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Abstract—Indoor WLAN positioning should be modeled as a
nonlinear and non-Gaussian dynamic system due to the complex
indoor environment, radio propagation and motion behaviour.
The aim of this paper is to analyze different filtering strategies for
real life indoor WLAN positioning systems. The performance cri-
teria for the comparison are the mean of localization errors and
computational complexity. Three nonlinear filters are analyzed:
Fourier density approximation (FF), particle filter (PF) and grid-
based filter (GF), which are representatives for deterministic and
random density approximation approaches. Our experimental
results help to choose the appropriate filtering techniques under
different resource limitations.
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I. INTRODUCTION

Indoor WLAN positioning system has attracted a lot of
research interests from both academia and industry in recent
years [1] [2] [3]. Mathematically, it can be formulated as
a state estimation problem. A system model describes the
state evolution with time, i.e., the motion of mobile devices.
A measurement model describes the noisy received signal
strength (RSS) observations. Due to the complexity of indoor
environment, indoor radio propagation is highly nonlinear,
which results in a nonlinear measurement model. In addition,
the motion of a mobile device cannot be modeled linearly in
general. Therefore, we regard the indoor WLAN positioning
system as a nonlinear and non-Gaussian system.

Bayesian filtering provides a general recursive framework to
estimate the posterior probability density function of the state
given all the available observations. But its optimal analytic
solution with respect to an optimality criterion is tractable
only in some special cases. For instance, if the system has a
linear structure and the posterior density is kept as Gaussian,
the optimal solution with respect to minimal posterior mean
square error can be derived using the well-known Kalman
filter [4]. If the state space is discrete and has a limited size,
the grid-based method is optimal [5]. For most nonlinear and
non-Gaussian systems like indoor WLAN positioning system,
it is impossible to get the exact analytic solution due to the
fact that the complexity of the posterior probability increases
after each step of the recursive process. To solve this problem,
various suboptimal nonlinear filters have been proposed. These
filters approximate either the system and measurement model

or the probability density function. The first family of filters
including the extended Kalman filter (EKF) [5] and its variants
approximate the nonlinear model by its local linearization.
The other family consists of numerous nonlinear filters that
aim to approximate the density function by a number of
parameters. For instance, grid-based methods use uniformly
sampled grid points to approximate the density functions.
And Unscented Kalman filter (UKF) [6] matches the first two
moments of the posterior distribution density of the state vector
conditioned on the observations by using sample points of the
Gaussian-Hermite Quadrature approximation to the integrals.
Besides, particle filters [5] randomly generate a collection
of particles to do the same work. Recently, researchers also
represent the density function by the linear combination of
kernel functions, e.g., Gaussian mixtures [7], Fourier densities
[8], Dirac mixtures [9] and so on.

The performance of various nonlinear filters are closely
tied to the properties of specific applications. The system and
measurement model, the noise characteristics, and the system
requirements for speed or memory consumption are the key
factors to decide which filter is most suitable. In this paper,
we compare the performance of three nonlinear filters, namely
the filter based on Fourier density approximation (FF), particle
filter (PF) and grid-based filter (GF) for our indoor WLAN
positioning system. We choose these three filters as candi-
dates because they all can handle nonlinear and non-Gaussian
systems with arbitrary complexities by approximating density
functions with any required accuracy. The key performance
criteria we use are the mean localization error and computation
time, which reflect the accuracy and computational efficiency,
respectively. We evaluate the filters with both simulated and
real measurements, aiming to find the most appropriate one for
practical indoor WLAN positioning systems. Our experiments
indicate that particle filters are the most computationally
efficient. Fourier-based filters are superior with respect to using
the fewest components to approximate the density functions
accurately.

The remainder of this paper is organized as follows: In
Section I, three nonlinear filters to be evaluated are briefly
described. In Section 111, we introduce the usage of nonlinear
filter in indoor WLAN positioning systems. The performance

17



of different filters in our testbed are given and discussed in
Section IV. Finally, Section V concludes the paper.

