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Abstract—Detecting rocks in images is a valuable capability

for autonomous planetary science. Rock detection facilitates
selective data collection and return. It also assists with image

analysis on Earth. This work reviews seven rock detection

algorithms from the autonomous science literature. We eval-

uate each algorithm with respect to several autonomous ge-

ology applications. Tests show the algorithms’ performance
on Mars Exploration Rover imagery, terrestrial images from

analog environments, and synthetic images from a Mars ter-

rain simulator. This provides insight into the detectors’ per-

formance under different imaging conditions.
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1. INTRODUCTION

Detecting rocks in images is a valuable capability for au-

tonomous planetary science. Rocks are pristine targets for

compositional analysis with spectrometers. Their shape, size,

and texture hold a wealth of geologic information. Com-

puting the locations and distributions of rocks facilitates au-
tonomous rover functions like adaptive target selection [4],

selective image return [2], and autonomous site characteriza-

tion [12]. Moreover, automatic rock detection can assist off-

board data analysis. Rock size and shape distributions carry

important geologic cues, but the manual analysis required to
characterize these distributions is extremely time intensive.

Currently scientists evaluate these statistics over very limited

regions. Accurate rock detection would generate these rich

data products quickly and cheaply.

Unfortunately rock detection is a difficult pattern recognition

problem. Rocks exhibit diverse morphologies, colors and

textures. They are often covered in dust, grouped into self-
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Detector Method Source

Rockfinder Edge contours [4]
MVJ (Modified Viola/Jones) Filter Cascade Carnegie Mellon
Rockster Edge contours [5]
Stereo Stereo geometry [8],[12]
Shadow (Marsokhod) Shadow terminators [9]
SQUID Intensity Blobs JPL
SVM Classify pixels JPL

Figure 1. Strategies for rock detection in images.

occluding piles or partially embedded in terrain. Predictably

there is no “silver bullet” algorithm to provide perfect accu-
racy in all these circumstances. However, one can still seek

expedient rock detectors with performance that is sufficient

for the desired application.

Research in the past decade has produced a variety of rock de-
tection strategies (figure 1). These include stereo-based tech-

niques for finding rocks based on their protrusion from the

ground plane, edge-based methods that find closed contours,

template-based methods that look for characteristic pixel pat-

terns, and methods that detect rocks using their shadows.
Each approach has advantages for different conditions and

mission requirements. Nevertheless there has not been a for-

mal comparison of these algorithms.

This work surveys a representative selection of rock detec-
tors and evaluates their performance on four image datasets.

We consider Mars Exploration Rover images from Pancam

and Navcam instruments, along with images of physical lab-

oratory analogs and computer-simulated terrain. These tests

provide insight into both the algorithms’ comparative perfor-
mance and the visual fidelity of laboratory analogues to actual

Mars terrain.

2. IMAGE DATASETS

Images from four datasets (figure 2) were labeled manually

to identify the ground-truth locations of all rocks. For each
class of images we reserved a portion for training and tuning

the algorithms. This section describes each of the datasets in

greater detail.
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Figure 2. Images from the four datasets used in the perfor-
mance comparison. Clockwise from upper left: MER Nav-

cam, MER Pancam, Mars Yard, synthetic ROAMS.

MER Pancam Imagery

The first test set contained of 104 panoramic camera images

taken by the Spirit Mars Exploration Rover (MER). We se-

lected a range of mast elevation angles but favored image

content within a 3-10m range of the rover. This range was
deemed the most relevant for autonomous geology opera-

tions. Together the images comprised a dataset containing

over 35,000 hand-labeled rocks. They also included a selec-

tion of typical non-rock content such as rover tracks, shadows

and sediment features. We drew images from two sites: the
“Mission Success” panorama from Spirit’s landing site and

the “Legacy” panorama imaged during Sols 59 through 61.

The images were acquired using Spirit’s 753nm bandpass fil-

ter.

Particle size analysis usually excludes the smallest rocks that

are too numerous for accurate labelling. Similarly, we limited

our analysis to those rocks greater than 4cm in length because

they could be consistently identified across all datasets. We

reserved an additional set of 12 Pancam images from Spirit
rover imagery to serve as training data. These contained sev-

eral thousand rocks from different locations along the Spirit

mission path; like the test set they exhibited a range of terrain

and lighting conditions.

MER Navcam Imagery

In addition to the panoramic camera imagery we considered
13 MER navigation navigation camera images from the Spirit

rover. These images contained over 13,000 hand-labeled

rocks. We used Navcam images from three sites: initial im-

ages from the landing site, a panorama at sol 50, and a second

panorama from sol 118. These monochrome images provided

a wider field of view including both near-field objects and the
horizon. They also showed a wider range of lighting condi-

tions than the panoramic imagery; several were taken late in

the Martian day with low-angle illumination and significant

cast shadows.

