
Performance-constrained Distributed DVS Scheduling
for Scientific Applications on Power-aware Clusters

Rong Ge, Xizhou Feng, Kirk W. Cameron
Scalable Performance Laboratory

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

{ge, fengx, kcameron}@cse.sc.edu

ABSTRACT
Left unchecked, the fundamental drive to increase peak
performance using tens of thousands of power hungry
components will lead to intolerable operating costs and failure
rates. High-performance, power-aware distributed computing
reduces power and energy consumption of distributed applications
and systems without sacrificing performance. Generally, we use
DVS (Dynamic Voltage Scaling) technology now available in
high-performance microprocessors to reduce power consumption
during parallel application runs when peak CPU performance is
not necessary due to load imbalance, communication delays, etc.
We propose distributed performance-directed DVS scheduling
strategies for use in scalable power-aware HPC clusters. By
varying scheduling granularity we can obtain significant energy
savings without increasing execution time (36% for FT from NAS
PB). We created a software framework to implement and evaluate
our various techniques and show performance-directed scheduling
consistently saves more energy (nearly 25% for several codes)
than comparable approaches with less impact on execution time
(<5%). Additionally, we illustrate the use of energy-delay
products to automatically select distributed DVS schedules that
meet users’ needs.

1. INTRODUCTION
Many high-end distributed systems use tens of thousands of
power-hungry commercial components in clusters to achieve high
performance. Power reduction and energy conservation are
important in these systems for two major reasons: operating cost,
and reliability.

Operating cost: Earth Simulator requires about 12 megawatts of
peak power. Petaflop systems may require 100 megawatts of
power [2], nearly the output of a small power plant (300
megawatts). At $100 per megawatt ($.10 per kilowatt), peak
operation of this petaflop machine is $10,000 per hour. More
conservative estimates of 20% peak operational power ($2,000

per hour) are still beyond the budget constraints of many high-end
system centers. These estimates ignore the additional cost of
dedicated cooling.

System reliability: Commodity components fail at an annual rate
of 2-3% [21]. A petaflop system of about 12,000 nodes (CPU,
DRAM, NIC, and disk) will sustain hardware failures once every
twenty-four hours. According to formula based on the Arrhenius
Law, component life expectancy decreases 50% for every 10° C
(18° F) temperature increase. Reducing a component's operating
temperature the same amount (consuming less energy) doubles
the life expectancy.

To address operating cost and reliability concerns, large-scale
systems are being developed with low power components. This
strategy, used in construction of Green Destiny [22] and IBM
BlueGene/L [4], requires changes in architectural design to
improve performance. For example, Green Destiny relies on
driving the Transmeta Crusoe processor [19] development while
BlueGene/L uses a version of the embedded PowerPC chip
modified with additional floating point support. In essence, the
resulting high-end machines are no longer strictly composed of
commodity parts – making this approach very expensive to
sustain.

In contrast to Green Destiny and BlueGene/L, we seek to create
distributed system middleware that exploits the inefficiencies
common to many parallel applications and leverages commodity
high-performance technologies. Our general power-aware
approach is to use off-the-shelf Dynamic Voltage Scaling (DVS)
technologies of emergent high-performance processors1 in server-
class systems and schedule cluster-wide power consumption to
exploit scientific workload characteristics.

Power-aware clusters are distributed clusters containing
components that have multiple power/performance modes (e.g.
CPU’s with DVS). The time spent within and transitioning
to/from these power/performance modes determines the delay
(cost in performance) and energy (cost in power, heat, etc.). We
study distributed DVS scheduling techniques in power-aware
clusters. External distributed DVS scheduling techniques are
autonomous and control DVS power/performance modes in a
cluster as processes separate from the application under study.

1 DVS capabilities are now available in server-class architectures including
Intel Xeon (SE7520 chipset) and AMD Opteron (Tyan s2882 board) dual
processor nodes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SC|05 November 12-18, 2005, Seattle, Washington, USA
©2005 ACM 1-59593-061-2/05/0011…$5.00

External schedulers may be system-driven (e.g. the cpuspeed
daemon) or user-driven (e.g. setting DVS from the command
line). Internal distributed DVS scheduling techniques use source-
level performance profiling to direct DVS power/performance
modes with source-code instrumentation.

This paper is organized as follows: Section 2 provides an example
to motivate our use of DVS to conserve cluster-wide energy while
minimizing the impact on execution time. In Section 3, we
provide a detailed description of the internal and external
distributed DVS scheduling techniques used in our study. In
Section 4, we describe our software framework to measure,
profile, and control power consumption and performance in a
distributed system. Section 5 gives the results of our detailed
analysis of these scheduling techniques applied to the NAS
Parallel Benchmarks. In Section 6 we describe how our approach
differs from the work of others in this area. We close with some
observations of trends in our data and future work.

2. MOTIVATING THE USE OF DVS IN
HPC CLUSTERS
Dynamic Voltage Scaling (DVS) is a technology now present in
high-performance microprocessors [1, 17]. DVS works on a very
simple principal: decreasing the supply voltage to the CPU
consumes less power. The dynamic power consumption (P) of a
CMOS-based microprocessor is proportional to the product of
total capacitance load (C), frequency (f), the square of the supply
voltage (V2), and percentage of active gates (A):

fACVP 2≈ (1)

Energy consumption (measured in joules) is reduced by lowering
the average power (avgP) consumed for some duration or delay

(12 ttD −=).

2 1()avg avgE P t t P D= × − = ×
 (2)

There are two compelling reasons for using DVS to conserve
energy in HPC server clusters. The first reason is to exploit the
dominance of CPU power consumption on system node (and thus
cluster) power consumption. Figure 1 shows the breakdown of
system node power obtained using direct measurement described
by Feng et al [12]. This figure shows percentage of total system
power for a Pentium III CPU (35%) under load. This percentage
is lower (15%) but still significant when the CPU is idle. While
the Pentium III can consume nearly 45 watts recent processors
such as Itanium 2 consume over 100 watts and a growing
percentage of total system power. Reducing the average power
consumed by the CPU can result in significant server energy
savings magnified in cluster systems.

