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Abstract—Performance of speaker recognition system is highly
dependent on the amount of speech data used in training and
testing. In this paper, we compare the performance of two
different speaker recognition systems in presence of utterance
duration variability. The first system is based on state-of-the-art
total variability (also known as i-vector system), whereas the other
one is classical speaker recognition system based on Gaussian
mixture model with universal background model (GMM-UBM).
We have conducted extensive experiments for different cases of
length mismatch on two NIST corpora: NIST SRE 2008 and NIST
SRE 2010. Our study reveals that the relative improvement of
total variability based system gradually drops with the reduction
in test utterance length. We also observe that if the speakers
are enrolled with sufficient amount of training data, GMM-UBM
system outperforms i-vector system for very short test utterances.

Keywords—Duration Variability, Gaussian Mixture Model-
Universal Background Model (GMM-UBM), Gaussian PLDA
(GPLDA), i-vector, NIST SRE, Short Utterance, Speaker Recog-
nition.

I. INTRODUCTION

Speech signal conveys information regarding the physio-
logical aspects of a speaker because it is affected by the unique
shape and size of vocal tract, mouth, nasal cavity, etc [1], [2].
It also carries information related to the behavioral aspects of
a speaker like accent and involuntary transforms of acoustic
parameters. Therefore, voice samples can be used as a biomet-
ric in real-life application. Speaker recognition is the process
of automatically recognizing the speakers from their voice
samples. Its potential applications include telephone banking
system, system access control, providing forensic evidence,
call centers and many more [1], [2]. Speaker recognition task
can be sub-divided into two major tasks: speaker identification
(SI) [3] and speaker verification (SV). Speaker identification is
to find the identity of the speaker from a speech utterance. On
the other hand, speaker verification refers to the authentication
of a claimed identity of a person from his/her speech data.
SV system can be broadly categorized as text-dependent (TD)
[4] and text-independent (TI) modes depending on the speech
content in training and test phase [1], [2]. The TD-SV requires
the same set of text to be spoken during training as well as
testing. In the case of TI-SV, it does not have any restriction
over train and test data.

A TI speaker recognition system includes three fundamen-
tal modules [1], [2]: a feature extraction unit, which represents
the speech signal in a compact manner, a modeling block to
characterize those features using statistical approaches, and

lastly, a classification scheme to classify the unknown utter-
ance. Mel frequency cepstral coefficients (MFCCs), perceptual
linear prediction (PLP), etc. are commonly used as speech fea-
tures for speaker recognition [5], [6]. For classification, various
modeling techniques such as vector quantization (VQ) [7],
dynamic time warping (DTW) [8], Gaussian mixture model
(GMM) [9] were used. During the last two decades in speaker
recognition research, most of the notable developments in
classifier-level are based on the GMM concept [10], [11], [12].
It also found applications in various field like speech language
recognition [13], voice conversion [14], detection of spoofing
attacks [15] in SR systems etc. Subsequently, joint factor anal-
ysis (JFA) based approach is introduced which successfully
integrates session variability compensation techniques [16],
[17]. Here, the concatenated means of adapted GMM (known
as GMM supervector) are decomposed into speaker and ses-
sion dependent component using factor analysis technique.
Speaker factors are compared for training and test segments
after subtracting the session related factors. Inspired by the
earlier use of JFA, Dehak et al. proposed total-variability based
approach for reducing the dimensionality of GMM-supervector
[18]. Here, unlike JFA, a single space called total variability
space is used to represent the GMM supervector corresponding
to a speech utterance. This low-dimensional representation
of high-dimensional supervector is known as identity vectors
or i-vectors. The state-of-the-art speaker recognition system
uses i-vector based system with Gaussian probabilistic linear
discriminant analysis (GPLDA) based scoring where the i-
vectors are further decomposed into speaker and channel
subspace to efficiently handle intersession variability [19],
[20]. Though i-vector based speaker recognition systems are
shown to give best recognition accuracy in latest NIST SREs
[18], [19], [21], they require huge computational resources as
well as massive amount of development data for estimating its
parameters and hyper-parameters. For this reason, GMM-UBM
systems are still popular and widely used, particularly when
suitable amount development data is inadequate [10], [5], [14].