Because relatively few labeled Navcam images were avail-

able we did not reserve any as a training set. Instead, we used

the Pancam training set mentioned above for all tests involv-

ing Mars rover images. This compromise worked well for

the specific detectors and datasets we considered. Again, we
ignored rocks smaller than 4cm in size.

“Mars Yard” Analog Imagery

The “Mars Yard” is an outdoor rover testing environment at

the NASA Jet Propulsion Laboratory (JPL) constructed to

simulate Mars conditions. We used a sequence of Mars Yard

images collected with the FIDO rover platform [4]. The Mars
Yard image set consisted of 35 images and several hundred

rocks. A second group of 28 Mars Yard images served as a

training set.

The datasets were recorded by the FIDO rover’s mast-
mounted navigation cameras during several rover operations

tests. Image contents showed the sandy testbed terrain and

a field of rocks that had been assembled for the tests. Back-

ground clutter like buildings and fences was removed from

the images by hand. The rover shadow occasionally appeared
in the images.

Synthetic Imagery

A fourth dataset utilized synthetic images of Mars terrain gen-

erated through the ROAMS rover simulator suite [10]. The

ROAMS terrain simulator presented a Mars-like environment
populated by rocks of various sizes. The simulated environ-

ment featured an undulating textured terrain, a realistic light-

ing model with cast shadows, and rocks with complex polyg-

onal shapes. The ROAMS training and test sets contained

contained 33 and 22 images respectively. Each set contained
several hundred rocks.

3. TESTED ALGORITHMS

We drew representative algorithms from published studies

and current research at Carnegie Mellon and the Jet Propul-

sion Laboratory (JPL). Each algorithm constitutes a complex
system demanding a variety of unique design choices for pre-

processing and parameter adjustment. Therefore, we cau-

tion against the presumption that any of these particular im-

plementations achieved “optimum performance” for its tech-

nique. Nevertheless, we attempted to produce the best pos-
sible result from each detection system and used designers’

original source code whenever possible. Figure 3 shows the

algorithms’ detection results on a common Navcam image. A

brief description of each algorithm follows.
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Figure 3. Red outlines show each algorithm’s detection re-
sults. Note that the SVM method does not actually find rocks

at all, but merely labels individual pixels. The SQUID detec-

tion method at lower left only provides meaningful results on

synthetic images.

Rockfinder

Rockfinder is an edge-based rock detection algorithm devel-

oped by the OASIS autonomous science group at JPL [4].

This detection technique uses a series of denoising and bi-
lateral filter operations to remove spurious texture. Then it

applies an edge detector (the Sobel or Canny algorithm) to

find edge fragments and traces the resulting pieces into closed

contours. These closed shapes are unlikely to appear coin-

cidentally in the Mars environment — the vast majority of

closed edge shapes lie on the surface of rocks or are rocks
themselves. The algorithm runs at multiple levels of a multi-

scale image pyramid in order to detect rocks of all sizes.

Multiple Viola-Jones (MVJ)

The MVJ detector developed at Carnegie Mellon University

exemplifies a template-based rock detection method. The al-

gorithm utilizes the template cascade developed by Viola and
Jones [13]. Here an Adaboost supervised training scheme

builds a cascade of filters to quickly identify template win-

dows containing rocks. This does not find the actual contour

of the rock but it does provide an approximate bounding box

that can then be used for spectrometer target selection or ad-
ditional image processing (figure 3).

This rock detector uses a slight change of the classic Vi-

ola/Jones strategy; rather than train a single filter cascade we

use multiple cascades to recognize rocks under different light-
ing directions. In principle one could train any number of

independent detector cascades, but our version has only two

detectors trained on rocks lit from the left and the right.

At runtime the multiple cascades compete to interpret the
scene. The system detects rocks twice — once using each

cascade — and uses only the results from the cascade that re-

turns the greatest number of detections. The cascades learn

to identify the characteristic shading patterns of a rock lit

from a particular direction. These shading patterns seldom
occur by accident so detection cascades associated with in-

correct lighting conditions return few detections. The multi-

ple cascade strategy identifies an approximate lighting direc-

tion even when the sun angle is not known with certainty.

