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ABSTRACT The differences in performance among binary-integer encodings in an Ising machine,

which can solve combinatorial optimization problems, are investigated. Many combinatorial optimization

problems can be mapped to find the lowest-energy (ground) state of an Ising model or its equivalent model,

the Quadratic Unconstrained Binary Optimization (QUBO). Since the Ising model and QUBO consist of

binary variables, they often express integers as binary when using Ising machines. A typical example is the

combinatorial optimization problem under inequality constraints. Here, the quadratic knapsack problem

is adopted as a prototypical problem with an inequality constraint. It is solved using typical binary-

integer encodings: one-hot encoding, binary encoding, and unary encoding. Unary encoding shows the best

performance for large-sized problems.

INDEX TERMS Ising machine, combinatorial optimization problem, Ising model, quadratic unconstrained

binary optimization, binary-integer encoding, quadratic knapsack problem

I. INTRODUCTION

A. MOTIVATION

C
OMBINATORIAL optimization problems find the

combination of decision variables that minimize or

maximize an objective function under given constraints.

Most problems are known as NP-hard or NP-complete [1],

and the number of solution candidates exponentially in-

creases with the number of decision variables. Because com-

binatorial optimization problems are ubiquitous in social

life and industry [2]–[12], there is a growing interest in

developing technologies that can efficiently and accurately

find optimal or quasi-optimal solutions. Ising machines have

recently attracted attention as efficient solvers that achieve

faster computations than conventional digital computers with

the von Neumann architecture [13]–[25]. Many underlying

algorithms for Ising machines have been proposed [26]–[28].

Recently, proposals have also been made for efficient input

formats to Ising machines based on the operation principle

of Ising machines [29]. Examples include simulated anneal-

ing (SA)-based machines [13]–[17], quantum annealing ma-

chines [18]–[20], and photonics-based machines [21]–[24].

The features of the various Ising machines are summarized

in [30].

In an Ising machine, each combinatorial optimization

problem is mapped onto the Ising problem. The Ising prob-

lem searches for the lowest-energy (ground) state of the Ising

model or its equivalent model, the Quadratic Unconstrained

Binary Optimization (QUBO) model [31]. The Ising model

was originally introduced in statistical mechanics to describe

the nature of phase transition [32]. The energy functions

of the Ising model and the QUBO model are described by

the quadratic form of spin variables {+1,−1} and binary

variables {0, 1}, respectively. The objective function and the

constraints in a combinatorial optimization problem are en-

coded in the Ising model or the QUBO model [33] and [34].

Since the Ising model and QUBO consist of binary variables,

when solving combinatorial optimization problems involving

integer values with Ising machines, the integer values must be

expressed in binary variables.

Herein combinatorial optimization problems subject to an
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inequality constraint are considered. To write the inequality

constraint as an energy function of the Ising model, binary-

integer encoding has been used to represent integers in terms

of binary variables [3], [33], and [35]–[42]. Various types

of binary-integer encoding exist. From a practical viewpoint,

encoding with the best performance should be adopted. How-

ever, the performance of different binary-integer encodings

has yet to be systematically investigated in Ising machines.

B. SUMMARY OF CONTRIBUTIONS

This paper compares the performance among typical binary-

integer encodings in an SA-based Ising machine called Digi-

tal Annealer (DA) [15]. The main contributions are:

• We provide a systematic method to compare the binary-

integer encoding performance. Our method is applied

to the quadratic knapsack problem (QKP) [43], [44],

which is a prototypical combinatorial optimization

problem with an inequality constraint. The QKP is an

extension of the well-known combinatorial optimization

problem, the knapsack problem (KP) [35], [41], [45]–

[47], except that it allows for quadratic terms in the

objective function. The QKP is better suited than the KP

to study the performance of binary-integer encodings

since the objective function is given in the general

function form of the QUBO model.

• We investigate the performance of common types of

binary-integer encoding: one-hot encoding, binary en-

coding, and unary encoding. Unary encoding achieves

the best performance for large-sized QKPs.

The rest of this paper is organized as follows. Section II

introduces the QKP. Section III provides the three types of

binary-integer encoding. Here, the QKP is rephrased as the

QUBO model. Section IV shows methods to prepare the

QKP instances and the setup for DA. Section V presents

our results. Section VI discusses the results and section VII

concludes our study.

