uncertain interval

Experiment 1-2 (＃２ = 10
−6)

0:00:00

0:00:40

0:01:20

0:02:00

0:02:40

0:03:20

O
n

e 
it

er
at

io
n

 t
im

e 
(H

o
u

r:
M

in
u

te
:S

ec
)

BFGS-(2) DFP-GSM-(3) BFGS-GSM-(4)DFP-(1)

0

100

200

300
N

u
m

b
er

 o
f 

it
er

at
io

n
s

BFGS-(2) DFP-GSM-(3) BFGS-GSM-(4)DFP-(1)

0:00:00

0:33:20

1:06:40

1:40:00

2:13:20

C
o

n
ve

rg
en

ce
 t

im
e 

(H
o

u
r:

M
in

u
te

:S
ec

)

BFGS-(2) DFP-GSM-(3) BFGS-GSM-(4)DFP-(1)

Figure 7: �e results of estimation for four algorithms (exp. 1-2) (CR = 10−6).

attributed to the most stringent stopping criterion applied in
this experiment.�e reason is the fact that the most stringent
stopping criterion needs much more calculation time than
for runs having a less stringent stopping criterion. Finding
a vector of parameter estimates that satis
es this stringent
stopping criterion is a time consuming process and it may not
be worthwhile. Researchers can take moderate procedures
and controlling measure according to their expectation and
speci
c purpose in doing their unique modeling.

In conclusion, when the most strict convergence cri-
terion, speci
cally in this research, is applied as a new
stopping measure, all algorithms show a worse estimation
performance than all experiments tried previously. Applying
a more stringent stopping criterion causes an increase in
convergence time in discrete choice model estimation.

Table 13 summarizes critical values such as starting log-
likelihood value and convergence log-likelihood value, and
the number of iterations due to di�erent step sizes. As
shown in Table 13, calculated starting log-likelihood values
are exactly the same for all four algorithms and for any step
size used within each algorithm due to the condition applied
in guessing of starting points, �� = [�1 = 0, �2 = 0, �3 =0, . . . , �9 = 0]�. On the other hand, convergence values are
slightly di�erent among the step sizes only below one decimal
point and so the di�erence can be ignored and all runs
are considered to be converged at the same log-likelihood
value.

�e convergence behavior is identical with previous
experiments, except the fact that slight di�erences occur all
over the three performance measures. �ese experimental
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results are clearly presented in the graph. Overall, it was
observed that as the step size decreased, the slope became
gradually gentle and the number of interaction increased.

As shown in Figure 8, the pro
le of graph at the last
iteration part also is shorter than that of experiment 1-1 (CR =10−4), but as comparedwith experiments 1-2 (CR = 10−4) and
experiment 1-2 (CR = 10−5), the overlapped part becomes
much longer. It means more iteration is conducted for each
algorithm in order to satisfy a new stringent criterion charged
for stopping the iteration process. It also means that the
number of iterations and convergence time can be adjusted,
if desired.

4.2. Numerical Experiment 2. In experiment 2, the applied

convergence criterion is !�(−�)−1! < 10−4. �e main
concern of this section is to recognize the importance of
guessing starting points and exhibit di�erent estimation per-
formance using experimental estimation runs with di�erent
starting points. A new method or an idea of 
nding a good
initial guess of the starting point is not the subject of this
section.�e point of this section is that it might be important
just to know that changing initial starting points can make
a di�erence in estimating performance and that the task
of developing a new systematic way of guessing starting
points that guarantee a better operational performancemight
be a useful future research topic. For example, refer to
the research conducted by Liu and Mahmassani [33] for
additional information on this subject. To shed a light on
this new interesting topic, in this section, a new assumed
vector of parameter applied to the four algorithms is written
as �� = [�1 = −0.01, �2 = −0.1, �3 = 0, . . . , �9 = 0]�. �is
vector of parameter is randomly chosen among the vector of
parameters that work in estimation.