The second reason for using DVS to conserve energy in HPC
server clusters is to save energy without increasing execution
time. DVS provides the ability to dynamically reduce power
consumption. By reducing CPU power when peak speed is not
needed (e.g. idle or slack periods) a DVS scheduling algorithm
can reduce energy consumption. To minimize the impact on
execution time we must ensure 1) supply voltage is reduced
during CPU times when peak speed is not necessary, and 2)
period duration outweighs voltage state transition costs2.

Figure 2 shows the use of DVS on a single node to exploit CPU
slack due to memory stalls. In this example we run swim from the
SPEC 2000 benchmark suite on a DVS-enabled node at various
fixed voltages shown as the resulting frequency3 on the x-axis in
increasing order. Lower frequency (i.e. lower voltage) means
lower CPU performance. The values plotted on the y-axis are
normalized to the highest (i.e. fastest) frequency respectively for
energy and delay (execution time). This energy-delay “crescendo”

2 In our AMD Opteron-based systems transition costs vary from 20-30
microseconds. Manufacturers set lower bounds (~10 microseconds) to
achieve system stability following mode transitions.
3 To be precise, DVS affects both voltage and frequency. Voltage and
frequency are not independent as shown in Table 1. However for ease of
discussion, we describe measurements in terms of the resulting frequency.

CPU
35%

Memory
16%

Disk
7%

NIC
1%

Other Chipset
5%

Fans
15%

Power Supply
21%

Power consumption distribution for
memory bound application (171.swim)

System Power: 59 Watt

CPU
35%

Memory
16%

Disk
7%

NIC
1%

Other Chipset
5%

Fans
15%

Power Supply
21%

Power consumption distribution for
memory bound application (171.swim)

System Power: 59 Watt

Figure 1: Under various workloads the CPU typically
dominates server power consumption. For this memory
bound code (swim from SPEC 2000) the CPU consumes
35% of total system power on a Pentium III-based node.

Normalized Delay and Energy for Swim

0

0.2

0.4

0.6

0.8

1

1.2

1.4

600 800 1000 1200 1400

CPU Frequency (MHz)

N
or

m
al

iz
ed

 V
al

ue
s

Normalized Energy
Normalized Delay

Figure 2: The energy-delay crescendo for swim shows
the effect of application-dependent CPU slackness on
(node) energy and performance measured at a single
NEMO node. For swim, energy conservation can be
achieved with (at times) reasonable performance loss.

for swim shows when reducing CPU frequency (from right to left)
the delay (execution time) increase varies from almost no increase
at 1200 MHz to about 25% increase at 600 MHz. The
corresponding total system energy decreases steadily with lower
frequencies. Simply put, the memory stalls in swim produce
enough slack periods for DVS to save energy (e.g. 8% at 1200
MHz) with almost no impact on execution time (<1%).

In this work, we study the tradeoffs of various DVS scheduling
techniques designed to exploit CPU slack time in distributed
systems. For parallel codes, idle CPU periods will be workload
dependent and result from both memory and remote
communication stalls. The rest of this paper describes our
distributed DVS scheduling techniques, the software framework
we designed and implemented to measure and control distributed
DVS scheduling, and the results of our study.

3. DISTRIBUTED DVS SCHEDULING
STRATEGIES
Now that we have established DVS as a viable approach to
conserving energy while maintaining performance for HPC
applications, we turn our attention to describing several
approaches to schedule DVS transitions over the duration of a
parallel code. Our goal in this section is not to explore every
possible alternative in distributed DVS scheduling, but to provide
detail on three techniques that differ in complexity and efficiency.

The scheduling techniques studied can be characterized as
follows: 1) user- or system-driven, 2) internal or external to the
application. The techniques can be evaluated by directly
measuring the amount of total system energy consumed and the
amount of execution time required to solution. In this section we
discuss the techniques leaving discussion of our infrastructure for
their evaluation to Section 4 and the results of our evaluation in
Section 5. Figure 3 provides an overview of the three scheduling
methods studied.

3.1 CPUSPEED DAEMON
Strategy #1: Using the CPUSPEED Daemon
System-driven, external control of distributed DVS scheduling
can be implemented as a system process or Daemon. The daemon

we study is the CPUSPEED program included in the latest Fedora
Core releases4. CPUSPEED schedules the DVS modes of a single
node according to the CPU utilization information recorded by the
system in the /proc directory of Linux. Other operating systems
(e.g. Windows running on a laptop) provide comparable daemons
for scheduling CPU, disk, and monitor power modes when the
system is underutilized. These processes run autonomously and
typically use saturation-based counters (or thresholds) and simple
history-based information (e.g. CPU utilization) to migrate
components between power modes.

Assuming a power aware node supports m operating points
(voltage steps or frequencies) and the current operating point is S,
the basic algorithm for CPUSPEED is as follows:

3.2 EXTERNAL
Strategy #2: Scheduling from the command-line
User-driven, external control can be implemented as a program
invocation from the command line or as a system-call from a
process external to the application. This is the approach used to
save energy on a single node for the swim code shown in Figure
2. In the distributed version of this approach, the user
synchronizes and sets the frequency for each node statically5 prior
to executing the application. For distributed applications that are
memory/communication bound or imbalanced applications with
large amounts of CPU slack or idle time, this approach is simple
and effective. Performance profiling can be used to determine the
amount of time the application spends stalled on the CPU for a
given node configuration. Individual nodes can then be set to
different DVS speeds appropriate to their share of the workload.