Rockster

The “Rockster” algorithm is an edge-based algorithm devel-

oped at JPL [5]. While originally developed for synthetic im-

ages it has also shown promise for other datasets. The algo-

rithm first identifies and removes any sky that is present at

the top of the image. It then detects edges using an edge de-
tector similar to the Canny algorithm. The next stage — an

innovation of the Rockster algorithm — is a sequence of edge

cleaning operations used to identify closed contours. These

include breaking edges at points of high curvature, connect-

ing endpoints with nearby edges to form T-junctions, and a
gap-filling step that bridges missing contour segments. The

final result is a set of closed shapes that can be extracted us-

ing a flood-fill technique. Rockster was successfully demon-

strated on the FIDO platform in Sept. 2007 when it detected

rocks during an integrated Mars Yard test of autonomous sci-
ence operations.

Stereo Height Segmentation

Stereo range data is a component in several rock detectors

including those by Gor [8], Fox [6] and Thompson [12].
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These algorithms follow a common formula. They fit a pla-

nar ground model to the terrain using least-squares regression

or RANSAC [7]. Then they find each pixel’s distance to the
plane in order to create a height map. A segmentation of this

height map identifies image regions that protrude above the

surface.

We implemented a version of stereo hight segmentation for
this work. Our version follows Gor’s strategy of detecting

height-map discontinuities that indicate the tops of rocks.

We apply a vertical derivative filter that responds strongly to

these discontinuities. After finding the topmost rock pixels,

a region-growing operation grows the rock regions down to a
minimum height. The result is a segmentation of the rocks in

the scene. Unlike the original Gor algorithm, we also apply

a high-pass filter to the initial hieghtmap. This removes low-

frequency changes in height like terrain bumps to improve

performance when the ground is not perfectly planar.

Marsokhod Shadow Detector

We examine the rock detection algorithm used for image anal-

ysis during the 1999 Marsokhod rover field tests [9]. This

method is one of the first examples of rock detection for au-

tonomous science applications. It reduces the rock detection

problem to one of finding shadows. Given a known sun an-
gle, shadows suggest the location of rocks in the scene. The

Marsokhod detector utilizes a spherical lighting model to pre-

dict the orientation of terminator lines (separating illuminated

from darkened sides of the rock). It uses an edge detector

to find candidate terminators, and selects appropriate candi-
dates using edge orientations. While the result does not find

the contour outline of the rock, it does identify a point on the

rock’s surface that can be used as a target for spectroscopy.

SQUID

The Smoothed Quick Uniform Intensity Detector is a simple
algorithm developed for use on synthetic images. First a bilat-

eral filtering algorithm removes terrain texture. Then a simple

intensity segmentation scheme identifies contiguous areas of

constant pixel intensity. In this manner it locates contiguous

blobs of intensity; a size filter discounts large blobs as belong-
ing to the sky or terrain. Any remaining blobs are presumed

to be rocks.

SVM Pixel Classification

Finally we investigate an algorithm that classifies every image

pixel individually. These pixel classifications do not reveal

the contours of each individual rock, but they can estimate
the fractional coverage of rocks in the image. The algorithm

uses a support vector machine classifier to analyze local win-

dows around each pixel. It characterizes each pixel using a

feature vector constructed from local intensity values. The

SVM identified individual pixels that were most likely to lie
on rocks.

4. PERFORMANCE EVALUATION

This section describes the metrics used to evaluate each rock

detection algorithm. Pattern recognition systems are often

judged according to a precision/recall profile: precision refers

to the fraction of detections that are actually true rocks, while
recall describes the fraction of rocks in the scene that are de-

tected. In general the algorithms in these experiments do not

provide a measure of detection confidence that would permit

an explicit precision/recall tradeoff. However, the algorithms

usually exhibit an obvious performance peak that strongly
suggests a particular parameter setting.

We use several performance measures to evaluate test set per-

formance for different autonomous geology tasks. First we

evaluate a detector’s ability to perform target selection for ap-
plications like autonomous spectroscopy. This is tantamount

to finding pixels that are most likely to lie on the surface of

a rock. For algorithms that provided an outline or bounding

box we used the centroid of the detected region as the target

estimate. The relevant performance characteristic is accuracy
- the fraction of chosen target pixels that actually lie on rock

regions.

Figure 4. Graphical depiction of permissive (left) and strict

(right) correspondence criteria. The ratio defined by the areas

of intersection between detected contours and ground-truth

rocks must be greater than a fixed threshold t. Both corre-

spondence criteria permit at most one detection per rock.

Next we evaluate each detector’s detection precision and re-

call. To compute this score we find the area of overlap be-
tween detected and ground-truth rocks, and greedily associate

the best-matching detections with their corresponding rocks.