II. QUADRATIC KNAPSACK PROBLEM

This section reviews the formulation of the QKP, or more

precisely the 0−1 QKP [43]. Informally, the QKP maximizes

the overall profit in a knapsack so that the overall weight

does not exceed a given knapsack’s capacity. We assume that

there are n items where the item i has a weight wi > 0 for

i = 0, 1, ..., n− 1, and n×n nonnegative matrix P = {pij},

where pii is the profit achieved if the item i is selected

and pij(i < j) is the profit achieved if both items i and j

are selected. For i > j, pij = 0. When P is a diagonal

matrix (i.e., pij = 0 for all i 6= j), the QKP is reduced to

the KP. Introducing binary variables xi ∈ {0, 1} provides

a mathematical formulation of the QKP to maximize an

objective function, which is expressed as

n−1
∑

i=0

n−1
∑

j=i

pijxixj , (1)

TABLE 1: Types of binary-integer encoding

Encoding f(d) D Notes

One-hot d c+ 1 One bit must be 1. All

others must be 0.

Binary 2d ⌈log2 c⌉
Unary 1 c

One-hot

y0

Binary

Unary

y1 y2 y3 y4 y5 y6 y7

y0 y1 y2 y3 y4 y5 y6

y0 y1 y2

FIGURE 1: A schematic representation of the binary-integer
encodings explained in Table 1 when I = 6 and c = 7.

subject to an inequality constraint,

n−1
∑

i=0

wixi ≤ c, (2)

where c is the knapsack’s capacity. The binary variable xi is

1 if the item i is selected. Otherwise, it is 0.

III. BINARY-INTEGER ENCODING AND QUBO MODEL

A. TYPICAL BINARY-INTEGER ENCODINGS

Binary-integer encoding represents integers by binary vari-

ables. Here, we introduce three types of well-known binary-

integer encodings: one-hot encoding, binary encoding, and

unary encoding [3]. Each encoding describes integer I by a

linear function of binary variables,

I =
D−1
∑

d=0

f(d)yd, (3)

where we introduce auxiliary bits yd ∈ {0, 1}. The function

f(d) is called an encoding function and D is called the bit

depth, where D depends on the choice of f(d).

The QKP must represent each integer I ∈ [0, c] by binary

variables to express the inequality constraint [eq. (2)] in the

QUBO model. Table 1 shows the encoding function f(d)
and the bit depth D for each encoding. Figure 1 shows

a schematic representation of the binary-integer encodings.

First, one-hot encoding assumes that one bit takes a value of

1, and the others are 0. Since the encoding function is given

by f(d) = d, I is an integer between 0 and D − 1. Thus, the
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bit length is given by D = c + 1. One-hot encoding is one

of the traditional encoding methods for representing any in-

tegers uniquely [36]. Second, in binary encoding, f(d) = 2d.

I is an integer between 0 and 2D − 1. Binary encoding is

the informationally densest way to represent integers [36]. In

most cases, integers from 0 to c are not encodable using only

the term
∑D−1

d=0 2dyd. For example, integers from 0 to 7 are

encodable by this encoding with D = 3, but not integers from

0 to 10. For integers from 0 to 10, at least four auxiliary bits

are needed. If D = 4, the maximum value of
∑D−1

d=0 2dyd
is 15. Hence it can represent integers larger than 10. This is

inappropriate for expressing QKPs because it allows for an

overall weight of items that exceeds the knapsack’s capacity.

To avoid this, we set D = ⌈log2 c⌉ and subtract a constant

C = 2D − 1 − c from I so that the maximum value of

I − C is c [33]. Finally, in unary encoding, f(d) = 1. The

number of bits with yd = 1 gives the integer I , and thus,

D = c. Note that the unary encoding is redundant, and the

bit string for a given integer is not generally unique [37].

For example, the integer 2 is represented by three bits as

(y0, y1, y2) = (0, 1, 1), (1, 0, 1), and (1, 1, 0).

B. QUBO MODEL FOR QKP

This subsection shows the QUBO model for the QKP. The

QUBO model is defined on an undirected graph, which is

given by G = (V,E), where V and E are the sets of vertices

and edges on G, respectively. The energy function of the

QUBO model is referred to as the Hamiltonian and is defined

by

HQUBO =
∑

(a,b)∈E

Qabzazb, (4)

where za ∈ {0, 1} is a binary variable on the vertex a ∈ V .

The matrix Qab is called the QUBO matrix.

The QKP provides the Hamiltonians representing the ob-

jective function and the inequality constraint. The QUBO

model is given by

HQUBO = Hobjective +AHconstraint, (5)

where Hobjective and Hconstraint are the Hamiltonians for the

objective function and the inequality constraint, respectively.