The performance of a speaker recognition system is
severely degraded with the reduction in amount of speech data
during train and test phase [21], [22], [23], [24], [25]. State-of-
the-art i-vector system gives considerable recognition accuracy
when more than two minutes of speech data are available
in both phases [19], [21]. But practically, real-time systems
may not facilitate the luxury on amount of speech data. When
designing a practical speech-based authentication system, the
requirement in training segment duration can be fulfilled by
enrolling the speaker with adequate amount of speech data.
However, this is impractical to maintain during the verification978–1–4673–6540–6/15/$31.00 c⃝ 2015 IEEE
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Figure 1: Block Diagram showing how the scores of GMM-UBM and i-vector system are calculated from enrollment and
verification utterance.

phase. The test speech duration should be as low as possible
so that decision regarding acceptance or rejection can be made
in real-time. Another issue associated with this state-of-the-
art i-vector system is that it requires various computationally
expensive processes for getting the recognition results [26].
On the other hand, the GMM-UBM system gives the decision
in relatively short time by just computing the likelihood
ratio directly using the cepstral feature. GMM-UBM systems
perform well for short test segments [27], [28]. To the best of
our knowledge, a systematic comparison of these two systems
including the effect of duration variability is not available in
present literatures even though it has practical significance. In
this work, we explore the impact of duration variability on both
GMM-UBM and TV systems using the same benchmark data
and performance evaluation metrics. Exhaustive experiments
are carried out by varying both the length of training and
test utterance. Our experimental results reveal that though
TV system is performing better than GMM-UBM in many
conditions, but the classical approach is still better than the
state-of-the-art technique for condition very similar to practical
requirements i.e. when speakers are enrolled with sufficient
amount of speech data and tested with short segments.

The rest of the paper is organized as follows. Section II
briefly describes GMM-UBM based system. In section III, we
have discussed about i-vector GPLDA system. In section IV,
the set-up arranged to conduct the experiments is described.
Experimental results are presented in section V. Finally, the
paper is concluded in VI.

II. GMM-UBM BASED SV SYSTEM

The task of a typical SV system is to discriminate between
target and imposter speakers based on two hypothesis, i.e,
whether the verification utterance belongs to the target speaker
or not. The block diagram of a typical SV system is shown
in Fig 1 which shows both TV and GMM-UBM framework.
In GMM-UBM, prior to enrollment phase, a single speaker
independent universal background model (UBM) is created
by using a large development data [10], [14]. The UBM
represented as 𝝀𝑈𝐵𝑀 = {𝑤𝑖,𝝁𝑖,Σ𝑖}𝐶𝑖=1 where 𝐶 is the total
number of Gaussian mixture components, 𝑤𝑖 is the weight or

prior of 𝑖th mixture component, 𝝁𝑖 is the mean and co-variance
matrix is given by Σ𝑖. Parameter 𝑤𝑖 satisfies the constrain∑𝐶
𝑖=1 𝑤𝑖 = 1.

A group of 𝑆 speakers is represented by their correspond-
ing model as {𝝀1,𝝀2, . . . ,𝝀𝑆}. In the GMM-UBM system, we
derive the target speaker model by adapting the GMM-UBM
parameters. The model parameters are adapted by maximum
a posteriori (MAP) method. Initially, sufficient statistics 𝑁𝑖
and E𝑖 from a hypothesised speaker’s utterance with 𝑇 frames
X = {x1,x2, . . . ,x𝑇 }, are calculated as,

𝑁𝑖 =
∑𝑇
𝑡=1 𝑃𝑟(𝑖∣x𝑡) and E𝑖(X) = 1

𝑁𝑖

∑𝑇
𝑡=1 𝑃𝑟(𝑖∣x𝑡)x𝑡

where probability distribution of component density con-
ditioned on speech data 𝑃𝑟(𝑖∣x𝑡) is given by

𝑃𝑟(𝑖∣x𝑡) = 𝑤𝑖𝑝𝑖(x𝑡)
∑𝐶
𝑗=1 𝑤𝑗𝑝𝑗(x𝑡)

(1)

Each component density is a 𝑑-variate Gaussian function of
the form

𝑝𝑖(x) =
1

(2𝜋)𝑑/2∣Σ∣ 12 𝑒𝑥𝑝{−
1

2
(x− 𝝁𝑖)

⊤Σ−1
𝑖 (x− 𝝁𝑖)} (2)

Finally, the sufficient statistics from training data are used to
adapt GMM-UBM parameters to obtain adapted parameters
𝑤𝑖, 𝝁𝑖 for target speakers.

