
Performance Comparison of Secure Comparison Protocols

Florian Kerschbaum, Debmalya Biswas
SAP Research

Vincenz-Priessnitz-Strasse 1
Karlsruhe, Germany

Email: firstname.lastname@sap.com

Sebastiaan de Hoogh
Dept. of Mathematics and Computer Science

TU Eindhoven
Eindhoven, The Netherlands
Email: s.j.a.d.hoogh@tue.nl

Abstract

Secure Multiparty Computation (SMC) has gained
tremendous importance with the growth of the Internet
and E-commerce, where mutually untrusted parties need to
jointly compute a function of their private inputs. However,
SMC protocols usually have very high computational com-
plexities, rendering them practically unusable. In this pa-
per, we tackle the problem of comparing two input values
in a secure distributed fashion. We propose efficient secure
comparison protocols for both the homomorphic encryption
and secret sharing schemes. We also give experimental re-
sults to show their practical relevance.

1. Introduction

Secure Multiparty Computation (SMC) allows a number
of mutually distrustful parties to carry out a joint computa-
tion of a function of their inputs, while preserving the pri-
vacy of the inputs. SMC protocols have widespread appli-
cations [4, 5] in various real-life problems, such as match-
making, electronic voting, private bidding and auctions, etc.

A great deal of work (e.g., [1, 2, 3, 7]) has already been
done in this area. It has been shown that any function can
be securely computed using generic circuit based protocols
[2, 13]. However, the general protocols tend to be very inef-
ficient, hence our main objective is to design efficient pro-
tocols for specific functions.

In this work, we focus on the secure comparison func-
tion. Given a pair of input valuesx0 and x1, the ob-
jective is to compute the value of the boolean expression
[x0 ≤ x1] ∈ {0, 1}, while ensuring that none of the par-
ties gain knowledge of the actual input values. We further
require the outputs of our protocols to be private as well,
i.e. the output bit is either encrypted or shared among the
parties.

We propose efficient secure comparison protocols for
both the homomorphic encryption (Section 2.1) and secret

shares (Section 2.2) based SMC schemes. Both the schemes
have their pros and cons when it comes to securely comput-
ing basic arithmetic operations, such as addition and mul-
tiplication. Homomorphic encryption schemes allow arith-
metic operations to be performed locally on the plaintext
values, based on their encrypted values (ciphertext). The
fact that the operations are actually performed on the en-
crypted data leads to their performance being dependent on
the size of the key sizes used for encryption. In secret shar-
ing schemes on the other hand, while addition can be per-
formed locally by an addition of the local (plaintext) shares,
multiplication requires distributed collaboration amongthe
parties. Thus, it is difficult to theoretically compare the
performance of protocols based on the two schemes. To
overcome this, we have implemented both the protocols and
present experimental results in Section 2.3.

2. Secure Comparison Protocols

Let n be a modulus and we have a threshold cryptosys-
tem that has number fieldZn. In a modulo field, nega-
tive numbers are represented by the upper half of the range
[0, n − 1]:

[
⌈n

2

⌉
, n − 1] ≡ [−

⌊n

2

⌋
,−1]

To computex0 ≤ x1, we computed = x0 − x1 and
see whetherd is positive. The basic idea of our protocols
is to hide the differenced by multiplicative hiding. Multi-
plicative hiding consists of hiding a valued by multiplying
it with a much larger random numberr. In order to pre-
vent factoring of the result [6], we additionally subtract a
smaller random valuer′ < r, since otherwise the hidden
value would consist of the factors of the result. We thus
assume the existence of random valuesr andr′, such that
rd− r′ is statistically close to uniform on some set contain-
ing all possible values ofd.

We needn to be odd andn should satisfy the following
property:



log2(n) > k + l + 2

for l-bit input values andk bit random numbers.

2.1. Comparison Protocol based on Homo-
morphic Encryption

The first protocol is based on a threshold, homomorphic
encryption system. LetE() and D() denote encryption
and decryption, respectively, in the homomorphic encryp-
tion system. We require the homomorphic property to allow
(modular) addition of the plaintexts. It then holds that

D(E(x)E(y)) = x + y

From which by simple arithmetic it follows that

D(E(x)y) = xy

The homomorphic encryption system is public-key, i.e.
any party can perform the encryption operationE() (by it-
self). The ciphertexts are semantically secure, i.e. theirci-
phertext reveals nothing about the plaintext. More precisely,
the ciphertexts are indistinguishable under chosen plaintext
attack (IND-CPA). This implies an important property of re-
randomization where an input ciphertext is modified, such
that it cannot be linked to its original anymore without mod-
ifying the plaintext. In our encryption system, this is best
performed by “adding 0”:E(x)E(0) = Ê(x), but E(x)

andÊ(x) are indistinguishable.
In a threshold encryption system the decryption key is

replaced by a distributed protocol. Letm be the number
of parties. Only ift ≤ m or more parties collaborate they
can perform a decryption. No coalition of less thant parties
can decrypt a ciphertext. We require a collaboration of all
parties, i.e. t = m (since we operate in the semi-honest
model and do not consider faults). Then a ciphertext can
only be decrypted if all the parties collaborate.

