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ABSTRACT 
Left unchecked, the fundamental drive to increase peak 
performance using tens of thousands of power hungry 
components will lead to intolerable operating costs and failure 
rates. High-performance, power-aware distributed computing 
reduces power and energy consumption of distributed applications 
and systems without sacrificing performance. Generally, we use 
DVS (Dynamic Voltage Scaling) technology now available in 
high-performance microprocessors to reduce power consumption 
during parallel application runs when peak CPU performance is 
not necessary due to load imbalance, communication delays, etc. 
We propose distributed performance-directed DVS scheduling 
strategies for use in scalable power-aware HPC clusters. By 
varying scheduling granularity we can obtain significant energy 
savings without increasing execution time (36% for FT from NAS 
PB). We created a software framework to implement and evaluate 
our various techniques and show performance-directed scheduling 
consistently saves more energy (nearly 25% for several codes) 
than comparable approaches with less impact on execution time 
(<5%). Additionally, we illustrate the use of energy-delay 
products to automatically select distributed DVS schedules that 
meet users’ needs. 

1. INTRODUCTION 
Many high-end distributed systems use tens of thousands of 
power-hungry commercial components in clusters to achieve high 
performance. Power reduction and energy conservation are 
important in these systems for two major reasons: operating cost, 
and reliability.  

Operating cost: Earth Simulator requires about 12 megawatts of 
peak power. Petaflop systems may require 100 megawatts of 
power [2], nearly the output of a small power plant (300 
megawatts). At $100 per megawatt ($.10 per kilowatt), peak 
operation of this petaflop machine is $10,000 per hour. More 
conservative estimates of 20% peak operational power ($2,000 

per hour) are still beyond the budget constraints of many high-end 
system centers. These estimates ignore the additional cost of 
dedicated cooling.  

System reliability: Commodity components fail at an annual rate 
of 2-3% [21]. A petaflop system of about 12,000 nodes (CPU, 
DRAM, NIC, and disk) will sustain hardware failures once every 
twenty-four hours. According to formula based on the Arrhenius 
Law, component life expectancy decreases 50% for every 10° C 
(18° F) temperature increase. Reducing a component's operating 
temperature the same amount (consuming less energy) doubles 
the life expectancy. 

To address operating cost and reliability concerns, large-scale 
systems are being developed with low power components. This 
strategy, used in construction of Green Destiny [22] and IBM 
BlueGene/L [4], requires changes in architectural design to 
improve performance. For example, Green Destiny relies on 
driving the Transmeta Crusoe processor [19] development while 
BlueGene/L uses a version of the embedded PowerPC chip 
modified with additional floating point support. In essence, the 
resulting high-end machines are no longer strictly composed of 
commodity parts – making this approach very expensive to 
sustain. 

In contrast to Green Destiny and BlueGene/L, we seek to create 
distributed system middleware that exploits the inefficiencies 
common to many parallel applications and leverages commodity 
high-performance technologies. Our general power-aware 
approach is to use off-the-shelf Dynamic Voltage Scaling (DVS) 
technologies of emergent high-performance processors1 in server-
class systems and schedule cluster-wide power consumption to 
exploit scientific workload characteristics. 

Power-aware clusters are distributed clusters containing 
components that have multiple power/performance modes (e.g. 
CPU’s with DVS). The time spent within and transitioning 
to/from these power/performance modes determines the delay 
(cost in performance) and energy (cost in power, heat, etc.). We 
study distributed DVS scheduling techniques in power-aware 
clusters. External distributed DVS scheduling techniques are 
autonomous and control DVS power/performance modes in a 
cluster as processes separate from the application under study. 

                                                                 
1 DVS capabilities are now available in server-class architectures including 
Intel Xeon (SE7520 chipset) and AMD Opteron (Tyan s2882 board) dual 
processor nodes.  
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External schedulers may be system-driven (e.g. the cpuspeed 
daemon) or user-driven (e.g. setting DVS from the command 
line). Internal distributed DVS scheduling techniques use source-
level performance profiling to direct DVS power/performance 
modes with source-code instrumentation. 