Il. DESCRIPTION OF NONLINEAR FILTERS

The discrete-time stochastic dynamic system with additive
noises is usually modeled by

Try1 = Ak (sr:k, uk) + wg, (1)

Yy+1 = Pig1 (Tpg1) + V. 2

Formula (1) models the system process which updates the
current state vector xj; given an input wj and system noise
wy,. Formula (2) describes the measurement process which
relates the state x;. 1 to the observation y. 1, corrupted also
by noise vy.

The Bayesian approach provides a recursive way to estimate
the hidden state of dynamic systems with the above form. It
has also two steps: prediction step and update step as

fosr (®rp1) = /fg (Tht1|xk, wr) fi, () deg,  (3)

1
fiv1 (@pg1) = akaH (Yt1]Trt1) f]f-t,—l (®t1), (4

where f | (xry1) is the predicted density at time .
fkT+1 (zgt1|Tr, wg) is the transition density, which is given
by

fi (g |e, ue) = f (@es1 — ak (Tr, ug)), (5)

where f (-) is the density of the system noise at time
k. ff(xk) is the posterior density function at time k.
[t (Yrg1]@rg1) is the conditional likelihood density given
by

iy Wrstl@rs) = filor W1 — hig1 (@eg1)),  (6)

where f (-) is the density of of the measurement noise at time
k.

The Kalman filter can solve the above equation analyt-
ically if the system is linear and the posterior density is
kept as Gaussian. For most of the other nonlinear and non-
Gaussian systems, the analytic solution to formula (3) and
(4) is intractable because the complexity of density functions
increases over time. One way to get the suboptimal solution is
to approximate the density function by a sum of base functions
as

f(z)~ Zwﬂ% (x,7i) , )

where w; is the weight of component ¢ and ~y; is the parameter
vector that controls the shape or location of components.
With different forms of components and ways to generate
them, various nonlinear filters are utilized. In this paper we
choose three representative nonlinear filters for evaluation. In
the following, the major characteristics of these three filters
are briefly introduced. The detailed algorithms are beyond the
scope of this paper and can be found in the references.

A. Fourier-based filter

Fourier series were first employed to estimate probability
densities in [14]. Recently, [8] ensured the non-negativity of
Fourier series by approximating the square root of the density
instead of the density itself. The density function f(x) is
approximated by its truncated Fourier series expansion as

fla) = wel = (8)

To ensure nonnegativity, the absolute square root of Fourier
series is exploited. In addition, by Fourier series, the expres-
sions in formulas (3) and (4) can be calculated analytically
while the type of density function is preserved [8]. Because
of the orthogonality of Fourier expansions, the coefficients
of components can be calculated analytically. In practical
implementation, it is done by the Fast Fourier Transform (FFT)
algorithm. Additionally, the number of components, i.e., the
complexity of calculation, can be adjusted optimally. Because
the importances of components are sorted directly by the
absolute value of coefficients with respect to a density distance
measure, component reduction is very efficient. However, the
Fourier transformation by FFT usually requires a fine sampling
resolution in the whole state space. This results in high
computational effort and memory consumption especially for
high-dimensional density functions.

B. Particle filter

Particle filters represent the density by a series of randomly
selected particles. The well-known Sequential Importance
Sampling (SIR) particle filter consists of the following steps.

1. Generate a new particle for each old particle randomly
using the motion model.

2. Weight the new particle using the measurement model,
i.e., likelihood densities.

3. Resample the particles, delete the particles with small
weight, and split the particles with large weights. Finally, each
particle has the same weight.

The advantage of the particle filter is that it is easy to
be implemented and it simplifies the density integrals. With
the increasing number of particles, the filter can also handle
arbitrary density functions. However, although particle filters
can beat the curse of dimensionality in terms of convergence
[11], they do not beat the curse with respect to computational
complexity [12]. Furthermore, the rate of convergence is not
uniform for dynamic systems [13]. This implies that it is
difficult to evaluate the quality, i.e., the number of needed
samples, of such estimators. Additionally, since particle filters
are random approaches, the final result varies especially when
the number of particles is small.

C. Grid-based filter

In grid-based method, the density is sampled at uniformly
distributed grid points. The integral in Bayesian estimation
equation is replaced by a discrete summation. Like the other
two filters, grid-based filter can also approximate arbitrary
density functions with increasing resolution of grid points.
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But like the Fourier filter, the grid resolution is the same
in the whole state space. This leads to a high computational
effort and memory consumption if a fine sampling or high
dimensionality is required.