�e results obtained from this experimental runs are
shown in Tables 14 and 15. In addition, the detailed results
are compared graphically in Figures 9 and 10 in terms of
three performancemeasures or according to variances of log-
likelihood values obtained for four algorithms and using an
assumption on a vector of parameter.

It is useful to know that applying di�erent vectors of
starting points can cause diverse variations in estimation
performances that can enhance the situation or make it
worse and that trying to 
nd an advanced way of guessing
starting points guarantees improvement in the estimation
performance in targeted performance measures. �erefore,
this experiment could be recognized as a potential topic that
a researcher can undertake.

Overall, the results obtained from experimental estima-
tion are as follows. (1) Starting log-likelihood values are
enhanced in its magnitude due to adopting new starting
points. (2) In case of algorithms, the convergence time is
greatly improved compared to the results of other exper-
iments and the improvement in test results means that a
researcher’s prior knowledge on parameter to be estimated is
correct and new guessed starting points make an improve-
ment in estimation performance. (3) �e convergence log-
likelihood values are deviated between algorithms, but the
reason is not clear here.

4.3. Numerical Experiment 3. In this section, we consider
another way of guessing the initial Hessian matrix, which is
assumed to be an identity matrix before starting estimation
and continuously updated as the estimation processes in the
DFP, BFGS and DFP-GSM, BFGS-GSM algorithms. Another
way that is tried in this experiment is to incorporate the 
rst
iteration routine that is used to calculate the Hessian matrix
in both BHHH and BHHH-2 algorithms instead of assuming
identity matrix as a staring Hessian matrix.

By adding codes associated with the calculation of the
initial Hessian matrix in BHHH and BHHH-2 algorithms to
general estimation procedures of the above four algorithms,
new estimation codes are completed in this experiment.
�ey are named as DFP (BHHH), DFP (BHHH-2), BFGS
(BHHH), BFGS (BHHH-2) and DFP-GSM (BHHH), DFP-
GSM (BHHH-2), BFGS-GSM (BHHH), and BFGS-GSM
(BHHH-2). It is important to note that the only di�erence
between two sets of algorithms (e.g., DFP and DFP (BHHH))
is the way of obtaining the initial Hessian matrix. �e 
rst
algorithm (DFP) uses an identity matrix as an its initial
Hessian matrix, and the second algorithm (DFP (BHHH))
uses an advanced way presented in this experiment to get an
initial Hessian matrix.

�e applied convergence criterion is !�(−�)−1! < 10−4
and the starting vector of parameters is �� = [�1 = 0, �2 =0, �3 = 0, . . . , �9 = 0]�. �e estimation results obtained
from this experimental runs are shown in Tables 16 and 17.
�e detailed results are compared graphically in Figures 11–14
in terms of three performance measures, variances of log-
likelihood value.

An important lesson being learned through a given
series of experimental estimations is to know that applying
a di�erent way of guessing initial Hessian matrix can make
a di�erence in estimation performance in terms of perfor-
mance measures, which can be directed to better or worse
performance. In the context of this research, the experimental
estimations tried in this experiment generally give better

results than that of experiment 1-2 (CR = 10−4) for the
given performance measures. It means that a better way
of guessing the initial Hessian matrix, unlike the general
procedures of using an identity matrix as an initial Hessian
matrix, would improve the estimation performances in the
targeted performance measures (i.e., convergence time).�is
issue can be another topic having potential to generate fruitful
research results in the 
eld of econometric modeling.

�e following explanations of the results are compared

to the results of the experiment 1-2 (CR = 10−4), which
is estimated under the same condition of experiment 3
except initial Hessian matrix. �e results obtained from
experimental estimation are as follows. (1) In terms of a
single iteration time, there is no big di�erence between the
runs using a general routine shown in Figure 3 and the runs
using a new routine proposed in experiment 3 shown in
Figures 11 and 12. However, when using a new proposed
routine, the single iteration time becomes similar to other
runs irrespective of using both di�erent step sizes (in the
case of DFP (BHHH), BFGS (BHHH) and DFP (BHHH-2),
and BFGS (BHHH-2)) and di�erent uncertain interval (in
the case of DFP-GSM (BHHH), BFGS-GSM (BHHH) and
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LL(0), UL(2) - uncertain interval
1/16 - step size

LL(0), UL(3) - uncertain interval
1/8 - step size

LL(0), UL(4) - uncertain interval
1/4 - step size

Figure 8: Variances of log-likelihood values for four algorithms (exp. 1-2) (CR = 10−6).
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Step size for DFP, BFGS
Uncertain interval for DFP-GSM, BFGS-GSM
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Figure 9: �e results of estimation for four algorithms (exp. 2) (CR = 10−4).