This paper is organized as follows: Section 2 provides an example 
to motivate our use of DVS to conserve cluster-wide energy while 
minimizing the impact on execution time. In Section 3, we 
provide a detailed description of the internal and external 
distributed DVS scheduling techniques used in our study. In 
Section 4, we describe our software framework to measure, 
profile, and control power consumption and performance in a 
distributed system. Section 5 gives the results of our detailed 
analysis of these scheduling techniques applied to the NAS 
Parallel Benchmarks. In Section 6 we describe how our approach 
differs from the work of others in this area. We close with some 
observations of trends in our data and future work. 

2. MOTIVATING THE USE OF DVS IN 
HPC CLUSTERS  
Dynamic Voltage Scaling (DVS) is a technology now present in 
high-performance microprocessors [1, 17]. DVS works on a very 
simple principal: decreasing the supply voltage to the CPU 
consumes less power. The dynamic power consumption (P) of a 
CMOS-based microprocessor is proportional to the product of 
total capacitance load (C), frequency (f), the square of the supply 
voltage (V2), and percentage of active gates (A): 

fACVP 2≈  (1) 

Energy consumption (measured in joules) is reduced by lowering 
the average power ( avgP ) consumed for some duration or delay 

( 12 ttD −= ). 

2 1( )avg avgE P t t P D= × − = ×
 (2) 

There are two compelling reasons for using DVS to conserve 
energy in HPC server clusters. The first reason is to exploit the 
dominance of CPU power consumption on system node (and thus 
cluster) power consumption. Figure 1 shows the breakdown of 
system node power obtained using direct measurement described 
by Feng et al [12]. This figure shows percentage of total system 
power for a Pentium III CPU (35%) under load. This percentage 
is lower (15%) but still significant when the CPU is idle. While 
the Pentium III can consume nearly 45 watts recent processors 
such as Itanium 2 consume over 100 watts and a growing 
percentage of total system power. Reducing the average power 
consumed by the CPU can result in significant server energy 
savings magnified in cluster systems. 

The second reason for using DVS to conserve energy in HPC 
server clusters is to save energy without increasing execution 
time. DVS provides the ability to dynamically reduce power 
consumption. By reducing CPU power when peak speed is not 
needed (e.g. idle or slack periods) a DVS scheduling algorithm 
can reduce energy consumption. To minimize the impact on 
execution time we must ensure 1) supply voltage is reduced 
during CPU times when peak speed is not necessary, and 2) 
period duration outweighs voltage state transition costs2. 

Figure 2 shows the use of DVS on a single node to exploit CPU 
slack due to memory stalls. In this example we run swim from the 
SPEC 2000 benchmark suite on a DVS-enabled node at various 
fixed voltages shown as the resulting frequency3 on the x-axis in 
increasing order. Lower frequency (i.e. lower voltage) means 
lower CPU performance. The values plotted on the y-axis are 
normalized to the highest (i.e. fastest) frequency respectively for 
energy and delay (execution time). This energy-delay “crescendo” 
                                                                 
2 In our AMD Opteron-based systems transition costs vary from 20-30 
microseconds. Manufacturers set lower bounds (~10 microseconds) to 
achieve system stability following mode transitions. 
3 To be precise, DVS affects both voltage and frequency. Voltage and 
frequency are not independent as shown in Table 1. However for ease of 
discussion, we describe measurements in terms of the resulting frequency. 
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Figure 1: Under various workloads the CPU typically 
dominates server power consumption. For this memory 
bound code (swim from SPEC 2000) the CPU consumes 
35% of total system power on a Pentium III-based node. 