Figure (1) illustrates the approximation of a Gaussian mix-
ture density with three components by a Fourier-based filter, a
particle filter, and a grid-based filter respectively. Theoretically,
all these three filters converge to the optimal Bayesian solution
when the number of components increase towards infinity. But
in practical systems it is very important to choose a proper
filter that has a fast converging rate, to get an accurate result
with a short computational time.

Two factors affect the computational efficiency. One is the
number of components that can accurately approximate the
density function. This factor depends highly on the charac-
teristics of specific system. The other one is the computation
time given different number of components. Table | lists how
the computation time of each step increases with the number
of components for the above three filters. We see obviously
that particle filter tends to be most efficient when the number
of components is large. Furthermore, we can notice that the
efficiency of Fourier-based filter is both affected by the number
of components of FFT sampling and the reduced number of
components.

I1l. NONLINEAR FILTERING IN INDOOR WLAN
POSITIONING

The indoor positioning system we are working on is based
on the received signal strength (RSS) of WLAN system.
In a typical scenario, a number of stationary access points
(APs) are distributed in an indoor environment. Mobile devices
measure the RSS signals, which are used to estimate the
position of mobile devices. In mathematic language, the RSS
signals are noted as p = [p*,p?,...,p" ] where p is the RSS
measurement from AP ¢ and the position of mobile device is
noted as « = [z, y, z|. The function h (-) is used to describe
the relationship between the position and the RSS at time &
as

Pr = hi (x) + v, ©)

where vy, is the additive noise caused by the complicated
indoor environment.
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Figure 1. Illustration of density estimation with 3 components.

Table |
COMPUTATIONAL COMPLEXITY ANALYSIS

Fourier-based Filter

Transition density approximation | O (mlogm)
by m components (FFT)
Reduce to n components O (mlogm)
Prediction O (n)
Likelihood density approximation | O (mlogm)
by m components (FFT)
Reduce to n components O (mlogm)
Update O (nlogn)
Particle Filter
Prediction O (n)
Update O (n)
Resampling O (n)
Grid-based Filter
Prediction O (n?)
Update O (n)

The first problem is how to model the mapping function
hi (+). This function may be determined using a parametric
radio propagation model, e.g., multi-wall model or dominant
path model [3]. But the performance is not always satisfactory,
due to the fact that the radio propagation is highly affected by
many field-specific parameters such as walls, doors and so on.
These parameters are sometimes difficult to retrieve within
the models or even not known to the user. Fig. 2 shows the
building map of our test environment and a radio distribution
map in this environment. We can see that the building structure
has a clear influence to the radio distribution. Additionally,
RSS noise has also a complex form. As Fig. 3 shows, RSS
noises at reference points have various and complicated forms
which can hardly be modeled by a simple Gaussian. In
practical systems, people usually model the mapping function
and noise in a non-parametric way, i.e., measuring the RSS
distribution offline or online at reference points to build a non-
parametric radio map or mapping function.

Another problem is how to model the motion of mobile
devices. Unlike the car navigation system, the indoor motion
is usually hard to predict because the motion direction and
distance vary largely. With the assistance of extra sensors
like accelerometer or gyroscope, the motion behaviour can be
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Figure 2. A radio map example in an office building.
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Figure 3. Examples of RSS distribution at reference points.

modeled parameterized. In this paper, we assume the distance
is measurable by either accelerometer or odometer [10]. But
the angle is unknown. Hence, the following formulas are
derived to model the system:

T+l | _ | Tk (di + 6dy,) cos (6k)
[ ykil } a [ Y ]’L{ (di, + 6dy,) sin (6% ] (10)
pr = hg ([ Tt }) + Vg4, (11)
Yk+1

where distance noise dd; follows Gaussian distribution
N (0,03). The unknown moving direction is modeled by an
uniform distributed variable 6,. The observations p; is the
RSS vector. The observation noise vy 1 is non-Gaussian.