The process of DVS scheduling using external control is as
follows: First we run a series of microbenchmarks to determine
the effect of DVS on common types of code blocks including
computationally intensive, memory intensive and communication
intensive sequences. Next, we profile the performance of the
application under study as a black box. We then determine which
power mode settings are appropriate for the entire application
running on a single node. Prior to execution, we set the individual
nodes accordingly.

4 See http://carlthompson.net/Software/CPUSpeed
5 Dynamic settings are more appropriate for internal control from within
the application (discussed next).

CPUSPEED DAEMON control

[example $ start_cpuspeed

[example]$ mpirun –np 16 ft.C.16

EXTERNAL control

[example]$ psetcpuspeed 600

[example]$ mpirun –np 16 ft.C.16

INTERNAL control

MPI_Init();

setspeed(1000);

... code segment 1

setspeed(600);

… code segment 2

setspeed(1400);

… code segment 3

setspeed(600);

MPI_Finalize();

Figure 3: Illustrations of the usage of three distributed
DVS control strategies

while(true)
{
 poll %CPU-usage from “/proc/stat”
 if %CPU-usage < minimum-threshold
 S = 0
 else if %CPU-usage > maximum-threshold
 S = m
 else if %CPU-usage < CPU-usage-threshold
 S = max(S-1, 0)
 else
 S = min(S+1, m)
 set-cpu-speed (speed[S])
 sleep (interval)
}

3.3 INTERNAL
Strategy #3: Scheduling within application
User-driven, internal control can be implemented using an API
designed to interface with the power-aware component in the
node. By controlling DVS from within an application, we can
control the granularity of DVS mode transitions. The appropriate
level of granularity depends on the amount of slack time and the
overhead for mode transitions. For some codes with intensive
loop-based computation, transitions between power modes around
basic blocks may be appropriate. For other codes, function-level
granularity may be more useful. At the extreme end, we can resort
to external scheduling at node granularity (see Section 3.2).

Application-level control requires an API. We created such an
API as part of our PowerPack framework discussed in Section 4.
The insertion of API DVS control commands can be implemented
by a compiler, middleware, or manually.

The process of DVS scheduling using internal API control is as
follows: First we run a series of microbenchmarks to determine
the effect of DVS on common types of code blocks including
computationally intensive, memory intensive and communication
intensive sequences. Next, we profile the performance of the
application under study at a fine granularity identifying code
sequences that share characteristics with our microbenchmarks.
We then determine which power mode settings are appropriate for
a given code sequence and insert the appropriate API calls around
the code blocks. For now we do this manually. As part of future
work we plan to integrate this into a compiler or run-time tool.

Figure 3 provides an example using each of the three strategies
described. In the rest of this document, we use CPUSPEED
DAEMON to refer to strategy #1, EXTERNAL to refer to
strategy #2, and INTERNAL to refer to strategy #3. Using
CPUSPEED DAEMON, users execute their application after the

daemon is running. Using EXTERNAL, users determine a
suitable operating frequency and set all the nodes to this operating
point6 (such as 600MHz in the example in Figure 3) before
executing the application. Using INTERNAL, users insert DVS
function calls into the source code, and execute the re-compiled
application. When either external or internal scheduling is used,
CPUSPEED must be turned off.

4. EXPERIMENTAL FRAMEWORK
Our experimental framework is composed of five components:
experimental platform, performance and energy profiling tools,
data collection and analysis software, microbenchmarks, and
metrics for analyzing system power-performance.

4.1 NEMO: Power-aware Cluster
To better understand the impact of DVS technologies on future
high performance computing platforms with DVS, we built a
scalable cluster of high-performance, general purpose CPU’s with
DVS capabilities. Our experimental framework is shown in
Figure 4. It interacts with NEMO, a 16-node DVS-enabled
distributed system7, Baytech power management modules and a
data workstation.

6 For now we focus on a homogeneous implementation of the

EXTERNAL scheduling algorithm. Heterogeneous (different nodes at
different speeds) is straightforward but requires further profiling which
is actually accomplished by the INTERNAL approach.

7 We use this system prototype to compare and contrast the scheduling
policies discussed. Our techniques are general and equally applicable to
emergent server-based clusters with DVS enabled dual AMD Opterons
and Intel Xeon processors. This cluster was constructed prior to the
availability of such nodes to the general public. We are currently
building a cluster of dual AMD Opteron’s with DVS capabilities which
became available in fourth quarter 2004.

AC Power from outlet

DC Power from ATX power supply
Multi-meter

Baytech Powerstrip

Multi-meter Multi-meter

Baytech
management

unit

ATX Power supply

Hardware profiling

MM Thread MM Thread MM Thread

Multi-meter Control Thread
Applications

PowerPack libraries (profile/control)

Microbenchmarks

Software profiling

Power Data
Repository

Power
Data Log

Power
Data Analysis

Data collection

Node Hardware (CPU, disk, NIC, memory)

Figure 4: The PowerPack Framework. This software framework is used to measure, profile, and control several
power-aware clusters including the NEMO cluster under study. Measurements are primarily obtained from the
ACPI interface to the batteries of each node in the cluster and the Baytech Powerstrips for redundancy. The
PowerPack libraries provide an API to control the power modes of each CPU from within the applications. Data is
collected and analyzed from the Baytech equipment and the ACPI interface.

NEMO is constructed with 16 Dell Inspiron 8600 laptops
connected by 100M Cisco System Catalyst 2950 switch. Each
node is equipped with a 1.4 GHz Intel Pentium M processor using
Centrino mobile technology to provide high-performance with
reduced power consumption. The processor includes on-die 32KB
L1 data cache, on-die 1 MB L2 cache, and each node has 1 GB
DDR SDRAM. Enhanced Intel SpeedStep technology allows the
system to dynamically adjust the processor among five supply
voltage and clock frequency settings given by Table 1. The lower
bound on SpeedStep transition latency is approximately 10
microseconds according to the manufacturer [18].

