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Several approaches have been proposed in literature to de

fend the wormhole attacks. The first set of approaches provides

solutions based on distance-bounding and time-bounding. Hu

et. al. [1] proposed to add information to a packet to restrict

the packet's maximum allowed transmission distance to avoid

tunneling, which they called packet leashes. In the work by

Eriksson et. al. [2], a timing based countermeasure to the

wormhole attacks called TrueLink is proposed. By using a

combination of timing and authentication, TrueLink enables a

node to verify the adjacency of its neighbor to avoid tunneling.

The second set of approaches is based on geometric in

consistency. In the work by Wang and Bhargava [3], Multi

Dimensional Scaling is applied to reconstruct the lay-out of

the network. During the wormhole attack, the fake connection

created by the malicious nodes will bend the reconstructed

surface to pull closer the nodes that are actually far away and

the location of the wormhole is determined by detecting such

anomalies. Other methods based on geometric inconsistency

include the work by Hu and Evans [4]

The third set of approaches is based on local monitoring

and statistical analysis. Song et. al. [5] proposed a statistical

analysis approach to detect wormholes in wireless ad hoc

networks that are based on multipath routing. The rationale of

the approach is that certain statistics of the routes discovered

by routing protocols change dramatically under wormhole

attacks such as the relative frequency of each link appeared

in the obtained routes etc. In our previous work [6], we

presented a detection scheme using the change of path round

trip delay as an indication of in-band wormhole attacks. The

detection scheme utilized two sequential change detection

algorithms: the non-parametric cumulative sum (NP-CUSUM)

and repeated sequential probability ratio test (R-SPRT). In this

paper, we further provide theoretical analysis and performance

comparison of the two algorithms using metrics that take into

account the algorithms' repeated nature. Our work can provide

useful insights on the choice of change detection algorithms

for designing practical wormhole detection schemes.

II. WORMHOLE DETECTION SCHEME

Our wormhole detection scheme is based on the observation

that during an in-band wormhole attack, the transmission

delay along a path that goes through a wormhole tunnel will

deviate from its normal value. This relatively abrupt change in

transmission delay occurs at unknown time points and should

be detected as soon as possible. Therefore, the problem of

detecting an in-band wormhole attack can be formulated and

solved as a quickest (sequential) change detection problem:
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ABSTRACT

I. INTRODUCTION

Collaborative attacks in wireless ad hoc networks bring

serious challenges to the normal collaboration among different

nodes and the correct functioning of the entire network. This

paper addresses the problem of detecting one specific type of

collaborative attacks, namely the wormhole attack, which is

easy to launch by the adversary, but is difficult to detect and

brings great damage to the network.

During a wormhole attack, the malicious nodes perform

a tunneling procedure to form a wormhole where one node

receives packets and covertly tunnels them to another colluding

node, and then the colluding node replays these packets as

if it receives them from its physical neighbors. Based on

different covert communication mechanisms used for tunnel

ing, wormhole attacks can be classified as in-band wormholes

and out-band wormholes. The in-band wormhole connects the

purported neighbors via multi-hop tunnels over the existing

wireless medium while the out-band wormhole attack uses an

external communication medium such as a wired link or a

long-range wireless transmission channel. Wormhole attacks

can affect shortest path routing calculations and allow the

attacking nodes to attract and route traffic from other parts of

the network to go through them. Effectively, wormhole attacks

create two artificial traffic choke points that are under the

control of the attacker. These choke points can be utilized at

an opportune future time to analyze network traffic or degrade

network performance.
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This paper compares the performance of parametric and

non-parametric sequential change detection algorithms for

detecting in-band wormholes in wireless ad hoc networks.

The algorithms considered are the non-parametric cumulative

sum (NP-CUSUM) and the repeated sequential probability

ratio test (R-SPRT). Theoretical performance of the two is

compared using metrics that take into account the algorithms'

repeated nature, and the advantage of the parametric method

is illustrated. On the other hand, connections between the

parametric and non-parametric methods are made in the pro

posed worst case adversary model, where the non-parametric

method is shown to be more robust to attack strategy changes.