DFP-GSM (BHHH-2), and BFGS-GSM (BHHH-2)). (2) In
terms of the number of iterations, the routine proposed in
experiment 3 shows a better performance. �e number of
iteration is decreased. (3) In terms of the convergence time,
the big di�erence is observed between experiment 1-2 (CR =10−4) and experiment 3. �e experiment 3 takes much less
convergence time than experiment 1-2 (CR = 10−4). �e
reason is that using a more accurate initial Hessian matrix
at the initial stage of estimation, which can be calculated
and input into the routine of estimation, instead of using an
identity matrix would decrease the iteration time needed to
reach the convergence Hessian matrix.

5. Summary and Discussion

�ree important factors a�ecting strongly overall estima-
tion performance in discrete choice modeling are detected

through extensive experimental estimationwhich is classi
ed
with three categorical experiment: convergence criterion,
initial guessing of starting points, and initial Hessian matrix.

(i) �e 
rst category considered in this research is to
adopt convergence criterion that is di�erent in both
its mathematical expression (compare experiment 1-1
and experiment 1-2) and its degree of stopping preci-
sion (experiment 1-2) as given in Table 5.�e purpose
of these experiments was to show the evidence of
changing estimation performance, to compare them
in terms of performance measures, and to recognize
the convergence criterion as an important factor
dominating the performance of estimation process.

(a) As an initial guess of the starting value of a
vector of parameter, the value of �� = [�1 =0, �2 = 0, �3 = 0, . . . , �9 = 0]� is used for
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Experiment 2 (＃２ = 10
−4)
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LL(0), UL(5) - uncertain interval
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LL(0), UL(6) - uncertain interval
1 - step size

LL(0), UL(7) - uncertain interval
2 - step size

4 - step size
LL(0), UL(8) - uncertain interval
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1/32 - step size
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LL(0), UL(7) - uncertain interval
2 - step size

4 - step size
LL(0), UL(8) - uncertain interval
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Uncertain interval for DFP-GSM, BFGS-GSM

LL(0), UL(2) - uncertain interval
1/16 - step size

LL(0), UL(3) - uncertain interval
1/8 - step size

LL(0), UL(4) - uncertain interval
1/4 - step size

LL(0), UL(5) - uncertain interval
1/2 - step size

Figure 10: Variances of log-likelihood values for four algorithms (exp. 2) (CR = 10−4).
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Figure 11: �e results of four algorithms responding to a new way of calculating the initial Hessian matrix adopted from BHHH algorithm
(exp. 3) (CR = 10−4).

all experiments included in the 
rst categorical
experiment.

(b) �e 
rst mathematical convergence criterion
is most widely used as a stopping criterion.
It is adopted from Ben-Akiva and Lermans
[1] and it has a mathematical expression,[(1/A)∑��=1(�+1,� − �,�)2]1/2 < 10−4.

(c) �e second convergence criterion has the
following common mathematical expression:!�(−�)−1! < CR. It was suggested by Besley

[17]. In this research, by changing a CR gradu-

ally to other more stringent values such as 10−4,10−5, and 10−6, we were trying to show that

model estimation performance is sensitive in
changing of CR.

(d) �e 
rst two algorithms (i.e.,A DFP,B BFGS)
are estimated using various step sizes through-
out all experiments and only the converged runs
are summarized and compared.