In the testing phase, average log-likelihood ratio Λ(X) is
determined using test feature vector X = {x1,x2, . . . ,x𝑇 }
against both target model and the background model.

Λ𝑈𝐵𝑀 (X𝑡𝑒𝑠𝑡) = 𝑙𝑜𝑔 𝑝(X𝑡𝑒𝑠𝑡∣𝝀𝑡𝑎𝑟𝑔𝑒𝑡)− 𝑙𝑜𝑔 𝑝(X𝑡𝑒𝑠𝑡∣𝝀𝑈𝐵𝑀 )
(3)

where 𝑙𝑜𝑔 𝑝(X𝑡𝑒𝑠𝑡∣𝝀) = 1
𝑇

∑𝑇
𝑡=1 𝑙𝑜𝑔 𝑝(x𝑡𝑒𝑠𝑡𝑡 ∣𝝀) Finally, in

decision logic block, an algorithm is applied to decide whether
the claimant speaker will be accepted or rejected by the SV
system. Popularly a decision threshold 𝜃 is used for decision,
like if Λ𝑈𝐵𝑀 (X) ≥ 𝜃 then the claim will be accepted, else
rejected.



III. I-VECTOR BASED SV SYSTEM

i-vector is considered as the state-of-the-art in SV research.
The basic block diagram of i-vector based SV system sys-
tem is shown in Fig. 1. The i-vector represents the GMM
supervector by a single variability space which reduces high
dimensional GMM supervector into lower dimensional total
variability space [18]. In TV space, GMM supervector, i.e, the
concatenated means of GMM mixture components, is rewritten
as

M = m+Φy (4)

where Φ is a low-rank total variability matrix and y is repre-
sented as i-vector, m is the speaker and channel independent
supervector (taken to be UBM supervector) and 𝑴 is the
speaker-and channel-dependent GMM supervector.

A UBM model consisting of 𝐶 Gaussian components can
be represented by the parameter set 𝝂 = {𝝂1,𝝂2, . . . ,𝝂𝐶},
where 𝑖th mixture component is characterised by 𝝂𝑖 =
{𝑤𝑖,𝝁𝑖,Σ𝑖}. Then, for single utterance X with feature se-
quence {x1,x2, . . . ,x𝑇 }, the zeroth and first order centered
sufficient statistics 𝑁𝑖 and F𝑖 respectively are calculated as fol-
lows 𝑁𝑖 =

∑𝑇
𝑡=1 𝑃𝑟(𝑖∣x𝑡) F𝑖 =

1
𝑁𝑖

∑𝑇
𝑡=1 𝑃𝑟(𝑖∣x𝑡,𝝀𝑖)(x𝑡 −

𝝁𝑖). These 𝑁𝑖 and F𝑖 are used to obtain the i-vectors y.

The prior distribution of i-vectors 𝑝(y), is assumed to be
𝒩 (0, 𝐼) and posterior distribution of F, conditioned on the i-
vector y is hypothesised to be 𝑝(F∣y) = 𝒩 (Φy,N−1Σ). The
MAP estimate of y conditioned on F is given by

𝐸(y∣F) = (I+Φ⊤Σ−1NΦ)−1Φ
⊤
Σ−1NF (5)

the mean of the posterior distribution of y conditioned on F
is adopted as the i-vector of an utterance.

A. Gaussian Probabilistic Linear Discriminate Analysis
(GPLDA)

A recent attempt to model speaker and channel variability
in i-vector space is accomplished through Probabilistic LDA
(PLDA) modelling approach. In this paper, we concentrate on
a simplified variant of PLDA, named as Gaussian PLDA [19].
Here, the inter-speaker variability is modelled by a full co-
variance residual term. The generative model for 𝑠th speaker
and 𝑗th recording of new i-vector variability projected space is
given by

y𝑠,𝑗 = 𝜼 +Ψz𝑠 + 𝝐𝑠,𝑗 (6)

where, 𝜼 is the mean of the development i-vectors, Ψ is eigen-
voice subspace and z is a vectors of latent factors, which
is assumed to have prior distribution 𝒩 (0, I). The residual
term 𝝐 represents the variability not captured by the latent
variables. This regenerative model approach of i-vector space
representation has been applied successfully with significant
improvement in speaker recognition research [19].