Experimental evaluation ofwormhole detection schemes based

on the two algorithms is presented. This work has implications

for both the theoretical understanding and practical design of

wormhole detection schemes based on parametric and non

parametric change detection algorithms.
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(5)

(3)

{
I, if gn 2:: h,

0, if gn < h,

min{n : d(n) == I}.T

d(n)

gn == (gn-1 + Xn - c)+,

and the decision rule and stopping time are

(
f1(Xn))+

gn = gn-l + In fo(x
n

) ' (2)

where go 0 and (x)+ stands for max(x,O). An

intuitive explanation behind Equation (2) is that, since

E 1[ln(f1(xn )/fo(xn ))] > 0 and Eo[ln(f1(xn )/fo(xn))] < 0,

where Eo[·] and E 1 [·] denote the expectations correspond to

the distribution functions fo and f1' gn in Equation (2) will

remain close to 0 under H 0 and start drifting upward until

it crosses the threshold h under HI. Equation (2) provides

a basis for the following non-parametric cumulative sum

algorithm we developed in our wormhole detection scheme.

1) Non-parametric Cumulative Sum (NP-CUSUM): In a

mobile ad hoc network where network topology changes

very quickly, it is usually very difficult, if not impossible, to

model or estimate the distributions fo and f1 of the delay

measurements. Therefore, we need a non-parametric approach

to solve the hypothesis testing problem (1).

Since the distribution functions fo and f1 are unknown, we

replace the term In(f1 (xn )/ fo(xn )) in Equation (2) by some

nonparametric score function s(xn ), i.e., we let gn == (gn-1 +
S (xn ) ) +. The nonparametric score function must satisfy the

conditions E 1[s(xn )] > 0 and Eo[s(xn )] < 0 to ensure that

gn remains close to 0 in normal conditions and drifts upward

in abnormal conditions. Observing that the in-band wormhole

attack leads to an abrupt change in the mean value of the

transmission delay, we can choose s(xn ) == X n - C , where c

is a constant which satisfies Eo[x] < c < E 1[x], i.e., we use

the statistic

algorithm [10] in the sense that it minimizes the worst mean

detection delay, i.e., the detection delay under the realization

of distribution fo that makes the detection most difficult,

while maintaining the mean time between false alarms above

a certain threshold given that the observations are independent

and identically distributed (i.i.d.).

By denoting max1::;k::;n Sn,k as gn, and assuming that the

observations are i.i.d., we can write gn in a recursive form

(1)X1, ,xn l"..lfo,

X1, ,Xkl"..lfo,

Xk+1, ... ,Xn 1"..1 fl.

T

Ho

for 1 ::; k ::; n, Hk

2) Repeated Sequential Probability Ratio Test (R-SPRT): In

the situation where a large volume of sample data is available

and estimating the distribution functions fo and f1 is not

difficult, we propose to use the R-SPRT algorithm. The R

SPRT can utilize the information of the distribution functions

This is a well known sequential change detection algorithm, and is expected to improve the detection performance.

namely, cumulative sum (CUSUM) algorithm, first proposed Recall that CUSUM is also a change detection algorithm

by Page [9]. A sequential change detection algorithm usually that can utilize the model information, the difference between

involves optimizing the tradeoff between two performance R-SPRT and CUSUM include the following: the CUSUM

metrics. The first metric is the delay for detection, which algorithm minimizes the worst mean delay for detection but

relates to the ability of the algorithm to set an alarm when does not guarantee that the mean delay for detection will be

a change actually occurs, the other metric is the mean time minimized. R-SPRT is more flexible with its two adjustable

between false alarms, which reflects the frequency of false thresholds. By setting the lower threshold to 0, R-SPRT is

alarms. CUSUM is known to be the optimal change detection equivalent to CUSUM and thus delivers the same performance
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The likelihood ratio between the hypotheses Ho and Hk is

S I
fO(X1, ... ,Xk-1)f1(Xk, ... ,Xn)

n k == n .
, fo(xo, ... ,xn )

The maximum likelihood principle leads to the following

decision rule and stopping time:

d(n) {I, if max1::;k::;n Sn,k 2:: h,
0, if max1::;k::;n Sn,k < h,

min{n : d(n) == I}.

to detect a change as rapidly as possible after its occurrence,

while maintaining the false alarm rate at a given level.

Our detection scheme utilizes a dynamic hierarchy model

proposed by Sterne et. al. [7]: clustering techniques are applied

to organize the entire network into several groups. Each group

contains two levels of nodes, the leaf nodes and the cluster

head node. The data acquisition occurs at the leaf nodes and

the inference drawn from the data is transmitted to the cluster

head. The cluster head correlates the individual inferences it

receives to make the final decision. To avoid having a single

head node that is a potential single point of failure, one or

more numbers of nodes can be designated as backup head

nodes. Our detection scheme considers the one-group case,

but it can also be extended to multi-group case. The scheme

contains the following three steps.