Normalized Delay and Energy for Swim

0

0.2

0.4

0.6

0.8

1

1.2

1.4

600 800 1000 1200 1400

CPU Frequency (MHz)

N
or

m
al

iz
ed

 V
al

ue
s

Normalized Energy
Normalized Delay

Figure 2: The energy-delay crescendo for swim shows 
the effect of application-dependent CPU slackness on 
(node) energy and performance measured at a single 
NEMO node. For swim, energy conservation can be 
achieved with (at times) reasonable performance loss.  



for swim shows when reducing CPU frequency (from right to left) 
the delay (execution time) increase varies from almost no increase 
at 1200 MHz to about 25% increase at 600 MHz. The 
corresponding total system energy decreases steadily with lower 
frequencies. Simply put, the memory stalls in swim produce 
enough slack periods for DVS to save energy (e.g. 8% at 1200 
MHz) with almost no impact on execution time (<1%). 

In this work, we study the tradeoffs of various DVS scheduling 
techniques designed to exploit CPU slack time in distributed 
systems. For parallel codes, idle CPU periods will be workload 
dependent and result from both memory and remote 
communication stalls. The rest of this paper describes our 
distributed DVS scheduling techniques, the software framework 
we designed and implemented to measure and control distributed 
DVS scheduling, and the results of our study.  

3. DISTRIBUTED DVS SCHEDULING 
STRATEGIES 
Now that we have established DVS as a viable approach to 
conserving energy while maintaining performance for HPC 
applications, we turn our attention to describing several 
approaches to schedule DVS transitions over the duration of a 
parallel code. Our goal in this section is not to explore every 
possible alternative in distributed DVS scheduling, but to provide 
detail on three techniques that differ in complexity and efficiency. 

The scheduling techniques studied can be characterized as 
follows: 1) user- or system-driven, 2) internal or external to the 
application. The techniques can be evaluated by directly 
measuring the amount of total system energy consumed and the 
amount of execution time required to solution. In this section we 
discuss the techniques leaving discussion of our infrastructure for 
their evaluation to Section 4 and the results of our evaluation in 
Section 5. Figure 3 provides an overview of the three scheduling 
methods studied. 

 

3.1 CPUSPEED DAEMON 
Strategy #1: Using the CPUSPEED Daemon 
System-driven, external control of distributed DVS scheduling 
can be implemented as a system process or Daemon. The daemon 

we study is the CPUSPEED program included in the latest Fedora 
Core releases4. CPUSPEED schedules the DVS modes of a single 
node according to the CPU utilization information recorded by the 
system in the /proc directory of Linux. Other operating systems 
(e.g. Windows running on a laptop) provide comparable daemons 
for scheduling CPU, disk, and monitor power modes when the 
system is underutilized. These processes run autonomously and 
typically use saturation-based counters (or thresholds) and simple 
history-based information (e.g. CPU utilization) to migrate 
components between power modes. 

Assuming a power aware node supports m operating points 
(voltage steps or frequencies) and the current operating point is S, 
the basic algorithm for CPUSPEED is as follows: 

3.2 EXTERNAL 
Strategy #2: Scheduling from the command-line 
User-driven, external control can be implemented as a program 
invocation from the command line or as a system-call from a 
process external to the application. This is the approach used to 
save energy on a single node for the swim code shown in Figure 
2. In the distributed version of this approach, the user 
synchronizes and sets the frequency for each node statically5 prior 
to executing the application. For distributed applications that are 
memory/communication bound or imbalanced applications with 
large amounts of CPU slack or idle time, this approach is simple 
and effective. Performance profiling can be used to determine the 
amount of time the application spends stalled on the CPU for a 
given node configuration. Individual nodes can then be set to 
different DVS speeds appropriate to their share of the workload. 

The process of DVS scheduling using external control is as 
follows: First we run a series of microbenchmarks to determine 
the effect of DVS on common types of code blocks including 
computationally intensive, memory intensive and communication 
intensive sequences. Next, we profile the performance of the 
application under study as a black box. We then determine which 
power mode settings are appropriate for the entire application 
running on a single node. Prior to execution, we set the individual 
nodes accordingly. 