The coefficient A > 0 is a hyperparameter, which should

be appropriately chosen [see Sec. V-B]. In this study, the

only hyperparameter included in the total Hamiltonian is A,

regardless of the encoding method.

The Hamiltonian for the objective function is simply given

by

Hobjective = −
n−1
∑

i=0

n−1
∑

j=i

pijxixj . (6)

The Hamiltonians for the inequality constraint depend on the

TABLE 2: n and c values of the QKPs and the total number
of binary variables N for each encoding

n c N

Items Capacity One-hot Binary Unary

20 30 51 25 50

50 100 151 57 150

100 200 301 108 300

200 300 501 209 500

400 600 1001 410 1000

800 1200 2001 811 2000

binary-integer encoding. They are given by

H
(one−hot)
constraint =

(

D−1
∑

d=0

dyd −
n−1
∑

i=0

wixi

)2

+

(

D−1
∑

d=0

yd − 1

)2

;

H
(binary)
constraint =

(

D−1
∑

d=0

2dyd − (2D − 1− c)−
n−1
∑

i=0

wixi

)2

;

H
(unary)
constraint =

(

D−1
∑

d=0

yd −
n−1
∑

i=0

wixi

)2

,

(7)

where D in each encoding is given in Table 1. The constraint

Hamiltonian for one-hot encoding follows the one presented

in [33]. The above Hamiltonians can be zero if and only if the

total weight of the items in the knapsack is less than or equal

to the knapsack’s capacity (i.e.,
∑n−1

i=0 wixi ≤ c).

IV. METHOD

A. PREPARATION OF QKP INSTANCES

We created QKPs with various n and c values (Table 2). The

total number of binary variables N is given by

N = n+D. (8)

N value for the binary encoding is the smallest, while N

values for the one-hot encoding and the unary encoding

are almost the same. wi and pij(i ≤ j) are randomly

chosen from uniform distributions on {1, 2, . . . , 10} and

{0, 1, 2, . . . , 10}, respectively. For each n and c, 50 random

instances are generated.

Practically, wi and pij may be distributed according to a

more complex and wider distribution. However, it is unnec-

essary to solve such problems by Ising machines since the

distribution of wi and pij can be reduced to the one with

a smaller deviation using the following pre-processes. It is

not optimal to select items with extremely large weights but

extremely small profits. By contrast, items with extremely

small weights but extremely large profits should realize op-

timal solutions. In this way, items with extremely large or

small profit per weight can be ignored since it can be trivially

determined whether or not such items should be selected.

After processing, problems can be broken down into sub-

problems, which have items with similar weights and profits.

As such, we assume that wi and pij are generated uniformly
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TABLE 3: Digital Annealer parameters

Number of iterations 107

Number of runs 100

Initial temperature α1N maxab |Qab|
Final temperature α2 minQab 6=0 |Qab|
Temperature interval N

in a limited range of values.

B. SETUP OF AN ISING MACHINE

We used DA [15] as an Ising machine. DA is implemented on

CMOS hardware. Its algorithm is based on SA, and it uses

massive parallelization. The Ising machine has a maximum

of 8192 binary variables on a complete graph. Table 3 shows

the tuning parameters of DA. The number of iterations and

the number of runs are set to 107 and 100, respectively. A

mode based on SA is selected. The initial temperature is

set sufficiently high for the Hamiltonian. Here, an energy

scale of N maxab |Qab| is used to characterize the high

temperature since it gives an upper bound of the energy

change for the flip of a single binary variable. We adjust the

initial temperature by a factor α1, where α1 takes a value

of 1, 10, or 100. On the other hand, the final temperature

is set sufficiently low for the Hamiltonian. An energy scale

of minQab 6=0 |Qab| characterizes the low temperature since it

gives the minimum excitation energy. The final temperature

is adjusted by a factor α2, where α2 takes a value of 1, 0.1,

or 0.01. The temperature is lowered in every N iteration. The

temperature at the n-th update, T (n), is given by

T (n) = exp(−nr)Ti, (9)

where Ti is the initial temperature and r is the decay rate. The

decay rate is set to be consistent with the initial temperature,

the final temperature, and the number of iterations.

V. RESULTS

A. A-DEPENDENCES OF FEASIBLE SOLUTION RATES

AND AVERAGE ENERGIES

This subsection shows the A-dependences of the probability

of obtaining feasible solutions (FSs) and their average en-

ergies for each encoding. The FSs denote the solutions that

satisfy the inequality constraint in eq. (2). Here, we refer to

the probability of obtaining FSs as the FS rate. Namely, the

FS rate is defined by the ratio of the number of obtaining the

FSs to the number of total runs. Here, the number of total runs

is 100 [see Table 3]. The FS rate is obtained by calculating

Hconstraint since the inequality constraint is satisfied if and

only if Hconstraint = 0. The average energy of the FSs is

evaluated with the value of Hobjective.