A. Data Collection

Each node in the network collects three-hop transmission

delay data by periodically sending out ping packets to all the

nodes that are three hops away. Three-hop paths are considered

because it is sufficient to analyze delays of the two normal

nodes that communicate directly with the two end nodes of

a wormhole tunnel [8]. Thus the hop count between the two

normal nodes appears to be three during a wormhole attack.

B. Data Analysis

Each node determines from the collected delay information

whether the three-hop path goes through a wormhole tunnel.

We assume that the observed delay data have a joint prob

ability density function (PDF) fo (Xl, ... , Xm -1) until an un

known time point m, m E {I, 2, ...}, and after this time point

m, the observations have another distribution f1 (xm , ... , xn ).

In other words, fo is the PDF of the normal delay data, while

f1 is the PDF of the delay data under the wormhole attack

(abnormal delay data). Since m is unknown, each node needs

to do the following hypothesis testing:
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III. PERFORMANCE ANALYSIS OF NP-CUSUM AND

R-SPRT
When we evaluate the performance of a change detection

algorithm, we are interested in two performance metrics,

namely the delay for detection, whose mean is denoted by

E[Tv], and the mean time between false alarms, E[TpA]'

A. Performance Analysis of NP-CUSUM

Recall that the decision rule and stopping time of NP

CUSUM are shown in Equations (4) and (5). Following a

procedure similar to the one in [12], we can prove that under

very general conditions, the following inequality holds for the

mean time between false alarms of the NP-CUSUM algorithm

E[TpA] 2: Clec2h, (6)

where Cl and C2 are some constants depending on the param

eter c and the normal distribution 10. Generally it is difficult

to compute the values of Cl and C2, but since it is usually

not difficult to collect sample data for the normal situation,

Equation (6) can be evaluated by experiments. It is known that

E[TpA] increases with the increase of c. Another observation

from Equation (6) is that the mean time between false alarms

increases exponentially fast with the threshold h.

For the delay for detection of the NP-CUSUM algorithm,

following a similar procedure as in [12], we get the following

asymptotic relation as h ----* 00,

E[Tv] 1
-h- ----> E1[x] - C· (7)

By Equation (6), E[TpA] goes to infinity as h ----* 00, therefore,

this asymptotic view is meaningful in practice, as a large mean

time between false alarms is always desirable. So Equation (7)

actually provides a criterion to select the thresholds hand c

in NP-CUSUM. For example, if we want to detect the attack

within certain pre-specified time interval T, the hand c should

be selected according to

1 T
E1[x]- C < h =} h < T(E1[x] - c). (8)

Equations (6) and (7) also exhibit a trade-off between the two

performance metrics. A longer mean time between false alarms

requires larger value of hand c, while a smaller delay for

detection requires smaller hand c.

only tell that among the three links 1-2, 2-3, 3-4 some are

wormhole tunnels; if the cluster head is told that the paths

1-2-3-4 and 1-2-3-5 are abnormal as in (b), it can tell that

the wormhole tunnel exists in the two links 1-2 and 2-3 ; if

the cluster head is told by node 1 and 6 that paths 1-2-3-4

and 6-2-3-5 are abnormal, it can determine that the link 2-3

is abnormal and nodes 2 and 3 are the wormhole attackers.

S
-1 Il(Xl,X2, ... ,Xn )

n- n-------
Io(xl, X2, ... , xn ) .

If the observed sequence {xi}f=1 are i.i.d. variables, Sn can

be written as

as CUSUM. By setting the lower threshold to other values

under different scenarios, R-SPRT can potentially outperform

the CUSUM algorithm.

We first define a single use of the sequential probability

ratio test (SPRT) with the decision rule d and the stopping

time T as :

{

I, if Sn 2: B,

d(n) 0, if Sn :::; A,

defer decision, if A < Sn < B,

T == min{n : (d(n) == 1) U (d(n) == O)},

where A, B are two thresholds and Sn is the SPRT statistic

defined by:

II (xn )

Sn = Sn-l + In fo(x
n

)'

It has been shown by Wald [11] that SPRT is the optimal

detection test that minimizes the average number of required

observations to reach a decision among all sequential and non

sequential tests where the false alarm rate and missed detection

rate do not exceed some predefined values. However, the single

SPRT algorithm is better suited for on-demand monitoring

of the network, e.g., when a higher layer monitoring agent

requests a node to collect data and conduct the SPRT because

some area of the network is behaving suspiciously, and once

the node reaches a decision, no matter if the decision is a '1'

or a '0', it stops monitoring. In contrast, our scenario requires

continuous monitoring in order to detect the wormhole attack.