We match each ground-truth rock with at most one detection;

unmatched rocks are labeled as false positives.

Each valid match must satisfy a correspondence criterion to

ensure similarity between the detection and its associated

ground truth rock. Performance scores are highly dependent

on this correspondence standard so we evaluate two possibil-

ities: a permissive criterion and a strict criterion (figure 4).
The permissive criterion requires that more than 50% of the

detected region contain the matched ground-truth rock. This

guarantees that a majority of pixels in the detected region lie

on the rock. However, it is forgiving of situations where the

detector finds only part of the target. We also investigate a
strict criterion that requires a 50% overlap between the re-

gions’ intersection and their union. The strict criterion de-

mands a close correspondence between the area of the true
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rock and the detected region, so it better indicates the accu-

racy of automatically-computed rock attributes like size or

shape.

Finally we evaluate autonomous prediction of the fractional

area of terrain covered by rocks. We count detected rock

pixels individually and compare the resulting count to the

ground-truth fraction for each image. This standard does not
require any correspondence between detected and actual rock

pixels; it only concerns the total predicted number of rock

pixels.
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Figure 5. Target selection performance for Navcam imagery.

The vertical axis represents the fraction of detected centroids

that lie on a rock pixel.

5. EXPERIMENTAL RESULTS

Performance for Navcam and Pancam images is similar for
all algorithms and tests with one exception — a range data

misregistration error prevented us from evaluating the stereo

algorithm on the Pancam dataset. Therefore the explanation

that follows favors Navcam imagery except in cases where the

Pancam dataset’s additional data is particularly informative.

Figure 5 shows target selection performance for navigation

imagery. The Rockfinder algorithm has the best overall tar-

get selection performance; it reliably achieves accuracies over

90%. Failure modes differ for each detection algorithm. The
Rockfinder algorithm occasionally mistakes long cast shad-

ows for rocks (figure 6). The MVJ algorithm performs poorly

in lighting conditions that differ from its training set (i.e. il-

lumination from directly behind or in front of the camera).

The stereo algorithm underperforms for small rocks or un-
even terrain. Nevertheless, all rock detectors routinely score

accuracies of 60 − 70% on the target selection task. In fact,

these values may understate the performance of algorithms

like Rockster and MVJ whose profuse detections could be

filtered using size or shape heuristics.

Figure 7 shows average performance on Navcam images for

rocks in four size categories. The permissive detection cri-

Figure 6. Rover shadows in the Mars Yard sequence con-

fused most detection methods. Here Rockfinder (top) and the

MVJ detector (bottom) both find one or more rocks in the
rover shadow.

terion was used. Note that the MVJ algorithm’s performance

increases with rock size, while the reverse is true for Rockster.

Rockfinder and the stereo algorithm both perform poorly on

rocks less than 10cm in length. This is expected in the case of

stereo that relies on protrusion above the groundplane. How-
ever, there is no obvious mechanism that would cause a size

bias in an edge-based method like Rockfinder. This algorithm

regularly achieves 90% precision on medium to large rocks.

Figure 8 shows performance on Navcam images plotted by
range categories. Most detectors show improved detection

precision in the areas near to the rover. Not only do distant

rocks subtend fewer pixels, but they also cluster more closely

due to camera foreshortening.

Figure 9 shows the same detection results for Navcam im-

agery on an image-by-image basis. This provides some intu-

ition about the variance that can be expected in performance

from one image to the next. Again, both Stereo and Rock-

finder algorithms exhibit high precision and low recall while
the Rockfinder algorithm is the overall winner in precision.

The Rockster algorithm achieves the highest overall recall for

this test set at the cost of considerable inter-image variance.

5



0.0 0.2 0.4 0.6 0.8 1.0
precision

0.0

0.2

0.4

0.6

0.8

1.0
re

c
a
ll

a b cd

a

b c da
bcd

a b
c

d

Average detection performance by rock size (Navcam)

Rockfinder
MVJ

Rockster
Stereo

Figure 7. Performance by size for Navigation imagery.

Points represent the average detection performance over the
entire dataset for rocks in each size bin: a) < 10cm, b)

10− 20cm, c) 20− 30cm, d) > 30cm.
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Figure 8. Performance by range for Navigation imagery.
Points represent the average detection performance over the

entire dataset for rocks in each range bin: a) < 2m, b) 2−4m,

c) 4− 6m, d) > 6m.