B. Likelihood Computation

GPLDA based i-vector system score calculation uses batch
likelihood ratio [19]. For a projected enrollment and verifica-
tion i-vector z𝑡𝑎𝑟𝑔𝑒𝑡 and z𝑡𝑒𝑠𝑡 respectively, the batch likelihood
ratio Λ𝐺𝑃𝐿𝐷𝐴(z𝑡𝑎𝑟𝑔𝑒𝑡, z𝑡𝑒𝑠𝑡) can be calculated as follows

Table I: Database set-up description of NIST 2008 and NIST
2010.

Database Verification Task No of speaker model No of test trials

NIST 2008 short2-10sec 1270 3958
NIST 2008 short2-short3 1270 6615
NIST 2010 core-10sec 1203 11990
NIST 2010 core-core 1203 14060

Λ𝐺𝑃𝐿𝐷𝐴(z𝑡𝑎𝑟𝑔𝑒𝑡, z𝑡𝑒𝑠𝑡) = 𝑙𝑜𝑔
𝑝(z𝑡𝑎𝑟𝑔𝑒𝑡, z𝑡𝑒𝑠𝑡∣𝐻1)

𝑝(z𝑡𝑎𝑟𝑔𝑒𝑡∣𝐻0) 𝑝(z𝑡𝑒𝑠𝑡∣𝐻0)
(7)

where 𝐻1: The i-vectors belong to the same speaker.
𝐻0: The i-vectors belong to different speaker.

IV. EXPERIMENTAL SET-UP

Both GMM-UBM and i-vector based systems use mel
frequency cepstral coefficient (MFCC) with 20 ms frame size
and 10 ms frame shift as in [5]. Hamming window is applied
in MFCC extraction process [29]. The non-speech frames are
dropped using energy based voice activity detector (VAD)
[30] and at the end cepstral mean and variance normalisa-
tion (CMVN) is applied on coefficients [5]. 19 dimensional
MFCC with appended delta and double delta coefficients (57
dimensional) are used throughout the experiments. Gender
dependent UBM of 512 mixture components are trained with
10 iterations of EM algorithm. We have used NIST 2004 and
NIST 2005 corpora as development data to generate UBM,
GPLDA and LDA model parameters. Total variability subspace
of dimension 400 is implemented for i-vector. LDA on i-vector
space is used to reduce the dimension to 200, and speaker
variability subspace i.e, eigen-voice space is applied to further
reduce the i-vector dimension to 150.

A. Experiments and Corpora

The performance of two popular speaker modelling meth-
ods were evaluated on NIST SRE 2008 [31] and NIST SRE
2010 [32] corpora. We have used NIST 2008 short2-short-3,
short2-10 sec and NIST 2010 core-core, core-10 sec speaker
recognition task for evaluation. Later, we have used utterances
which are utterance truncated versions of NIST 2008 Short2-
Short3 task for experiments in varying utterance duration
condition. Truncation of speech utterances is done in 2 sec
(200 active frames), 5 sec (500 active frames), 10 sec (1000
active frames), 20 sec (2000 active frames) and 40 sec (4000
active frames) duration. For truncation of utterances, the prior
500 active speech frames are discarded to avoid phoneme
dependency which refers to, capturing phonetically similar
data. Only male speakers of english trials from NIST 2008 and
telephone-telephone trials of from NIST SRE 2010 are used
in the following experiments. The experiments are preformed
on the male data subset of the corpora, taken from both NIST
databases. The database description is summarised in Table I.

B. Performance metrics

For both NIST 2008 and NIST 2010, the performance was
evaluated using equal error rate (EER) and detection cost



Table II: Results for comparison of i-vector-GPLDA(TV) based system vs GMM-UBM based system on 2008 NIST SRE
short2-short3, short2-10sec conditions.

Verification Task Training duration Testing duration EER [%] (TV) EER [%] (UBM) 𝑅𝐼𝐸𝐸𝑅
𝑇𝑉 [%] DCF × 100 (TV) DCF × 100 (UBM) 𝑅𝐼𝐷𝐶𝐹

𝑇𝑉 [%]

short2-short3 Full Full 3.48 12.30 72 2.16 5.28 59.04
short2-10 sec Full 10 sec 11.49 18.46 38 4.62 6.30 26.67
short2-10 sec 10 sec 10 sec 16.81 20.76 19 6.45 8.05 19.88

Table III: Results for comparison of i-vector-GPLDA(TV) based system vs GMM-UBM based system on 2010 NIST SRE
core-core, core-10sec conditions.