We installed open-source Linux Fedora Core 2 (version 2.6) and
MPICH (version 1.2.5) on each node and choose MPI (message
passing interface) as the model of parallel computation. We use
CPUFreq as the interface for application-level control of the
operating frequency and supply voltage of each node.

4.2 Power, energy and performance profiling
For redundancy and to ensure correctness, we use two
independent techniques to directly measure energy consumption.

The first direct power measurement technique is to poll the
battery attached to the laptop for power consumption information
using ACPI. An ACPI smart battery records battery states to
report remaining capacity in mWh (1mWh=3.6Joules). This
technique provides polling data updated every 15-20 seconds. The
energy consumed by an application is the difference of remaining
capacity between execution beginning and finishing when system
is running on DC battery power. To ensure reproducibility in our
experiments, we do the following operations prior to all power
measurements:

1) Fully charge all batteries in the cluster;

2) Disconnect (automatically) all laptops from wall outlet
power remotely;

3) Discharge batteries for approximately 5 minutes to
ensure accurate measurements;

4) Run parallel applications and record polling data.

The second direct power measurement technique uses specialized
remote management hardware available from Bay Technical
(Baytech) Associates in Bay St. Louis, MS. With Baytech
proprietary hardware and software (GPML50), power related
polling data is updated each minute for all outlets. Data is
reported to a management unit using the SNMP protocol. We
additionally use this equipment to connect and disconnect

building power from the machines as described in the first
technique.

To correlate the power profile and performance profile, we also
generate profiles of tested applications automatically by using an
instrumented version of MPICH. We do application performance
and energy profiling separately because the overhead incurred by
event tracing and recording.

4.3 PowerPack Software
While direct measurement techniques are collectively quite
useful, it was necessary to overcome two inherent problems to use
them effectively. First, these tools may produce large amounts of
data for typical scientific application runs. Second, we must
coordinate power profiling across nodes and hardware polling
rates within a single application.

To overcome these difficulties, we created a software tool suite
called PowerPack. PowerPack performs automating power
measurement data collection and analysis in distributed systems.
PowerPack also includes several portable libraries for (low-
overhead) timestamp-driven coordination of power measurement
data and DVS control at the application-level using system calls.
ACPI is obtained and coordinated using our libraries libbattery.a.
Lastly, we created software to filter and align data sets from
individual nodes for use in power and performance analysis and
optimization. The data in this paper is primarily obtained using
our ACPI-related libraries; however data is verified using the
Baytech hardware.

4.4 Power-performance microbenchmarks
We measure and analyze results for a series of microbenchmark
codes (part of our PowerPack tool suite) to profile the memory,
CPU, and network interface energy behavior at various static
DVS operating points. These microbenchmarks are grouped into
three categories:

1) Memory-bound microbenchmark

2) CPU-bound microbenchmark

3) Communication-bound microbenchmark

We leave disk-bounded microbenchmark for future study, though
disk-bound applications will provide more opportunities to DVS
for energy saving. We provide detailed discussions of our
microbenchmark techniques in a related paper [15].

4.5 Energy-performance efficiency metrics
When different operating points (i.e. frequency) are used, both
energy and delay vary even for the same benchmark. A fused
metric is required to quantify the energy-performance efficiency.
Brooks et al suggest using EDP (Energy-Delay Product) for high-
end workstation and ED2P (Energy-Delay-Squared Product) for
high performance server [6]. Cameron et al propose weighted
ED2P metrics for DVS-enabled power aware cluster [7]. To
ensure greater emphasis on performance, more weight on the
delay factor is required.

In this work, we use ED2P (2DE ×) and ED3P (3DE ×) to
choose “optimal” operating point (i.e., the CPU frequency that
has the minimum ED2P or ED3P value for given benchmarks) in
DVS scheduling for power-aware clusters. ED2P is proportional

Table 1: Operating points for the Pentium M 1.4GHz
processor

Frequency Supply voltage

1.4GHz 1.484V

1.2GHz 1.436V

1.0GHz 1.308V

800MHz 1.180V

600MHz 0.956V

to Joule/MIPS2, and ED3P is proportional to Joule/MIPS3. Since
ED3P metric puts more performance constraint than ED2P metric,
smaller performance loss is expected for scheduling with ED3P in
contrasting to scheduling with ED2P. In this work, both energy
and delay are normalized with the values at the highest
frequencies.

5. EXPERIMENTAL RESULTS AND
DISCUSSION
This section presents our experimental results on three DVS
scheduling strategies for the NAS parallel benchmarks (NPB) [3].
The benchmarks, which are derived from computational fluid
applications, consist of five parallel kernels (EP, MG, CG, FT and
IS) and three pseudo-applications (LU, SP and BT). These eight
benchmarks feature different communication patterns and
communication to computation ratios. We note experiments as
XX.S.# where XX refers to the code name, S refers to the
problem size, and # refers to the number of nodes. For example,
LU.C.8 is the LU code run using the C sized workload on 8
nodes. In all our figures, energy and delay values are normalized
to the highest CPU speed (i.e. 1400 MHz). This corresponds to
energy and delay values without any DVS activity.

To ensure accuracy in our energy measurements using ACPI, we
collected data for program durations measured in minutes. In
some cases we used large problem sizes to ensure application run
length was long enough to ensure accurate measurements. In other
cases we iterate application execution. This ensures the relatively
slow ACPI refresh rates (e.g. 15-20 seconds) accurately record the
energy consumption of the battery for each node. Additionally,
we repeated each experiment at least 3 times or more to identify
outliers.