(e) �e last two algorithms (i.e., C DFP-GSM,
D BFGS-GSM) use the golden section line
search (GSM)method instead of choosing a step
size manually before the estimation procedure
begins.�eGSMmethod 
nds an optimal value
of step size automatically during iteration, with
which the log-likelihood function is maximized
in every iteration process.
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Figure 12:�e results of four algorithms responding to a new way of calculating the initial Hessian matrix adopted from BHHH-2 algorithm
(exp. 3) (CR = 10−4).

(f) To use the GSM in line search work, we
should assign the interval of uncertainty, in
which the optimal step size is investigated
automatically and it is used in every iteration
estimation procedure. In the context of this
research, eight di�erent uncertain intervals are
proposed and the experimental estimation is
run using each of them. Typically, there are
no limitations in choosing uncertain intervals,
if a researcher chooses the interval having a
distance of between 0 and a certain value over
0 [31].

(g) From the results of the 
rst categorical exper-
iment, we identify several facts as follows. (1)
In spite of using the same model speci
cation

(i.e., using the same multinomial logit choice
function and the same utility functions for each
alternative) and common data set, there exist
large or small di�erences among four estima-
tions algorithms in terms of three performance
measures. (2) Depending on the step size, large
variations are generated in the estimation per-
formance among four di�erent algorithms or
even within the same algorithm. In conclusion,
the step size chosen by a researcher at an
initial stage of model estimation can be an
important control factor controlling the entire
estimation performance, while the model is
under estimation. (3) As opposed to choosing
a step size randomly as required in the 
rst
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Experiment 3 (＃２ = 10
−4)
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Figure 13: Variances of log-likelihood values for four algorithms responding to a new way of calculating the initial Hessian matrix adopted
from BHHH algorithm (exp. 3) (CR = 10−4).
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Experiment 3 (＃２ = 10
−4)
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Figure 14: Variances of log-likelihood values for four algorithms responding to a new way of calculating the initial Hessian matrix adopted
from BHHH-2 algorithm (exp. 3) (CR = 10−4).
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two estimation algorithms, in this research, a
new algorithm employs a golden section line
search method (GSM) for 
nding the optimal
step size automatically in every iteration. �e
two algorithms tried, DFP-GSM and BFGS-
GSM, show a stable estimation performance in
terms of measures used regardless of using any
uncertain intervals. By using this method, a
researcher can minimize the risk of choosing a
bad step size, which can happen in the case of

rst two estimation algorithms.

(h) �e facts observed from a comparison of experi-
ment 1-1 (CR = 10−4) with experiment 1-2 (CR =10−4) are as follows. (1)�e result of experiment
1-2 (CR = 10−4) shows a better estimation
performance in terms of three performance
measures than that of experiment 1-1 (CR =10−4): less time in one iteration, smaller number
of iterations, and faster convergence time. (2)
�is means that di�erent types of stopping
criteria can lead to di�erent estimation results
and show a di�erent estimation performance,
even in the same modeling situation.

(i) Observations drawn from the comparisons of
experiments 1-2 (CR = 10−4), experiment (CR =10−5), and experiment (CR = 10−6) are as
follows. In this case, the same mathematical
expression of stopping criterion is used but
di�erent stopping precision is employed. (1) In
the results obtained with increasing precision of
stopping criterion, the performance degenerates
in terms of performance measures: taking more
time in one iteration, more iterations before
convergence, and taking more time before con-
vergence. (2) �e reason for this phenomenon
can be attributed to the fact that applying
the more stringent stopping criterion necessi-
tates more calculation time to satisfy the more
stringent stopping criterion before terminating
iteration procedures. (3) �is result implies the
fact that a di�erent stopping precision applied in
the same mathematical expression of stopping
criterion is another controlmeasure having a big
impact on model estimation performance.

(ii) �e second category is to use a di�erent initial guess of
the parameter estimates of model. �is is the subject
of experiment 2.

(a) Here, the stopping criterion is !�(−�)−1! <10−4.
(b) �e main concern of experiment 2 is to recog-

nize the importance of initial guess of starting
points and to show an example of experimental
estimation results re�ecting the fact that the
estimation performance can be a�ected by use
of di�erent starting points.