Verification Task Training duration Testing duration EER [%] (TV) EER [%] (UBM) 𝑅𝐼𝐸𝐸𝑅
𝑇𝑉 [%] DCF × 100 (TV) DCF × 100 (UBM) 𝑅𝐼𝐷𝐶𝐹

𝑇𝑉 [%]

core-core Full Full 4.53 14.16 68 2.33 4.88 52.25
core-10 sec Full 10 sec 11.41 18.64 39 5.60 6.84 18.13
core-10 sec 10 sec 10 sec 19.54 23.82 18 7.85 8.39 6.44

function (DCF). EER is the point on detection error trade-
off (DET) plot, where probability of false acceptance and
probability of false rejection are equal. The DCF is computed
by creating a cost function assigning some unequal weight
on false alarm and false rejection followed by computation of
threshold where cost function is minimum. The cost function
is computed as

𝐶𝐷𝑒𝑡 = 𝐶𝑀𝑖𝑠𝑠 × 𝑃𝑀𝑖𝑠𝑠∣𝑇𝑎𝑟𝑔𝑒𝑡 × 𝑃𝑇𝑎𝑟𝑔𝑒𝑡 + 𝐶𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚

×𝑃𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚∣𝑁𝑜𝑛𝑇𝑎𝑟𝑔𝑒𝑡 × (1− 𝑃𝑇𝑎𝑟𝑔𝑒𝑡),
(8)

DCF is calculated using the parameter value 𝐶𝑀𝑖𝑠𝑠 = 10,
𝐶𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚 = 1 and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 = 0.01 for both databases NIST
2008 and NIST 2010 [31], [32]. A measurement of relative
improvement of EER and DCF rate of i-vector system over
GMM-UBM is calculated as

𝑅𝐼𝐸𝐸𝑅𝑇𝑉 =
(𝐸𝐸𝑅𝑇𝑉 − 𝐸𝐸𝑅𝑈𝐵𝑀 )

𝐸𝐸𝑅𝑈𝐵𝑀
× 100% (9)

𝑅𝐼𝐷𝐶𝐹𝑇𝑉 =
(𝐷𝐶𝐹𝑇𝑉 −𝐷𝐶𝐹𝑈𝐵𝑀 )

𝐷𝐶𝐹𝑈𝐵𝑀
× 100% (10)

V. RESULTS AND DISCUSSION

We have chosen NIST 2008 [31] and NIST 2010 [32]
database to conduct the experiments as they have wide in-
tersession and channel variability. In addition to that, they
also provide a large number of speaker trials as described
in Table I. We have used two different databases to show
the consistency of the indications emerging from the results
over databases. Table II and Table III show the results on
NIST SRE 2008 and NIST SRE 2010 respectively, depicting
the behavior and comparison of two systems for the different
utterance duration. For the third case in Table II and Table III,
training utterance is truncated to 1000 frames. The first 500
voiced frames are dropped to avoid phonetic similarity and
also to ensure text independence of speech segments. This
procedure is maintained for truncation in other experiments
as well, of which the results are given in Table IV and
V. The general trend shown by Table II and Table III is,
as the utterance length decreases, significant degradation of
performance occurs in both i-vector and GMM-UBM system.

The Fig. 2(a) and Fig. 4(a) show that the performance of
both system degrades for reduction in duration of utterance.
We also observe that the realtive improvement of TV system
over GMM-UBM system degrades for shorter test segments.
As these trends of results are found in 4 different SV system
evaluation plan, it establishes consistency of trends of results
over databases.

The results of the experiments reported in Table IV and
Table V exhibits a deeper comparative study. In Table IV and
V, it depicts that the relative improvement 𝑅𝐼𝐸𝐸𝑅𝑇𝑉 and 𝑅𝐼𝐷𝐶𝐹𝑇𝑉
decreases monotonically with the reduction in utterance dura-
tion. If we go on increase the no of active frames in utterance
irrespective of training and testing, the relative performance
improvement of i-vector based system exhibited higher rate
of over GMM-UBM system. In Fig. 2(a) and Fig. 4(a), the
red lines representing i-vector performance, showed steeper
curves with respect to the blue lines representing GMM-UBM
system. This indicates the fact that the relative improvement
of i-vector system over GMM-UBM system increases with
utterance length. Figure 2(b), Fig. 4(b), Table IV and Table
V supports this observation for both Full-duration training
- truncated duration testing and truncated duration training
- truncated duration testing condition. In Fig. 3 and Fig. 5
detection error tradeoff (DET) plots of i-vector and UBM
based system are shown, which shows a deeper comparative
performance study on decision threshold. DET curves are
given for both Full-duration training - truncated duration
testing and truncated duration training - truncated duration
testing in Fig. 3 and Fig. 5 respectively.