5.1 CPUSPEED DAEMON Scheduling

Figure 5 shows NAS PB results using CPUSPEED daemon
controlled scheduling on our distributed power-aware cluster. We
evaluate the effect of two versions of CPUSPEED: one is version
1.1 included in Fedora 2 and the other is version 1.2.1 included in
Fedora 3. In version 1.1, the default minimum CPU speed

transition interval value is 0.1 second; in version 1.2.1, the default
interval value has been changed to 2 seconds. Since we have
observed that CPUSPEED version 1.1 always chooses the highest
CPU speed for most NPB codes without significant energy
savings [15], only results of the improved CPUSPEED 1.2.1 are
shown in Figure 5.

The effects of CPUSPEED vary with different codes. For LU and
EP, it saves 3~4% energy with 1~2% delay increase in execution
time. For IS and FT, it reduces 25% energy with 1~4% delay. For
SP and CG, it reduces 31~35% energy with 13~14% delay
increase. However, for MG and BT, it reduces 21% and 23%
energy at the cost of 32% and 36% delay increase.

The original version of CPUSPEED 1.1 was equivalent to no
DVS (our 1400 MHz data point) since threshold values were
never achieved. CPUSPEED version 1.2.1 improves energy-
performance efficiency for scientific codes significantly by
adjusting the thresholds. We intend to study the affects of varying
thresholds for applications that perform poorly even under the
improved version in future work. Overall, CPUSPEED 1.2.1 does
a reasonable job of conserving energy. However, for energy
conservation of significance (>25%) 10% or larger increases in
execution time are necessary, which is not acceptable to the HPC
community. The history-based prediction of CPUSPEED is the
main weakness of the CPUSPEED DAEMON scheduling
approach. This motivates a study of scheduling techniques that
incorporate application performance profiling in the prediction of
slack states.

5.2 EXTERNAL Scheduling
In this section, we examine coarse-grain, user-driven external
control which assumes users know the overall energy-
performance behavior of an application but treat the internals of
the application as a black box.

Section 4 describes the steps necessary to create a database of
microbenchmark information for use in identifying DVS settings
appropriate to an application. Applications with communication/-
computation or memory/computation ratios that match micro-
benchmark characteristics allow a priori selection of DVS
settings. Here, our goal is to analyze this DVS scheduling
approach for the power mode settings in our system.

Table 2 gives raw figures for energy and delay for all the
frequency operating points available on our system over all the
codes in the NAS PB suite. As is evident, such numbers are a bit
overwhelming to the reader. Furthermore, selecting a “good”
frequency operating point is a subjective endeavor. For instance,
BT at 1200 MHz has 2% additional execution time (delay) with
7% energy savings. Is this “better” or “worse” than BT at 1000
MHz with 4% additional execution time and 20% energy savings?
Such comparisons require a metric to evaluate. For this type of
comparison, we use the ED3P (ED3) metric to weight
performance as significant compared to energy savings.

Figure 6 shows the energy-performance efficiency of NPB
benchmarks using external control with ED3P (ED3) metric. This
figure is obtained as follows: For each benchmark, compute the
ED3 value at each operating point using corresponding
normalized delay and normalized energy, and use the operating
point which has the smallest ED3 value as the scheduling point
thereafter. If two points have the same ED3 value, choose the

Normalized Energy and Delay of DAEMON (CPUSPEED)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

LU.C.8 EP.C.8 IS.C.8 FT.C.8 SP.C.9 CG.C.8 MG.C.8 BT.C.9

Normalized Delay
Normalized Energy

Figure 5: Energy-performance efficiency of NPB codes
using CPUSPEED version 1.2.1. The results are sorted by
normalized delay. Normalized delay is total application
execution time with DVS divided by total application
execution time without DVS. Values < 1 indicate
performance loss. Normalized energy is total system
energy with DVS divided by total system energy without
DVS. Values < 1 indicate energy savings.

point with best performance. The effect of external DVS
scheduling shown in Figure 6 reduces energy with minimum
execution time increase and selects an operating frequency that is
application dependent – thus overcoming the weakness of
CPUSPEED.

The effects of external DVS scheduling can be classified in three
categories:

1) Energy reduction with minimal performance impact.
For FT, it saves 30% energy with 7% delay increase in
execution time. For CG, it save 20% energy with 4%
delay increase in execution time.

2) Energy reduction and performance improvement at the
same time8. For SP, it saves 9% energy and also
improves execution time by 1%. For IS, it saves 25%
energy with 9% performance improvement.

3) No energy savings and no performance loss. BT, EP,
LU, MG fall into this category.

Figure 6 uses ED3 as an energy-performance metric that favors
performance to energy saving. We listed the energy and delay
values for the frequency operating points that ED3P would select
automatically for a user given a data set as shown in Table 2. If
users allow slightly larger performance impact for more energy
saving, ED2P (ED2) or EDP (ED) could be selected as the
energy-performance metric. Figure 7 shows the effects of ED2P
metrics used with external DVS scheduling. The trend is the same
as Figure 6, but the metric may select frequency operating points
where energy savings have slightly more weight than execution
time delays. For example, ED2P would select different operating
points for FT corresponding to energy savings of 38% with 13%
delay increase; for CG, it selects 28% energy with 8% delay
increase. For SP, it selects 19% energy with 3% delay increase.

The benefits of external control are limited by three factors: 1) the
application’s energy-performance crescendos using DVS; 2) the
granularity of DVS control; and 3) reduced benefits for workload
imbalance and heterogeneous distribution across the computing
nodes.

8 The results that IS and SP don’t achieve better performance at highest

frequency are repeatable. Similar phenomena have also been observed
for other benchmarks and by other researchers. The initial explanation
is that message communication is not sensitive to frequency above
certain threshold. Within a busy network, higher frequency may increase
the probability of traffic collision and result longer waiting time for
packet retransmission. However, this explanation requires to be verified
through further analysis and experiments.

Normalized Delay and Energy Using EXTERNAL control (ED3P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 SP.C.9 BT.C.9 EP.C.8 LU.C.8 MG.C.8 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

Figure 6: Energy-performance efficiency of NPB codes
using EXTERNAL DVS control. ED3P is chosen as the
energy-performance metric in this figure. The results are
sorted by normalized delay.