Detection results for the other three datasets appear in figures

10, 11, and 12. Performance on the Mars-analog datasets is
superior to performance on the actual Mars images. In partic-

ular, the Rockster and SQUID algorithms (that had been de-

signed for use with ROAMS imagery) achieve much higher

scores for the synthetic data. The obvious difference be-

tween Rockster’s performance in ROAMS and Navcam sce-
narios emphasizes the difference between the detection tasks

for synthetic and real images (figures 9 and 10).

Recall on Mars Yard images is also higher than for Mars rover

images. One might anticipate that rocks are easier to find
in the simplified Mars Yard environment. The Mars Yard’s

rocks are comparatively large and high-contrast. They are

placed on the surface of the terrain by hand. Interestingly,
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Figure 9. Rock detection performance for Navcam imagery

(permissive criterion). Points represent the precision/recall
result for each individual image
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Figure 10. Rock detection performance for ROAMS im-

agery. The edge-based detection methods outperform MVJ

for synthetic images.

however, both MVJ and Rockfinder algorithms lose some

precision on the Mars Yard imagery. This appears related to

the rover shadow that appears in many Mars Yard test images
(figure 6). Both MVJ and Rockfinder algorithms consistently

identify this shadow as one or multiple rocks. In general, cast

shadows are a significant issue for every algorithm except the

Stereo method. They also impact detection performance on

Mars imagery, where rocks’ shadows are often mistaken for
rocks themselves.

Figure 13 shows Navcam detection results using the strict cor-

respondence criterion. A comparison with figure 9 suggests

that few detections actually capture the target rock’s true con-
tour. The MVJ algorithm only detects bounding boxes and

not contours, so its performance score suffers most from the

stricter correspondence standard.
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Figure 11. Rock detection performance for Mars Yard im-

agery. Each image contains just handful of rocks so occa-
sional perfect scores appear.
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Figure 12. Rock detection performance for Pancam imagery.

Performance is generally comparable to that for Navcam im-

ages, with MVJ and Rockster trading precision for recall.

Finally, coverage estimation performance appears in figure
14). This task proves significantly more difficult — only the

Rockster, SVM and Viola/Jones algorithms’ coverage esti-

mates have any significant correlation with the ground truth

value. Even these correlations are tenuous; at best they could

make very coarse relative distinctions. The SVM method ex-
hibits slightly lower variance than the other options. This is

not surprising as the SVM algorithm was originally designed

for the coverage estimation task.

6. DISCUSSION

The experiments of this work suggest some preliminary con-
clusions about the capabilities of current rock detectors. Tar-

get selection proved the easiest task, with Rockfinder demon-

strating accuracy rates of over 80%. Usage restrictions on
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Figure 13. Rock detection performance for nav imagery

(strict criterion).
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Figure 14. Coverage estimation performance for Pancam

imagery. Each point corresponds to a single image. The hor-

izontal axis represents the estimated fractional coverage of

rocks, while the vertical shows the true value — a perfect es-
timate would lie on the diagonal line.

range or time-of-day (to reduce cast shadows) might reduce
error even further. Note that rocks covered 0−40% of the ter-

rain in the tested datasets. This suggests that even the worst-

performing rock detectors could already yield significant im-

provement over blind target selection.

Finding all the rocks in an image is more difficult. Recall was

characterized by poor performance and size biases. Even with

the permissive correspondence criterion no detector averaged

more than 60% recall on any field dataset. In other words,

none of the detectors we evaluated can yet produce reliable
statistics about the visual features of rocks in a Mars image.

Research has suggested that an imperfect detector might still

be able to make meaningful distinctions between neighbor-
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ing locales [12]. Nevertheless, absolute quantitative site de-

scriptions appear beyond the capability of current detectors.

The coverage estimation task echoes this finding. Coverage
estimation is presumably an easy site-characterization task

with better ground-truth fidelity than subtle rock size or shape

analysis. Nevertheless, the high variance of detectors’ cover-

age estimates suggest that autonomous detection is still no

replacement for traditional manual analysis.

This discrepancy between the ease of target selection and the

difficulty of detection suggests that autonomous site charac-

terization might be improved by pairing visual analysis with

additional sensors. Rovers can complement a preliminary vi-
sual identification of rocks with follow-up spectroscopy or

thermal imagery that is both geologically informative and

easier to interpret autonomously [1].

A more sophisticated rock detector may still make reliable de-
tection a reality. A recent resurgence in general object recog-

nition research will certainly yield insight into the rock de-

tection problem. It may also be possible to combine several

detection algorithms for greater accuracy. Complementary

algorithms running in parallel might improve performance
ether by finding a wider range of rocks or validating each

other’s detections. In the meantime, autonomous geology

systems that focus on target selection for instrument deploy-

ment could play to the best strengths of rover autonomy.
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