Figure 2 shows the A-dependences of the FS rates for

each encoding in the QKPs with (n, c) = (20, 30), (n, c) =
(100, 200), and (n, c) = (800, 1200). For binary encoding

and unary encoding, the FS rates approach 1 as the parameter

A increases. The same trends are observed for all other values

n and c for both types of encoding. Moreover, the values of

A necessary to obtain a high FS rate are smaller for unary

encoding than binary encoding, except for (n, c) = (20, 30).
For the problem with (n, c) = (800, 1200), the FS rate

approaches 1 around A = 1.6 × 103 in binary encoding

[Fig. 2(h)] and around A = 0.2 × 103 in unary encoding

[Fig. 2(i)] when α1 and α2 are appropriately chosen. This

feature becomes more pronounced as the values of n and c

increase. On the other hand, in one-hot encoding, few FSs

are obtained even when the parameter A is large except

for (n, c) = (20, 30). That is, FSs can be obtained with

a high frequency in binary encoding and unary encoding

at a sufficiently large A, whereas one-hot encoding cannot

provide FSs for problems with large n and c.

Figure 3 shows the A-dependences of the average ener-

gies of the FSs. The average energies increase with A for

binary encoding and unary encoding. The average energies

at α2 = 1 are larger than those at α2 = 0.01 and 0.1
for the case of (n, c) = (800, 1200). This indicates that

tuning the final temperature is important to achieve a high-

quality performance for large-sized problems. For small n

and c, one-hot encoding shows qualitatively the same A-

dependence of the average energy as binary encoding and

unary encoding.

B. PERFORMANCE COMPARISON

The results in subsection V-A indicate that for each encoding

A has an optimal value, where the FS rate is high and the

average energy of FSs is small. To systematically determine

the optimal strength of A, we set a threshold value for

the FS rate. In this study, we set the threshold value as

0.95. For a problem instance, we repeatedly solve it while

varying the parameters α1, α2, and A. Then we find the

sets of parameters that give the FS rate above the threshold

value, and search the set of parameters for the optimal set to

minimize the average energy over the FSs. Below, we discuss

the performance difference among the three encodings by

comparing the average energies of the FSs at the optimal

values of α1, α2, and A.

Figure 4(a) compares the average energies of the FSs of all

the 50 QKPs between one-hot encoding and unary encoding.

The average energies are compared only when (n, c) =
(20, 30) since this is the only case where the FS rate in one-

hot encoding reaches the threshold. The average energies in

unary encoding are smaller than those in one-hot encoding.

Namely, unary encoding shows a better performance than

one-hot encoding.

Figure 4(b) compares the average energies between binary

encoding and unary encoding. For a small-sized problem

[(n, c) = (20, 30)], the performances are similar. However,

the average energies of unary encoding become smaller

than those of binary encoding as the values of n and c

increase. Furthermore, the data for (n, c) = (400, 600) and

(800, 1200) almost overlap, implying that unary encoding

shows the highest performance even for larger-sized prob-

lems.
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final temperatures
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FIGURE 2: A-dependences of the FS rates: one-hot encoding [(a), (d), (g)], binary encoding [(b), (e), (h)], and unary encoding
[(c), (f), (i)]. Top [(a), (b), (c)], middle [(d), (e), (f)], and bottom row [(g), (h), (i)] show the small-sized problems [(n, c) = (20, 30)],
medium-sized problems [(n, c) = (100, 200)], and large-sized problems [(n, c) = (800, 1200)], respectively. For large A, the
A-dependences are almost independent of α1 and α2.

We compare the encoding methods in terms of the compu-

tation time. The computation in DA is composed of process-

ing done on CMOS hardware and CPU. The time required

for the former is called annealing time, and the time required

for the latter is called CPU time, and the sum of these is

the actual computation time. The annealing time is almost

the same for all the encoding methods since the number

of iterations is fixed in our setup. On the other hand, the

CPU time is longer as the number of bits increases. In the

comparison of the CPU times, when (n, c) = (800, 1200),
unary encoding takes approximately 50 % longer than binary

encoding, and almost the same time as one-hot encoding.

VI. DISCUSSION

Here the results are discussed from two perspectives: unary

encoding and the FS rate in one-hot encoding.