Table 2: Energy-performance profiles of NPB
benchmarks

Only partial results are shown here. In each cell, the number on the
top is the normalized delay and the number at the bottom is the
normalized energy. The column “auto” means scheduling using
CPUSPEED. The columns “XXX MHz” refer to the static external
setting of processor frequency.

CPU Speed

Code
auto

600

MHz

800

MHz

1000

MHz

1200

MHz

1400

MHz

1.36 1.52 1.27 1.14 1.05 1.00
BT.C.9

0.89 0.79 0.82 0.87 0.96 1.00

1.14 1.14 1.08 1.04 1.02 1.00
CG.C.8

0.65 0.65 0.72 0.80 0.93 1.00

1.01 2.35 1.75 1.40 1.17 1.00
EP.C.8

0.97 1.15 1.03 1.02 1.03 1.00

1.04 1.13 1.07 1.04 1.02 1.00
FT.C.8

0.76 0.62 0.70 0.80 0.93 1.00

1.02 1.04 1.01 0.91 1.03 1.00
IS.C.8

0.75 0.68 0.73 0.75 0.94 1.00

1.01 1.58 1.32 1.18 1.07 1.00
LU.C.8

0.96 0.79 0.82 0.88 0.95 1.00

1.32 1.39 1.21 1.10 1.04 1.00
MG.C.8

0.87 0.76 0.79 0.85 0.97 1.00

1.13 1.18 1.08 1.03 0.99 1.00
SP.C.9

Normalized Delay and Energy Using EXTERNAL Control (ED2P)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IS.C.8 BT.C.9 EP.C.8 LU.C.8 MG.C.8 SP.C.9 CG.C.8 FT.C.8

Normalized Delay
Normalized Energy

Figure 7: Energy-performance efficiency of NPB codes
using EXTERNAL control. ED2P is chosen as the energy-
performance metric in this figure. The results are sorted
by normalized delay.

The first limitation determines whether DVS is useful for an
application or not. Figure 8 shows graphically the energy-
performance profiles under external DVS scheduling using
energy-delay crescendos (see Section 2). These figures indicate
that we can group the eight benchmarks into four categories:

Type I (EP): near zero energy benefit, linear performance
decrease when scaling down CPU speed.

Type II (BT, MG and LU): near linear energy reduction and near
linear delay increase, the rate of delay increase and energy
reduction is about same.

Type III (FT, CG and SP): near linear energy reduction and linear
delay increase, but the rate of delay increase is smaller than the
rate of energy reduction.

Type IV (IS): near zero performance decrease, linear energy
saving when scaling down CPU speed.

This classification matches the effects of external control shown
in figure 6 and figure 7. In other words, the observed trends
indicate basically that Type III and Type IV save energy while
Type I and Type II do not save energy.

The second and third limitations are not shown in the figure but
can be understood analytically: a real parallel application will
consist of combinations of dependent computation modules which
belong to two or more of the categories mentioned above. If we
only schedule a single static CPU speed for all nodes during the
whole execution, benefits obtained from Type III and Type IV
will be compromised by the impact of Type I and Type II.
Therefore, we need to use internal control to overcome this
limitation. Internal control (discussed next) must consider
application execution phases.

5.3 INTERNAL Scheduling
We use FT.C.8 and CG.C.8 as examples to illustrate how to
implement internal scheduling for different workload and its
effects and limitation. Each example starts with performance

profiling and then the DVS scheduling strategy is derived by
analyzing the profiles. The effects of the scheduler are verified
with experimental results.

5.3.1 Internal scheduling for FT benchmark
Performance Profiling: Figure 9 shows the performance profile
of FT generated with MPICH trace utility by compiling the code
with “–mpilog” option. The following observations are drawn
from the profile.

1) FT is communication-bound and its communication to
computation ratio is about 2:1.

2) Most execution time is consumed by all-to-all
communication.

Figure 9: Performance trace of FT.C.8 using MPE tool
provided with MPICH. The traces are visualized with
Jumpshot.

EP.C.8

0.00

0.50

1.00

1.50

2.00

2.50

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

BT.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

MG.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

LU.C.8

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

FT.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

CG.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

SP.C.9

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

IS.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400

Normalized Delay
Normalized Energy

Figure 8: Energy-delay crescendos of NPB benchmarks. X-axis is CPU speed. Y-axis is the normalized value (delay and energy).
The eight figures are grouped into four categories.

3) The execution time per iteration is sufficiently big such
that the CPU speed transition overhead can be ignored.

4) The workload is almost balanced across all nodes.

Scheduling Design: based on the above observation we divide
each iteration into all-to-all communication phases and other
phases. Therefore the CPU is set to low speed for all-to-all
communication phase and restored to high CPU speed thereafter.
Figure 10 shows how DVS control is inserted into the source
code.

Experiment Results: Figure 11 shows the energy savings and
increase in execution time delays using internal scheduling. By
choosing high_speed as 1400 MHz and low_speed as 600 MHz,
internal scheduling can save 36% energy without noticeable delay
increase. This is significant improvement over both external
control and CPUSPEED. External control at 600MHz saves 38%
energy but the cost is 13% delay increase. CPUSPEED saves 24%
energy with 4% delay increase. This shows internal scheduling is
preferred when the application contains obvious CPU-bound
phases and non-CPU bounded phases and each phase lasts long
enough to compensate for the CPU speed transition overhead.

5.3.2 Internal Control for CG benchmark
Performance Profiling: Figure 12 shows the performance profile
of CG with the following observations:

1) CG is communication intensive and synchronizes all
nodes within each cycle.

2) Wait and Send are major communication events.

3) The execution time of each cycle is relatively small, the
message communications are frequent and CPU speed
transition overhead can not be ignored.