(c) �e vector of parameter is �� = [�1 = −0.01,�2 = −0.1, �3 = 0, . . . , �9 = 0]�.

(d) It is important to know that changing initial
starting points can result in di�erent estimation
performance and that the development of a
new systematic way of guessing starting points
guaranteeing a better operational performance
would be a useful future research topic.

Overall, the results obtained from experimental estimation
are as follows. (1) Starting log-likelihood values are di�erent
from other categorical experiments due to adopting new sets
of starting points. (2) Di�erent convergence time compared

to experiment 1-2 (CR = 10−4) is examined.�ismeans that if
a researcher can specify properly parameter’s characteristics
based on good prior knowledge (e.g., sign or magnitude
of parameter estimates) or if a researcher can develop a
new scienti
c way of guessing starting points, estimation
performance may be improved.

(iii) �e third experimental category is on employing a
di�erent way of calculating the initial Hessian matrix
instead of using identity matrix. �is experiment is
carried out in experiment 3.

(a) The applied convergence criterion is!�(−�)−1! < 10−4.
(b) �e applied initial guess of starting points of a

vector of parameters is �� = [�1 = 0, �2 =0, �3 = 0, . . . , �9 = 0]�.
(c) All four algorithms are used for experiment 3

which use an identity matrix as an initial Hes-
sian matrix in the model estimation procedures
(i.e., DFP, BFGS, DFP-GSM, and BFGS-GSM).

(d) An experimented way of getting a new initial
Hessian matrix is possible by incorporating the
method of both BHHHandBHHH-2 for getting
an initial Hessian matrix in the 
rst iteration.

(e) By adding computer codes associated with the
calculation of the initial Hessian matrix used
in both BHHH and BHHH-2 algorithms to
general estimation procedures of the above
four algorithms, new estimation codes that
di�er only in the way of getting initial Hes-
sian matrix were written. �ey are named as
DFP (BHHH), BFGS (BHHH), DFP (BHHH-
2), BFGS (BHHH-2) and DFP-GSM (BHHH),
BFGS-GSM (BHHH), DFP-GSM (BHHH-2),
and BFGS-GSM (BHHH-2).

(f) An important lesson educated from a given
series of experimental estimations is to know
that applying a di�erent way of guessing ini-
tial Hessian matrix can make a di�erence in
estimation performance assessed according to
speci
ed performance measures.

(g) In the context of this research, the results of
experiment 3 are in general better than that of

experiment 1-2 (CR = 10−4). �ese use the
same condition of stopping criterion but di�er
in terms of the method for acquiring the initial
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Hessian matrix. It means that a better way of
guessing the initial Hessian matrix, unlike the
general procedures (i.e., an identity matrix as an
initial Hessian matrix), would improve the esti-
mation performance such as convergence time
or the number of iterations. �is issue can be
another topic with potential to generate useful
research results in econometric modeling.

(h) �e results obtained from experiment 3 are as
follows. (1) In terms of the single iteration time,
there is no big di�erence between experiment

1-2 (CR = 10−4) and experiment 3. However,
when using a new routine for experiment 3,
the single iteration time becomes similar among
runs irrespective of using both di�erent step size
(in the case of DFP (BHHH), BFGS (BHHH)
andDFP (BHHH-2), andBFGS (BHHH-2)) and
di�erent uncertain intervals (in the case of DFP-
GSM (BHHH), BFGS-GSM (BHHH) and DFP-
GSM (BHHH-2), and BFGS-GSM (BHHH-2)).(2) As for the number of iterations, the new
routine used in experiment 3 shows better
performance (i.e., a decrease in the number of
iterations). (3) In terms of the convergence time,
there is a big di�erence between experiment 1-2

(CR = 10−4) and experiment 3. �e experiment
3 takes much less convergence time than that of

experiment 1-2 (CR = 10−4). (4)�e reason for
this phenomenon is that using a more advanced
way of assuming initial Hessian matrix instead
of using an identity matrix would decrease the
iteration time needed to reach the 
nal Hessian
matrix of when the estimation is terminated.