Therefore, a repeated SPRT is required.

In R-SPRT, the single SPRT algorithm is restarted with

So == 0 whenever d(n) == O. This setup enables the nodes to

detect the abnormal behavior for both short term and long term

wormhole attacks. Note if the observations are i.i.d. and the

lower threshold of the R-SPRT algorithm is set to 0 (A == 0),

the statistic can be written as Sn == (Sn-l +In ~ ~ i ~ : j ) + , which

is equivalent to the CUSUM algorithm.

C. Wormhole Localization

After data analysis, the cluster head receives the decision

made by each leaf node along with the path information.

It correlates these information and determines whether a

wormhole attack is underway and locates the attacking nodes.

Given the observations of three-hop path delay data, locating

a wormhole requires at least two anomalous observations with

a common intersecting link but disjoint end nodes. We use

Fig. 1 to illustrate this claim. Assuming that nodes 2 and 3

(a) (b) B. Performance Analysis ofR-SPRT

We now proceed to evaluate E[TpA] and E[Tv] for the R-

if 'A' B SPRT algorithm. We denote the probability of false alarms and

(c) the probability of missed detection of a single SPRT as Q and

Fig. 1: Wormhole Localization {3, and assume that the average number of samples the single

are the wormhole attackers, if the cluster head is informed by SPRT needs to make a decision is E1 [N] under HI and Eo[N]
node 1 that the path 1-2-3-4 is abnormal as (a) shows, it can under Ho. In the R-SPRT algorithm, each time the SPRT stops
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and makes a decision can be modeled as a Bernoulli random

variable with parameters a under Ho and 1 - {3 under HI.

Therefore the waiting time until the first success (a decision

of '1') is a geometric random variable, i.e.,

curves for different A are very similar, so we just use A == 0

in further experiments.
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IV. WORST CASE ADVERSARY MODEL

In this section, we derive a worst case adversary model and

show that NP-CUSUM is more robust to the changes of the

attack model.

Fig. 3: R-SPRT performance. B ranges from 1 to 25

The parametric method R-SPRT has additional information

of the distributions 10 and 11 and thus is expected to perform

better than the non-parametric method NP-CUSUM. This

conjecture is confirmed in Figure 4, where R-SPRT achieves

increasingly larger value of mean time between false alarms

than NP-CUSUM for larger detection delay values. A longer

mean time between false alarm implies fewer false alarm and

thus better performance.

Fig. 4: Comparison of NP-CUSUM and R-SPRT

The better performance of R-SPRT comes at the cost of

higher computational complexity, because estimating the dis

tributions 10 and 11 requires proper sample data and training

using these data. Sample data for the abnormal distribution

11 usually depend on several factors under the control of

the attackers, such as the tunnel length and the location of

the tunnel end points, thus posing difficulties for the R-SPRT

method. In constrast, NP-CUSUM only requires an estimation

of the mean value of a normal three-hop path delay, which is

relatively easier to obtain.

***
*

*
*

*

E[TD]
~ ·Ar+B

(9)~
e

E [In flex)] ,
1 fo(x)

E[TFA]
Ar+B

(10)~

Eo [In fl(x)] '
fo(x)

60 * c=21

§ 55 ~~~~
~ c=35

3: 50 c=40

;f c=50
c45

140
Q)

.535 ' ~ .. ,.
~ ~/
~ 3Ot,Y

21('" *

E[T ] == E 1 [N] E[T ] == Eo[N]
D 1 - (3 , FA a·

Following Wald's identity [11]

EI[N] = A,8 + B(l - ,8) Eo[N] = A(l - a) + B,8

E 1 [ln j~~~j] Eo [In j~~~l] ,

where A ~ In I~Q and B ~ In 1:{3 are the two thresholds,

we obtain

where r == ~~~1. In Wald's identity, A is assumed to be

smaller than o. If A is equal to 0, we have that the R-SPRT

algorithm is equivalent to the CUSUM algorithm, and E[TD]

and E[TFA] of the R-SPRT when A == 0 satisfy

B E[TD] 1
E[TFA] > e and ~ -t flex) as B -t 00.