Unary encoding outperforms binary encoding, although

the total number of binary variables N in unary encoding

is larger than that in binary encoding [Tables 1 and 2]. This

is counterintuitive since the dimension of the solution space

rapidly increases with N . There are two possible reasons for

the higher performance of unary encoding. One is that the

value of the coefficient A required to obtain a high FS rate

in unary encoding is smaller than that in binary encoding.

A small value of A improves performance since the average

energy increases with A. The other is its redundancy. The

number of FSs is larger in unary encoding than in the other

encodings because there are multiple ways to represent an in-

teger in unary encoding. This may make it easier for the Ising

machine to find the FSs, resulting in a better performance.

One-hot encoding fails to obtain the FSs even for large A

[Figs. 2(d) and 2(g)]. Although the number of FSs for one-
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FIGURE 3: A-dependences of the average energies of the FSs. Types of binary-integer encodings and the values of n and c are
the same as those in Fig. 2. Fig.(g) lacks data since the FSs cannot be obtained.

hot encoding is the same as that for binary encoding, this

behavior is observed only in one-hot encoding. To clarify

the reason, we conducted additional analysis based on the

local-minimum structure of the energy function. Here, a

solution in a local minimum is the one whose energy does not

decrease under the flip of any single binary variable. From the

argument in ref. [33], all the FSs are in local minima for large

A in our experiment. In the case of (n, c) = (800, 1200), we

have approximately 70 solutions, which are not feasible but

are in a local minimum in the 100 runs of DA. (The remaining

30 solutions are neither feasible nor in a local minimum.)

None of the 70 solutions satisfy the one-hot constraint:
∑D−1

d=0 yd = 1. This implies that the one-hot constraint

creates a number of infeasible local-minimum solutions.

Multiple local minima cause the spin-flip dynamics in SA

to be slow. Thus, one-hot encoding gives a stronger initial-

state dependence than the other encodings, making it difficult

to find the FSs by DA. In addition, although the studied

model only has one parameter characterizing the constraint

term, another parameter can be introduced for one-hot encod-

ing such as H
(one−hot)
constraint =

(

∑D−1
d=0 dyd −

∑n−1
i=0 wixi

)2

+

B
(

∑D−1
d=0 yd − 1

)2

. In this case, the structure of the local

minima will depend on the additional parameter B. Future

analysis of the local-minimum structure while varying B

should be considered.

VII. CONCLUSION

The performances of three types of binary-integer encodings

(one-hot encoding, binary encoding, and unary encoding)

were evaluated. The QKPs were formulated into Ising prob-

lems by utilizing each binary-integer encoding. Then the

QKPs were solved using an SA-based Ising machine, DA.

To compare their performances, the optimal values of the

6 VOLUME 4, 2016
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FIGURE 4: Comparisons of the average energies at the optimal values of A,α1, and α2 (a) between the one-hot encoding and
the unary encoding for (n, c) = (20, 30) and (b) between the binary encoding and the unary encoding for various values of n and
c.

TABLE 4: The optimal values of A, α1, and α2

(n, c) One-hot Binary Unary

A α1 α2 A α1 α2 A α1 α2

(20, 30) 287.2 1 1 11.98 1 1 12.0 1 1

(50, 100) - - - 105.4 1 0.1 24.4 1 0.1

(100, 200) - - - 245.4 1 0.1 30.8 1 0.1

(200, 300) - - - 381.0 1 0.1 67.4 1 0.1

(400, 600) - - - 790.0 1 0.1 103.8 1 1

(800, 1200) - - - 1514.0 1 0.1 208.0 1 1

hyperparameters (α1, α2, and A) are systematically deter-

mined. Unary encoding provided the best results, especially

for large-sized problems, whereas one-hot encoding failed to

find FSs even for sufficiently large A.

There are several potential reasons for the high perfor-

mance of unary encoding. In the future, we plan to clarify

the important properties of unary encoding to achieve the

high performance. In addition, we will investigate whether

the performance is independent of the type of combinatorial

optimization problem or the choice of Ising machine.

APPENDIX A

OPTIMAL VALUES OF THE HYPERPARAMETERS

The appendix provides the details of the optimal values of the

hyperparameters A, α1, and α2 for all sizes of the problems

we studied. Table 4 shows the average values over the 50

problems for each encoding. Table 4 also shows the mode

values of α1 and α2. Note that, in one-hot encoding, opti-

mal hyperparameters cannot be determined since a sufficient

number of FSs were not obtained except for the case of

(n, c) = (20, 30).
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