6. Conclusions

�ere are several open sources for discrete choice modeling
work, but none of these open source programs or packages
provides an opportunity for researchers to go beyond the
stage of writhing a few command lines. In many cases of
using so	ware packages, researcher can choose algorithms
in very simple manner and run a program with a few
lines of commands and obtain analysis results. However,
there is nothing more to do or learn than simply making a
choice for estimation without knowing the inner workings
procedures of the chosen algorithm. �e so	ware packages
do not provide information about the algorithms and their
capabilities. Consequently, researchers are not in a position
to obtain any information about how an algorithmworks and
what makes the di�erence between algorithms that they can
choose from a tray of algorithms. �ese are the drawbacks of
traditional modeling practices, which prevent transportation
analysts/researchers being more exposed to numerical oper-
ational aspect of discrete choice model estimation ahead of
convenience.

Understanding the calculation mechanism for pedagogi-
cally important estimation algorithms means that modelers
could incorporate their ideas interpreted with the help of

computer codes into the estimation procedures. �is is
possible only when modelers are well informed on the the-
oretical aspects of estimation algorithms and the numerical
operation procedure of how it works. Based on the theoretical
information, for example, modeler might know where a new
line search method is to be placed to 
nd an optimal step size
in order to enhance algorithms’ performance. Other positive
sides of being familiar with theoretical aspects of algorithms
are that many numerical experiments could be freely tried
and these e�orts could end up with newly advanced esti-
mation algorithms. Understanding the theoretical part of
estimation algorithms and being able to write custom-built
compute codes could be an asset for modelers to address
the modeling challenges in more advanced way. �is paper
contributes in this regard by showing a practical applica-
tion of nonlinear technique into the traditional estimation
routines and thus demonstrating an improved performance
of proposed algorithms compared to currently circulated
estimation algorithms in the market.

�e multinomial logit choice model is estimated in
the environment of custom-built modeling. Quasi-Newton
algorithm (i.e., DFP and BFGS) is coded for the real choice
data. Moreover, extended Quasi-Newton algorithm (i.e.,
DFP-GSM and BFGS-GSM) is proposed for the 
rst time
in this research and its estimation performance is relatively
compared to that of both DFP and BFGS. Quasi-Newton
is popular due to its high rate of success of convergence
in discrete choice model [30]. �erefore, it is crucial for a
researcher to be able to conduct modeling with his/her own
tailor-made code for this widely used algorithm. Further-
more, the understanding of estimation mechanism of this
algorithm and handling it freely in the middle of model
developing in discrete choice modeling are an asset to a
researcher. From the experience gained in model estimation
involving four di�erent algorithms and the maximum log-
likelihood estimator, the following conclusions are drawn.

(1) DFP and BFGS show similar performance due to
the similarity in calculating and updating Hessian
matrix. Updating rule ofHessianmatrix of thisQuasi-
Newton method di�erentiates these two algorithms
fromother algorithms. BFGS is slightlymore complex
in Hessian updating formula than that of DFP.

(2) By incorporating the golden section line search
method (GSM), two new estimation algorithms,
called DFP-GSM and BFGS-GSM, are developed and
tested for the 
rst time in this research.�ese perform
better than DFP and BFGS.

(3) Important factors identi
ed through experimental
estimations are as follows:

(i) Selecting a step size is an important element
when using the custom-built code.�is research
provides insights about this issue.

(ii) Convergence criterion is another important fac-
tor dominating the entire estimation perfor-
mance.

(iii) Initial Hessian matrix is one of important fac-
tors and a new method for calculation of the
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initial Hessian matrix used in this research
proved to be bene
cial.

(4) Understanding estimation algorithms is critical in
cases where a researcher develops a new advanced
model that is not supported by commercial statistical
packages. Speci
cally, in the current new generation
of discrete choicemodeling activities, these technique
and knowledge of coding of given modeling situation
are essential.
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