E 1 [In fo(x)]

C. Comparison ofNP-CUSUM and R-SPRT

We now compare the trade-off between E[TFA] and E[TD]

for the two algorithms. In this section, we compare both

algorithms for detection of an 8-hop wormhole. The data are

generated from a network containing 50 nodes in a 1000 x 1000

square field using the ns-2 simulator. We vary all the available

parameters of the two algorithms in order to obtain a fair

comparison.

Figure 2 illustrates the performance of NP-CUSUM with

different c and h. Each curve corresponds to a specific value

of c and is obtained by changing h from 15 to 125. Under

these settings, we conclude that the best performance of NP

CUSUM is obtained when c == 30. Therefore, this value of c

is adopted as an optimal threshold in further experiments.

A. Worst Case Adversary Model

201 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 In the worst case adversary model, we assume the attackers
Delay for Detection have some control of the distribution 11 and 11 is chosen to

Fig. 2: NP-CUSUM performance. h ranges from 15 to 125 maximize the performance of the adversary. Before deriving

Figure 3 represents the performance of R-SPRT with dif- the model, we describe the following theorem from [12].

ferent values of A and B. Each curve with a specific value Theorem I: Let A be a change detection algorithm de-

A is obtained by changing B from 1 to 25. It shows that the pending on a large parameter h, and Ph be a sequence of

978-1-4244-2734-5/09/$25.00 ©2009 IEEE 273

Authorized licensed use limited to: University of Maryland College Park. Downloaded on August 5, 2009 at 14:13 from IEEE Xplore.  Restrictions apply. 



5

(Sn-l + AI Xn + A2 - 1)+,

{
I, if Sn 2: B,

0, ifSn<B,

min{n: d(n) == I},

T

T

S~

d(n)

d(n)

which can be rewritten in the following forms:

, A2 - 1 +
(Sn-1 + X n + -:x;-) ,

{

.' B
1, ifSn2:~,

. ' B
0, if Sn < ~,

min{n : d(n) == I}.

Comparing them to Equation (3), (4) and (5), we have that

the NP-CUSUM is equivalent to the R-SPRT with A == °if

C == -(A2 -l)/Al and h == BIAI in the worst case adversary

model.

Recall that in Figure 4, R-SPRT with A=O performs much

better than NP-CUSUM, but in the worst case adversary

model, it can only perform the same as NP-CUSUM. For

the NP-CUSUM algorithm, the performance metric E[TFA]

depends on fo, and E[TD] depends on E 1 [x], so its perfor

mance will not change in the worst case adversary model.

This suggests that NP-CUSUM is more robust to the changes

of attack model.

(
fl(X))+

Sn = Sn-1 + In lo(x) ·

In the worst case adversary model, we have

In(fl (x) / fo (x)) == Alxn + A2 - 1, therefore the statistic,

decision rule and stopping time for R-SPRT with A ==0 can be

represented as

Proof· When the threshold A of R-SPRT is set to 0, the

statistic ofR-SPRT can be written as

v. EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of the complete

three-step detection scheme using the receiver operating char

acteristic (ROC) curve. ROC curve is represented by the true

positive rate (TPR) vs. the false positive rate (FPR). Recall that

we use the mean detection for delay E[TD] and the average

time between false alarms E[TFA] to measure the performance

of the change detection algorithms. The relation between the

TPR and FPR of our detection scheme and E [TD] and E [TFA]

of the change detection algorithms is shown as follows:

Proposition III: For a particular one-hop link, we assume

that there are n independent three-hop paths intersecting at it.

By independent three-hop paths, we mean the paths that have

disjoint end nodes. Suppose the change detection algorithm

used by each node to make decisions on individual paths has

performance E[TD] and E[TFA], then if this one-hop link is a

wormhole tunnel, the true positive rate ofour detection scheme

on detecting this link is

TPR == 1 - P~ - np~-I(l - Po)

where Po == 1 - 1IE[TD]. If this one-hop link is normal, the

false positive rate of our detection scheme on detecting this

274

iEO[x] . J10(x)eA1Xdx, (12)

J10(x)eA1Xdx. (13)

. J fl(X)
min fl(X) In ~( ) dx.

fl(x)EA n JO x

Applying the Lagrange method, we derive fi that maximizes

the performance of the adversary:

f;(x) == fo(x)e)Q x eA
2-

1 ,

where K(fl' fo) is the Kullback information E 1 [ln j~i~lJ.