An encryption system satisfying all our requirements has
been described in [7], a variation of [8].

2.1.1 Protocol

Let x0 andx1 be the numbers to compare. The inputs to the
protocol are then ciphertexts ofx0 andx1 (values encrypted
underE()), i.e. all them parties receiveE(x0) andE(x1)
as input. The output of the protocol is an encrypted bit in-
dicating the result of the comparisonx0 ≤ x1. The output
is thus secret.

Given this, the protocol proceeds as follows:

1. PartyX1 computes the following valuec. He ran-
domly chooses very large random numbersr1 and

r′1 as discussed earlier (that can multiplicatively hide
x0 − x1). He then computes

E(c) = (E(x0)E(−x1))
rE(−r′)

= E(r(x0 − x1) − r′)

Note thatX1 can compute the negation of the plain-
text of E(x1) by computing the multiplicative inverse
of the ciphertext, i.e. he can compute it without know-
ing the modulus of the homomorphic operation, which
would reveal the secret key in our encryption system
[7].

2. PartyX1 sends(a1
1, a

1
2, a

1
3) = (E(1), E(0), E(c)) to

X2.

3. Each partyXi (k = 2, . . . ,m) re-randomizes the ci-
phertexts, i.e. selects two very large random numbers
r′i < ri, flips a coinbi ∈ {0, 1}, and sends(ai

1, a
i
2, a

i
3)

to Xi+1(Xm sends toX1), where

ai
1 = ai−1

1+bi
E(0)

ai
2 = ai−1

2−bi
E(0)

ai
3 = (ai−1

3 )(−1)biriE((−1)(1−bi)r′i)

4. All partiesXi (i = 1, . . . ,m) collaboratively engage
in the decryption protocol and decryptam

3 . If am
3 is

negative, then the first ciphertextam
1 is the ciphertext

of the boolean expressionE([x0 ≤ x1]), else the sec-
ond ciphertextam

2 is the value ofE([x0 ≤ x1]). A ci-
phertext of the smaller value can be computed by one
multiplication protocol:E(x1 + [x0 ≤ x1](x0 − x1)).

The protocol is correct since ifa3 < 0, then the boolean
expression[xb ≤ x1−b] = 1 ⇔ [x0 ≤ x1] = 1 − b,
which is encrypted bya1. If a3 > 0, then[xb ≤ x1−b] =
0 ⇔ [x0 ≤ x1] = b, which is encrypted bya2. Due to
re-randomization, no one can infer which side of the coin
showed up at any partyXi (i = 2, . . . ,m). Rerandomiza-
tion does not change the sign ofa3, unless the ciphertexts
are switched as well.

2.2. Comparison Protocol based on Secret
Shares

Secret sharing refers to a method for distributing a se-
cret amongst a group of parties, each of which is allocated
a share of the secret. The secret can be reconstructed only
when the shares are combined together (individual shares
are of no use on their own). In Shamir’s secret sharing
scheme [9], the sharing of a secretx is achieved as fol-
lows: Each partyXi holds a valuexi = fx(i) wheref
is a randomt−degree polynomial subject to the condition



thatfx(0) = x. It is very simple to see that a coalition oft
players has no information about the valuex. In our setting
(semi-honest model and no faults), we requiret ≥ m/2.

It is easy to extend Shamir secret sharing to let the parties
compute any linear combination of secrets without gaining
information on intermediate results of the computation. To
add (subtract) two shared secrets together, the players need
only add (subtract) together individual shares at each eval-
uation point. Computing the product of two secrets is not
so trivial, but it is still possible to reduce it to a linear com-
putation [10, 11, 13]. Thus, it is possible to compute any
“arithmetic” function (i.e., function involving only addition,
subtraction, and multiplication) of secrets securely and ro-
bustly.

2.2.1 Protocol

Let x0 andx1 be the numbers to compare. Each partyXi

then holds two sharesx0i
= fx0

(i) andx1i
= fx1

(i) for
secretsx0, x1, respectively. The output of the protocol is
the bit [x0 ≤ x1] ∈ {0, 1}, shared among them parties.
Thus, the output is secret.

Given this, the protocol proceeds as follows:

1. Each partyXi (i = 1, . . . ,m) randomly chooses very
large random numbersri andr′i (that can multiplica-
tively hidex0−x1). He then chooses a random bitbi ∈
{0, 1}, computessi = (−1)biri ands′i = (−1)1−bir′i,
and generates the Shamir secret shares ofsi and s′i
with thresholdt.