4) Different nodes exhibit different communication and
computation behavior. Nodes 4-7 have larger
communication-to-computation ratio compared to nodes
0-3.

Scheduling Decision: Based on the above observations, we found
it challenging to improve power-performance efficiency with
phased-based DVS scheduling. We have implemented two phase-
based dynamic scheduling policies for CG: the first is to scale
down CPU speed during communication; the second is to scale
down CPU speed during MPI_Wait. Both phase-based DVS
scheduling approaches increase both energy and delay (1~3%).
According to the asymmetric performance behavior on each node,
we can set different speeds for each execution node. The DVS
controls are inserted as shown in Figure 13.

…

call set_cpuspeed(low_speed)

call mpi_alltoall(…)

call set_cpuspeed(high_speed)

…

Figure 10: INTERNAL control for FT benchmark

Normalized Energy and Delay of INTERNAL Control for FT.C.8

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL

normalized delay
normalized energy

Figure 11: Normalized energy and delay of INTERNAL
control, EXTERNAL scheduling and CPUSPEED. In
INTERNAL control, high speed and low speed are set as
1400 and 600 MHz respectively. All EXTERNAL control’s
decisions (600MHZ-1400MHz) are given on the x-axis.
CPUSPEED is shown as auto in this figure. Normalized
delay is total application execution time with DVS divided
by total application execution time without DVS. Values <
1 indicate performance loss. Normalized energy is total
system energy with DVS divided by total system energy
without DVS. Values < 1 indicate energy savings.

(a) Profile visualized at iteration granularity

(b) Profile visualized at message granularity.

(c) The meaning of the logo in (a) and (b)

Figure 12: Performance trace of CG.C.8 using MPE tool
provided with MPICH. The traces are visualized with
Jumpshot.

Experimental Results: The results from the experiments are
shown in Figure 14. We provide results for two configurations:
internal I which uses 1200 MHz as high speed and 800 MHz as
low speed and internal II which uses 1000 MHz as high speed and
800 MHz as low speed. Experiments show that internal I saves
23% energy with 8% delay increase and internal II saves 16%
energy with 8% delay increase. Both internal I and II scheduling
for CG do not provide significant advantages over external
scheduling at 800MHZ. This is reasonable since CG requires
frequent synchronization and the external control aggregates gains
and losses across all nodes.

Overall: Internal scheduling provides DVS control with finer
granularity than external scheduling. Internal scheduling achieves
better (or at least as good) energy-performance efficiency. FT
shows the benefit of phased-based internal scheduling; CG shows
the benefit of heterogeneous internal scheduling.

6. RELATED WORK
Dynamic Voltage Scaling has been studied for decades, mostly in
the area of energy-constrained, low power, real time system and
mobile system. Researchers have developed various DVS
scheduling algorithms to save energy under timing deadlines [20,
23].

As low power technologies have migrated to most core
components of high-performance systems including processor,
disk, memory, network card [8, 9, 11], researchers have studied
the effects of power-aware technologies on general purpose
processors to conserve energy while maintaining performance.

Some work has also been accomplished in distributed systems[5,
8]. These studies focus on conserving energy in clusters of web
servers. Energy is conserved by exploiting the characteristics of
interactive workloads [16]. Tasks are scheduled and migrated to
optimally conserve energy in data centers.

However, the differences between interactive workloads and
scientific workloads require different power management
strategies. Hsu and Kremer use compiler-directed dynamic
voltage and frequency scheduling to exploit slackness for energy
savings using non-interactive scientific workloads [15]. This is an
important step towards power-aware high performance computing
though it targets sequential applications on a single processor.
Recently, several research groups have studied using DVS
scheduling to improve the energy-performance efficiency in high
performance computing. Cameron et al and Freeh et al have
demonstrated significant energy savings can be achieved with
minimum performance impact by exploiting the computing
efficiencies in parallel scientific computing [7, 13, 14]. Chen et al
suggested scaling down the CPU speed on nodes that are not in

the critical path so that energy can be saved without performance
penalty [10].

Our work is orthogonal to these studies. In this paper, though we
provide further evidence that high-performance power-aware
distributed computing is viable, we focus on implementing and
analyzing various distributed DVS scheduling policies. Such
policies are critical to automating middleware that alleviates users
from thinking about power and energy consumption. Our results
indicate given user-defined energy-performance efficiency
metrics, our schedulers can reduce energy and guarantee
performance. Our experiments all indicate that no single
scheduling strategy fits all scientific codes.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have designed and implemented distributed DVS
scheduling for power-aware clusters, and created a framework for
application-level power measurement and optimization. We
directly measure, analyze, and compare several DVS strategies on
a power-aware cluster to conserve power while maintaining
performance in scientific parallel applications.

Our results reinforce the recent discovery that significant amounts
of energy can be saved in parallel scientific applications while
maintaining performance. We achieved total energy savings as
large as 36% with no negative impact on performance. However,
we also showed that energy savings vary greatly with application,
workload, system, and DVS strategy.

We identified the primary weaknesses in history-based scheduling
techniques applied to scientific applications. We also showed that
the most flexible scheduling technique (INTERNAL) does not
always provide significant gains over simpler implementations
such as EXTERNAL command line settings.

While this work brings us closer to middleware that can provide
energy savings automatically with little user intervention, our
techniques are largely manual and more work is needed to fully
automate the process. Our future work includes attempting to
improve automation and address the limitations of the various
scheduling techniques. Our continuing goal is to improve energy
savings while maintaining performance through better prediction
methods more suitable to high-performance computing
applications.

Normalized Energy and Delay of INTERNAL Control for CG

0.00

0.20

0.40

0.60

0.80

1.00

1.20

auto 600 800 1000 1200 1400 INTERNAL
I

INTERNAL
II

normalized delay
normalized energy

Figure 14: Normalized energy and delay of INTERNAL
scheduling, EXTERNAL control and CPUSPEED
scheduling for CG. For INTERAL I, high speed is 1200,
and low speed is 800; for INTERNAL II, high speed is
1000 and low speed is 800.