Given a detection algorithm, the limit of lInt h I is deter

mined. Therefore in order to maximize the detection delay, the

attackers need to minimize the following objective function:

min K(fl(X), fo(x)).
flex)

Assuming the actual length of the abnormal paths that go

through the wormhole tunnel is n hops, we have E 1 [x] ==

~Eo[x], as the abnormal path appears to be 3-hop. The choice

of n depends on the risk preference of the attackers. With

larger n, the attackers can attract more traffic and degrade

network performance more, but on the other side, they are

at higher risk of being detected. Therefore, for a given n,

fl must belong to the following class of feasible probability

density functions:

An = {g :Jg(x)dx = 1 andJxg(x)dx = iEo[x]}.

In summary, we have the following objective function for

the attackers,

where Al and A2 are the Lagrange multipliers satisfying the

following equations:

Jxlo(x)e
A1X

dx

The following proposition establishes the connection be

tween the NP-CUSUM algorithm and the R-SPRT algorithm

in the worst case adversary model.

Proposition II: In the worst case adversary model, NP

CUSUM is equivalent to R-SPRT if the threshold A ofR-SPRT

is set to 0 and the parameters c and h for NP-CUSUM satisfy

the following conditions:

A2 -1 B
c == - -- and h == -

Al AI'

where Al and A2 are Lagrange multipliers satisfying Equation

(12) and (13).

978-1-4244-2734-5/09/$25.00 ©2009 IEEE

normalized detection delay defined by Ph == (7-;:)+, where

m is the change time and T is the stopping time. Define

f3h == sUPk Po (dk == 1), where Po (.) denotes the probability

corresponding to the observation sequence when there is no

change occurrence. IfPh converges as h ~ 00 for any m 2: 1

almost surely to a determined limit ~(A, fl' fo), we have

'Y(A, h, 10) :::: K(h, 10)-1 x lim IIn
h
,6hl , (11)

h-+oo

B. NP-CUSUM and R-SPRT in the Worst Case Adversary

Model
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VI. CONCLUSION

In this work, we performed both theoretical and experimen-

tal comparisons of two sequential change detection algorithms,

namely the NP-CUSUM and R-SPRT algorithms, on detection

of in-band wormhole attacks in a wireless ad hoc network.

We illustrate that the parametric method R-SPRT has better

performance than the non-parametric method at the cost of

higher complexity, and we also show that the non-parametric

method NP-CUSUM is more robust to attack strategy changes.

The higher complexity of R-SPRT comes from its paramet

ric nature, which needs proper training to obtain the model for

the distributions fo and fl. When an exact model is not avail

able, the performance of R-SPRT can be seriously degraded.

In contrast, NP-CUSUM is a non-parametric method, which

does not require exact models of the normal or adversary

distributions and is easier to apply.

In our current wormhole detection scheme where the leaf

nodes periodically send their decisions along with path infor

mation to the cluster head, reducing communication overhead

is an issue to explore. It will be helpful to see how to combine

polling and sampling techniques into the detection scheme to

reduce data redundancy and communication overhead.
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Fig. 6: Performance of R-SPRT based Detector Using Im-

proper Training Data
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Fig. 5: R-SPRT based detector vs. NP-CUSUM based detector

It is worth mentioning that the selection of the training

set for the R-SPRT based detector is very important. If the

trained distributions do not match those of the testing data, the

performance of the detector can be seriously deteriorated. In

Figure 6, we trained the R-SPRT based detector on a network

containing an 8-hop wormhole and used it to detect a 4-hop

wormhole in the same network. The best TPR obtained by

adjusting the two thresholds is 0.23, which is much smaller

than the TPR values achieved in Fig. 5. Therefore when we

use the R-SPRT based detector, extra attention must be paid to

the choice of the training data. When a good training data set

does not exist, the NP-CUSUM based detector is a reasonable

alternative for the R-SPRT based detector.
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FPR == 1 - P~ - np~-l(l - PI)

where PI == l-l/E[TpA].
Proof· The change detection algorithm has performance

E[TD] and E[TpA], that is to say, the probability of not

raising a true alarm for an abnormal path is Po == (E[TD] 

1)/E[TD], and the probability ofnot raising a false alarm for

a normal path is PI == (E[TpA] - 1)/E[TpA].

If the one-hop link is a wormhole tunnel, our detection

scheme will raise an alarm if and only if there are more

than one alarm raised by the change detection algorithms over

the n independent paths, which is an event with probability

1 - Po - np~-l(l - po). By a similar analysis we can obtain

the formula for FPR.

The performance of the NP-CUSUM based detector and the

R-SPRT based detector in detection of an 8-hop wormhole is

compared in Figure 5.
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