IV. EXPERIMENTAL RESULTS

The test environment in this paper is our office building
which has several WLAN access points installed. To better
evaluate and understand the performance of different nonlinear
filters, we make both simulations and field tests. In the
simulation a big area and dense radio map is generated and
the model parameters are perfectly known. But in the field test
not too many reference points are used to construct radio maps
and the motion angle does not follow the presumed uniform
distribution. In what follows, the setups of simulation and field
test are described and results are then discussed.

A. Description of the Smulation

We started with simulated data because the walking trace
in simulation is generated from the known model parameters,
which eliminates influence of the model error in the compar-
ison. We simulate the radio distribution in our office building
by a site-specific multi-wall radio propagation model as

p = po — 10nlog (d) — Z WAF + v,

where p stands for the AP transmission power in dBm, which
is set to -20 dBm. n is the radio attenuation coefficient which
equals to 1.25. W AF represents wall attenuation factor that is
the partition value of walls between transmitter and receiver.
Here we set WAF to 8.7 dB for concrete walls, 5.5 dB for glass
windows and 4.3 dB for doors. 6 access points are assumed to

(12)
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Figure 4. Left: simulated environment with 6 APs. Right: radio map example
by multi-wall model.
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Left: Gaussian-mixture noise model. Right: simulated transition

be available in an area of 45m x 45m as the left figure of Fig.
4. The RSS noise v is a two-components Gaussian mixture
density 0.5\ (—7.5,22)+ 0.5\ (7.5, 22) as shown in the left
figure of Fig. 5. Note that although we use a parametric model
to generate radio maps, it is still stored in a non-parametric
way, i.g. the RSS vectors on 33660 grid points are stored
in computer for the calculation of likelihood functions. The
simulated walking trace follows the formula (10). All the
model parameters are known to the estimator. The distance
between two samples is assumed to be a Gaussian variable
./\/(2.5m,0.3m2). The motion angle is uniformly distributed
between —7 and 7. So the transition density for each position
is actually a ring as illustrated by the right figure of Fig. 5.
Since we assume that the distance is the same for each step, the
transition density is also constant. At the update step, a discrete
likelihood probability is made by calculating the likelihood
given the measured RSS at each point of the radio map.

B. Description of Field Test

We also evaluate the filters using the real data. In our
building we installed 14 access points as shown in Fig. 6. We
measured the radio distribution at 250 uniformly distributed
grid points in an area of 15m x 35m before the system runs.
The RSS distribution at each point is different because of the
complex indoor environment. Fig. 3 shows two examples of
RSS distributions. These distribution functions are stored in
computer as a vector. In the online step, RSS and accelerom-
eter data are collected while people move in a path as Fig.
6. We also use formula (10) and (11) to model the system.
But the distance dj, is estimated by accelerometer and varies,
i.e., we must calculate the transition density at each recursive
step. The likelihood density is calculated in the same way as
in the simulation. At each grid point the RSS measurement is
compared with the stored RSS probability density function to

20



Environment of field test.

Figure 6.

get the likelihood value. Finally a discrete likelihood density
function is constructed for updating.

C. Results and Discussions

Fig. 7 and Fig. 8 show true posterior density functions at
four successive steps in both simulation and field test. These
densities are generated by the grid-based numerical method.
We can observe that the posterior density shows a strong
nonlinearity which favors the usage of nonlinear filters.

To compare the performance of different filters, we take
the mean of location errors and computation time per step as
evaluation criteria. Fig. 9 and Fig. 10 indicate how the mean of
location errors is like given different number of components.
Note that for Fourier filter, we take 10000 points in simulation
and 750 points in the field test for FFT sampling. It is obvious
that all the above nonlinear filters converge almost to the same
value given enough components. Fourier filter converges with
fewest components. Grid-based filter is worst. This indicates
that the samples of Fourier-based filter is more efficient to
represent the density functions. In addition, the results of the
particle filter are the averaged one over 25 runs. Since particle
filter is a random approach, its result also varies. Fig. 11 shows
how the result of particle filer varies in the field test given
different number of components. It is clearly observed that the
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Figure 7. Examples of posterior density functions in simulation.
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Figure 8. Examples of posterior density functions in the field test.
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Figure 9. Mean of localization errors given different number of components
for simulated data