 …

 if (myrank .ge. 0 .and. myrank .le. 3)

 call set_cpuspeed(high_speed)

 else

 call set_cpuspeed(low_speed)

 endif

 …

Figure 13: INTERNAL control for CG benchmark

ACKNOWLEDGEMENTS
The authors would like to thank the National Science Foundation
and the Department of Energy for sponsoring this work under
grants NSF CCF-#0347683 and DOE DE-FG02-04ER25608
respectively.

REFERENCES

[1] AMD, "Mobile AMD Duron Processor Model 7 Data
Sheet," AMD, 2001.
[2] D.H. Bailey, "21st Century High-End Computing," In
invited Talk Application, Algorithms and Architectures workshop
for BlueGene/L, 2002.
[3] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning,
R.L. Carter, L. Dagum, R.A. Fatoohi, P.O. Frederickson, T.A.
Lasinski, R.S. Schreiber, H.D. Simon, V. Venkatakrishnan, and
S.K. Weeratunga, "The Nas Parallel Benchmarks," International
Journal of Supercomputer Applications and High Performance
Computing, vol. 5, pp. 63-73, 1991.
[4] BlueGene/LTeam, "An overview of the BlueGene/L
supercomputer," Supercomputing 2002 Technical Papers, 2002.
[5] P. Bohrer, E.N. Elnozahy, T. Keller, M. Kister, C.
Lefurgy, C. Mcdowell, and R. Rajamony, "The Case For Power
Management in Web Servers," in Power Aware Computing, R.
Graybill and R. Melhem, Eds. IBM Research, Austin TX 78758,
USA.: Klewer Academic, 2002.
[6] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N.
Kudva, A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M.
Gupta, and P.W. Cook, "Power-Aware Microarchitecture: Design
and Modeling Challenges for Next-Generation Microprocessors,"
IEEE Micro, vol. 20, pp. 26-44, 2000.
[7] K.W. Cameron, R. Ge, X. Feng, D. Varner, and C.
Jones, "POSTER: High-performance, Power-aware Distributed
Computing Framework," presented at Proceedings of 16th
International Conference on High Performance Computing and
Communications (SC 2004), 2004.
[8] E.V. Carrera, E. Pinheiro, and R. Bianchini,
"Conserving Disk Energy in Network Servers," presented at
Proceedings of the 17th International Conference on
Supercomputing, 2003.
[9] S. Chandra, Wireless network interface energy
consumption implications of popular streaming formats.
Multimedia Computing and Networking (MMCN'02), vol. 4673.
San Jose, CA: The International Society of Optical Engineering,
2002.
[10] G. Chen, K. Malkowski, M. Kandemir, and P.
Raghavan, "Reducing Power with Performance Contraints for
Parallel Sparse Applications," presented at The First Workshop on
High-Performance, Power-Aware Computing, Denver, Colorado,
2005.

[11] X. Fan, C.S. Ellis, and A.R. Lebeck, "The synergy
between power-aware memory systems and processor voltage
scaling," Department of Computer Science Duke University,
Durham TR CS-2002-12, 2002.
[12] X. Feng, Rong Ge, Kirk Cameron, "Power and Energy
Profiling of Scientific Applications on Distributed Systems,"
presented at 19th International Parallel and Distributed Processing
Symposium (IPDPS 05), Denver, CO, 2005.
[13] V.W. Freeh, D.K. Lowenthal, F. Pan, and N. Kappiah,
"Using Multiple Energy Gears in MPI Programs on a Power-
Scalable Cluster," presented at 10th ACM Symposium on
Principles and Practice of Parallel Programming (PPoPP), 2005.
[14] V.W. Freeh, D.K. Lowenthal, R. Springer, F. Pan, and
N. Kappiah, "Exploring the Energy-Time Tradeoff in MPI
Programs," presented at 19th IEEE/ACM International Parallel
and Distributed Processing Symposium (IPDPS), Denver,
Colorado, 2005.
[15] R. Ge, X. Feng, and K.W. Cameron, "Improvement of
Power-Performance Efficiency for High-End Computing,"
presented at 1st Workshop on High-Performance, Power-Aware
Computing (HPPAC 2005), in conjunction with IPDPS'2005,
Denver, Colorado, 2005.
[16] C.-H. Hsu and U. Kremer, "The design,
implementation, and evaluation of a compiler algorithm for CPU
energy reduction," presented at ACM SIGPLAN Conference on
Programming Languages, Design, and Implementation (PLDI'03),
San Diego, CA, 2003.
[17] Intel, "Developer's manual: Intel 80200 Processor Based
on Intel XScale Microarchitecture.," 1989.
[18] Intel, "Intel Pentium M Processor datasheet," 2004.
[19] D. Laird, "Crusoe Processor Products and Technology,"
Transmeta, 2000.
[20] J.R. Lorch and A.J. Smith, "PACE: A new approach to
dynamic voltage scaling," Ieee Transactions on Computers, vol.
53, pp. 856-869, 2004.
[21] D.A. Patterson and J.L. Hennessy, Computer
Architecture: A quantitative approach, 3rd ed. San Fancisco, CA:
Morgan Kaufmann Publishers, 2003.
[22] M.S. Warren, E.H. Weigle, and W.-C. Feng, "High-
Density Computing: A 240-Processor Beowulf in One Cubic
Meter," presented at IEEE/ACM SC2002 Conference, Baltimore,
Maryland, 2002.
[23] A. Weissel and F. Bellosa, "Process Cruise Control-
Event-Driven Clock Scaling for Dynamic Power Management,"
presented at Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems
(CASES 2002), Grenoble, France, 2002.