2. Each partyXi (i = 1, . . . ,m) sends the generated pair
of shares(sij

, s′ij
) to the respective partiesXj . At the

end of this step, each partyXj (j = 1, . . . ,m) has the
set:

Sj = {s1j
, · · · , smj

}

corresponding to the shares of the random valuess
chosen by all them parties. With respect to shares
of the random values′, each partyXj (j = 1, . . . ,m)
locally computes

p′j =

m∑

i=1

s′ij

3. For simplicity, we assume thatm is even (the ex-
tension for an oddm is trivial). All the partiesXi

(i = 1, . . . ,m) engage in collaborative pairwise multi-
plications to compute the product values:

(s1 × s2), (s3 × s4), · · · , (sm−1 × sm)

leading tom/2 product values shared amongm play-
ers. A collaborative multiplication [10, 11, 13] of

s1 × s2 takes the shares ofs1 and s2 as input, and
results in each partyXi receiving its respective share
of the computed product:(s1 × s2)i.

4. Repeat the above step to pairwise multiply them/2
values to obtainm/4 product values, then pairwise
multiply them/4 values to obtainm/8 product values,
and so on. At the end of this step, we have computed
the productp = s1 × s2 × · · · × sm shared among the
m players.

5. All partiesXi (i = 1, . . . ,m) locally subtractdi =
ai − bi, and collaboratively compute the productc =
p × d.

6. All partiesXi (i = 1, . . . ,m) locally subtract the sum
p′i of theirs′ values fromci, i.e. ci = ci − p′i.

7. All parties collaboratively reconstructc. Let e = 0 if
c is positive, elsee = 1. The value of the boolean
expression[x0 ≤ x1] is then[x0 ≤ x1] = e ⊕ b1 ⊕
· · · ⊕ bm, where⊕ refers to the XOR logical operation
[14].

The correctness of the protocol can be argued as follows:
Let [x0 ≤ x1] = 0, i.e. x0 > x1. Given this, ife = 0
(i.e., c is positive), then it implies that the number of coins
flipped bi = 1 is even. As a result, their XOR value is0,
which further XORed withe = 0 and coins flippedbj = 0
is still 0 = [x0 ≤ x1]. The correctness arguments for the
remaining scenarios follow analogously.

2.3. Analysis

We compare the two protocols based on the following
complexity criterions:

• Computation complexity: is measured with respect to
the number of basic operations that need to be executed
for a run of the protocol.

• Round complexity: This complexity parameter quan-
tifies the need for synchronization among the parties.
It refers to the number of times during the protocol, a
party on reaching a certain stage, needs to wait for the
other parties to reach that stage before proceeding.

Let m be the number of parties. The protocol based on
homomorphic encryption (Section 2.1.1) executes in a ring
based fashion with only one party active at a time while
computingc. Thus, the protocol needsm rounds for all the
parties to computec, plus one round to decryptc, giving
the round complexityO(m). The secret shares based proto-
col (Section 2.2.1) on the other hand has round complexity



O(log2 m). The log rounds complexity arises from the col-
laborative multiplications needed to compute the product of
the randomly chosen valuess.

While the second protocol appears favorable from a
round complexity perspective, it is difficult to compare the
computational complexities of the two protocols. The main
problem is with respect to identifying common basic opera-
tions used in both the protocols. While the basic operations
used by both the protocols are same: addition, subtraction,
multiplication, encryption and decryption (sharing and re-
construction in the secret shares setting), their complexities
are incomparable. For instance, while multiplication can
be performed locally in a homomorphic setting, it needs to
be performed in a collaborative fashion in the secret shares
setting. Similarly, while addition and subtraction can be
performed locally in both the settings, their underlying log-
ics are still very different. The same applies for encryption
and decryption operations as well. To accommodate this in-
herent difference, we give some experimental results in the
sequel.

2.3.1 Experimental Analysis

The implementation was done in Java and evaluated on a
computer with a2 GHz Intel Core2 Duo processor and2
GB of RAM running Windows Vista using version1.6 of
Sun’s Java SDK. The communication infrastructure is based
on Java RMI [16].

We used a1024-bit RSA modulus for the homomorphic
encryption. The choice of a minimum key-length of1024-
bits seems to be acceptable1.

For the secret shares fieldZq, we usedq of bit length
256.

The run time comparison of the two protocols is summa-
rized by the graph in Fig. 1. It is easy to see that the secret
shares based protocol outperforms the homomorphic one,
and would continue to do so even as the number of parties
increases.