fewer particles lead to a larger variation. Fig. 12 and Fig.
13 compare the computation time given different number of
components. All the computations are done in a laptop with
a single-core 2 GHz CPU. As shown, for grid-based filter,
the computation time increases quadratically while for particle
filter, the computation time increases linearly. In simulation
we use much more grid points than the field test to construct
radio map, which means calculating the particle weight takes
more time in simulation than in the field test because every
particle must find the closest grid from all of them. That is
why it takes more time in simulation than in the field test
given the same number of particles. Fourier filter has a almost
constant computational time. This can be explained by the
following facts. As shown in Table I, Fourier filter consists of
two parts of calculations. The complexity of Fourier transform
part depends on FFT sampling, following the complexity of
O (mlogm). The other part depends on the reduced number
of components, following the complexity of O (n?). However,
if the number of Fourier component is already sufficient to
represent the densities, adding more components is just adding
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Figure 11. Variation of mean localization errors given different number of
components for real data by particle filter.

some zero Fourier series and not increasing the running time.
So as in Fig. 12 and Fig. 13 the FFT sampling m is fixed
meaning a constant running time, which also dominates the
calculation when the number of reduced component n is
small. Since the Fourier filter can approximate the densities
accurately with very few components (around 200 as shown
in Fig. 9 and Fig. 10), more components will not increase
the computation time neither. That is why the running time
of Fourier filter in Fig. 12 and Fig. 13 looks like constant.
We also remark the importance of FFT sampling in Fourier
filter by Fig. 14 and Fig. 15 which show how the accuracy and
running time change given different FFT sampling resolutions
and a fixed reduced number of components. We can notice
that more accurate FFT sampling gives better result but takes
more time.

Fig. 16 and Fig. 17 plot the running time versus the mean
of localization errors, which helps us to identify which filter
makes the best trade-off between efficiency and accuracy. In
our simulation, Fourier-based filter and particle filter have a
compatible performance. But in real test, particle filter per-
forms best. This is because the density function in simulation
is more complicated and in simulation the transition density is
the same for all steps so some computation time can be saved
by reusing the previous transition density for Fourier filter.
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Figure 12. Computation time per step given different number of components
for simulated data.
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Figure 13. Computation time per step given different number of components
for real data.

V. CONCLUSIONS

In this paper, we compare the performance of three non-
linear filters for indoor WLAN positioning problems. We
use both simulated and real measured data for evaluation.
From the results, we see that given enough components, all
three filters converge to the same result. Given very few
components, Fourier-based filter performs best in the sense of
accuracy, e.g., less than 200 components can already give very
accurate results in our cases. The trade-off number depends
on the complexity of system. Particle filter is faster than
others for its simple algorithm structure with linear complexity.
Fourier is slower with few components because the Fourier
transform and component reductions take some extra time.
This time is close to be constant, i.e., not increasing with
more components, which can be regarded as fixed overhead
cost. With more components, time consumption of grid-based
method is close to O (n?) while that of particle filter is close to
O (n). For Fourier filter, the computation time increases with
the density complexity instead of the number of components,
i.e., if the current components are enough to represent the
density, the more added components are zeros, taking very
little time in calculation. Therefore, it is almost constant even
using large number of components. The sampling resolution
of Fourier filter is important. The larger resolution is used, the

22



N w » (4]

[

Mean of Localization Errors (m)

o

500 1000
Resolution of FFT Sampling

1500

o

Figure 14. Mean of localization errors given different FFT sampling
resolution and a reduced 200 components.

[¢)] [

Sy

N

Running Time per Step (s)
w

-

(=)

0 500 1000
Resolution of FFT Sampling

1500

Figure 15. Running time per step given different FFT sampling resolution
and a reduced 200 components.

more accurate result is achieved. But also more time is spent,
which slows the Fourier filter in high-dimensional problems.

For practical positioning systems with limited computational
power, e.g., slow processors, particle filter is the best choice.
If the density functions are transfered between different nodes,
Fourier-based filter should be used because fewer components
require smaller bandwidth and communication time.
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