The overall result shows some relevant observations. The
results from all the tables shows that i-vector based system
worked significantly better than GMM-UBM for longer ut-
terances. The results from Table II show upto 72% relative
improvement of i-vector based system over GMM-UBM based
system. For real-time application, SV system with very short
duration with minimum complexity is desired. Both the sys-
tems’ performance fall on durations as small as 2 sec, 5 sec etc.
From Table IV and Table V, we observe that in case of very
short duration utterances specially in Full duration training-2
sec testing and 2 sec training-2 sec testing, GMM-UBM based
system showed better performance over i-vector based system.



Table IV: NIST 2008 short 2 short 3 Results on truncated Training and Testing.

Training duration Testing duration EER [%] (TV) EER [%] (UBM) 𝑅𝐼𝐸𝐸𝑅
𝑇𝑉 [%] DCF × 100 (TV) DCF × 100 (UBM) 𝑅𝐼𝐷𝐶𝐹

𝑇𝑉 [%]

2 sec 2 sec 35.37 37.04 4.51 9.81 9.59 -2.24
5 sec 5 sec 23.23 26.19 11.3 8.65 8.57 -0.93
10 sec 10 sec 13.47 16.62 18.95 6.35 7.00 9.29
20 sec 20 sec 7.51 13.43 44.04 4.11 6.21 33.82
40 sec 40 sec 4.92 12.04 59.14 2.85 5.69 49.91
Full Full 3.48 12.30 71.71 2.16 5.28 59.09

Table V: NIST 2008 short-2 short 3 Results on Full length Training and truncated Testing.

Training duration Testing duration EER [%] (TV) EER [%] (UBM) 𝑅𝐼𝐸𝐸𝑅
𝑇𝑉 [%] DCF × 100 (TV) DCF × 100 (UBM) 𝑅𝐼𝐷𝐶𝐹

𝑇𝑉 [%]

Full 2 sec 22.09 20.50 -7.76 7.79 7.57 -2.91
Full 5 sec 11.61 15.44 24.81 5.43 6.22 12.70
Full 10 sec 8.33 14.35 41.95 4.14 5.81 28.74
Full 20 sec 6.21 13.43 53.76 3.22 5.55 41.90
Full 40 sec 4.55 12.92 64.78 2.73 5.52 50.54
Full Full 3.48 12.30 71.71 2.16 5.28 59.09
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Figure 2: (a) Plot of EER of i-vector system and UBM system.
(b) Relative improvement of EER for full length training-
truncated testing condition in NIST 2008, short2 short3 cor-
pora.
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Figure 3: DET plot of i-vector (TV) system and GMM-UBM
system for Full utterance duration training-truncated testing
condition in NIST 2008, short2 short3 corpora.
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Figure 4: (a) Plot of EER of i-vector system and UBM sys-
tem. (b) Relative improvement of EER for truncated training-
truncated testing condition in NIST 2008, short2 short3 cor-
pora.
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Figure 5: DET plot of i-vector (TV) system and UBM system
for truncated training - truncated testing condition in NIST
2008, short2 short3 corpora.



VI. CONCLUSION

The primary concern of state-of-the-art SV system is the
modelling part of it. A critical comparison of factor analysis
based state-of-the-art modelling method and a background
model based straight-forward modelling method is presented
in this work. The present study gives an indication of merits
and demerits of i-vector based and GMM-UBM based system
for different train-test condition. It is found that modelling
speakers in total variability subspace framework exhibits a
significant relative performance improvement upto 72% on
long duration utterances. But, small utterance duration is
desirable for a real-time SV system. Both GMM-UBM and
i-vector based systems degrade severely when test utterance
length falls below 10 sec. This characteristics limits the utility
of SV system in real life scenario. The relative improvement
measures of i-vector based system over GMM-UBM based
system are also found to get reduced significantly in utterance
length below 10 sec. Hence performance of the classical
straight-forward GMM-UBM system is more close to i-vector
based system in short duration utterance. Moreover, in case of
very short utterances like 2 sec, the GMM-UBM based system
has performed better over i-vector based system.
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