3. Conclusion

Secure comparison protocols are a basic building block
of SMC, which implies that an efficient secure comparison
protocol would improve the efficiency of any SMC proto-
col using it. In this work, we proposed two efficient proto-
cols for secure comparison, one for the homomorphic en-
cryption setting, and the other for the secret shares setting.
We also provided experimental results to substantiate our
claims about their efficiency. Based on our experiments,

1In 2009, a machine costing about250 million dollars can factor a
1024-bit RSA key in a day [15], so a10 million dollars machine would
take just under a month.

0

20000

40000

60000

80000

100000

120000

140000

5 10 15 20 25 30 35 40 45 50 55 60

Number of Parties

R
u

n
 T

im
e 

(m
s)

Homomorphic
Protocol

Shares
Protocol

Figure 1. Run time comparison of the two
protocols vs. the number of parties

the secret shares based protocol seems to be faster than the
other one.

In our experiments, we did not study the impact of net-
work/communication issues on the protocols. Observe that
the curve corresponding to the secret shares based proto-
col increases linearly (and not in a logarithmic fashion)
in Fig. 1. This is probably because the tests were per-
formed on a single machine with the different parties sim-
ulated locally. In future, we would like to perform the
tests in a real distributed setting, to study the impact of net-
work/communication issues on the protocols.

Acknowledgement

We would like to thank Octavian Catrina for providing
the JSMC framework used in the implementations.

References

[1] A. Yao, Protocols for Secure Computation, in pro-
ceedings of the 23rd Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 160164, 1982.

[2] O. Goldreich, S. Micali, and A. Wigderson,How to
Play Any Mental Game, in proceedings of the 19th
Annual Symposium on Theory of Computing (STOC),
pp. 218229, 1987.

[3] T. Nishide and K. Ohta,Multiparty Computation
for Interval, Equality, and Comparison Without Bit-
Decomposition Protocol, in proceedings of the 10th
International Conference on Practice and Theory in
Public-Key Cryptography (PKC), pp. 343-360, 2007.

[4] W. Du and M. J. Atallah,Secure Multi-party Compu-
tation Problems and their Applications: A Review and
Open Problems, in proceedings of the New Security
Paradigms Workshop (NSPW), pp. 12-21, 2001.



[5] P. Bogetoft, D. L. Christensen, I. Dmgard, M. Geisler,
T. Jakobsen, M. Krigaard, J. D. Nielsen, J. B.
Nielsen, K. Nielsen, J. Pagter, M. Schwartzbach, and
T. Toft, Multi-party Computation Goes Live, Cryptol-
ogy ePrint Archive, Report 2008/068, 2008.

[6] E. Kiltz, G. Leander, and J. Malone-Lee,Secure Com-
putation of the Mean and Related Statistics, in pro-
ceedings of the 2nd Theory of Cryptography Confer-
ence (TCC), Spring LNCS vol. 3378, pp. 283-302,
2005.

[7] I. Damgard and M. Jurik,A Generalization, a Simplifi-
cation and Some Applications of Paillier’s Probabilis-
tic Public-Key System, in proceedings of the 4th Inter-
national Workshop of Practice and Theory in Public
Key Cryptography (PKC), Springer LNCS vol. 1992,
pp. 119-136, 2001.

[8] P. Paillier,Public-Key Cryptosystems Based on Com-
posite Degree Residuosity Classes, in proceedings of
the International Conference on the Theory and Appli-
cation of Cryptographic Techniques (EUROCRYPT),
Spring LNCS 1592, pp. 223-238, 1999.

[9] A. Shamir, How to Share a Secret, Communications
of the ACM, 22(11): 612-613, 1979.

[10] R. Gennaro, M O. Rabin, and T. Rabin,Simplified VSS
and Fact-Track Multiparty Computations with Appli-
cations to Threshold Cryptography, in proceedings
of the 17th ACM Symposium on Principles of Dis-
tributed Computing (PODC), pp. 101-111, 1998.

[11] V. Nikov, S. Nikova, and B. Preneel,On Multiplicative
Linear Secret Sharing Schemes, in proceedings of the
4th International Conference on Cryptology in India
(INDOCRYPT), pp. 135-147, 2003.

[12] F. Bahr, M. Boehm, J. Franke, and T. Klein-
jung, RSA200, Available at http://www.crypto-
world.com/announcements/rsa200.txt, 2005.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson,Com-
pleteness Theorems for Non-cryptographic Fault-
tolerant Distributed Computations, in: proceedings of
the 20th Annual Symposium on the Theory of Com-
puting (STOC), ACM Press, pp. 110, 1988.

[14] Exclusive Disjunction, Available at
http://en.wikipedia.org/wiki/Exclusivedisjunction.

[15] A. K. Lenstra and E. R. Verheul,Selecting Cryp-
tographic Key Sizes, Journal of Cryptology, 14(4):
255293, 2001.

[16] Java Remote Method Invocation Home, Available at
http://java.sun.com/javase/technologies/core/basic/rmi/.