                                                                 
4 See http://carlthompson.net/Software/CPUSpeed 
5 Dynamic settings are more appropriate for internal control from within 
the application (discussed next). 

CPUSPEED DAEMON control 

 
[example $ start_cpuspeed 
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[example]$ psetcpuspeed 600 
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MPI_Init(); 

setspeed(1000); 

... code segment 1 

setspeed(600); 

… code segment  2  

setspeed(1400); 

… code segment  3 

setspeed(600); 

MPI_Finalize(); 

Figure 3: Illustrations of the usage of three distributed 
DVS control strategies 

while( true ) 
{ 
   poll %CPU-usage from “/proc/stat” 
   if %CPU-usage < minimum-threshold 
      S = 0 
   else if %CPU-usage > maximum-threshold 
      S = m 
   else if %CPU-usage < CPU-usage-threshold 
      S = max( S-1, 0) 
   else 
      S = min( S+1, m) 
   set-cpu-speed ( speed[S] ) 
   sleep (interval) 
} 



3.3 INTERNAL 
Strategy #3: Scheduling within application 
User-driven, internal control can be implemented using an API 
designed to interface with the power-aware component in the 
node. By controlling DVS from within an application, we can 
control the granularity of DVS mode transitions. The appropriate 
level of granularity depends on the amount of slack time and the 
overhead for mode transitions. For some codes with intensive 
loop-based computation, transitions between power modes around 
basic blocks may be appropriate. For other codes, function-level 
granularity may be more useful. At the extreme end, we can resort 
to external scheduling at node granularity (see Section 3.2). 

Application-level control requires an API. We created such an 
API as part of our PowerPack framework discussed in Section 4. 
The insertion of API DVS control commands can be implemented 
by a compiler, middleware, or manually. 

The process of DVS scheduling using internal API control is as 
follows: First we run a series of microbenchmarks to determine 
the effect of DVS on common types of code blocks including 
computationally intensive, memory intensive and communication 
intensive sequences. Next, we profile the performance of the 
application under study at a fine granularity identifying code 
sequences that share characteristics with our microbenchmarks. 
We then determine which power mode settings are appropriate for 
a given code sequence and insert the appropriate API calls around 
the code blocks. For now we do this manually. As part of future 
work we plan to integrate this into a compiler or run-time tool. 

Figure 3 provides an example using each of the three strategies 
described. In the rest of this document, we use CPUSPEED 
DAEMON to refer to strategy #1, EXTERNAL to refer to 
strategy #2, and INTERNAL to refer to strategy #3. Using 
CPUSPEED DAEMON, users execute their application after the 

daemon is running. Using EXTERNAL, users determine a 
suitable operating frequency and set all the nodes to this operating 
point6 (such as 600MHz in the example in Figure 3) before 
executing the application. Using INTERNAL, users insert DVS 
function calls into the source code, and execute the re-compiled 
application. When either external or internal scheduling is used, 
CPUSPEED must be turned off. 

4. EXPERIMENTAL FRAMEWORK  
Our experimental framework is composed of five components: 
experimental platform, performance and energy profiling tools, 
data collection and analysis software, microbenchmarks, and 
metrics for analyzing system power-performance. 

4.1 NEMO: Power-aware Cluster 
To better understand the impact of DVS technologies on future 
high performance computing platforms with DVS, we built a 
scalable cluster of high-performance, general purpose CPU’s with 
DVS capabilities. Our experimental framework is shown in 
Figure 4.  It interacts with NEMO, a 16-node DVS-enabled 
distributed system7, Baytech power management modules and a 
data workstation. 

                                                                 
6 For now we focus on a homogeneous implementation of the 

EXTERNAL scheduling algorithm. Heterogeneous (different nodes at 
different speeds) is straightforward but requires further profiling which 
is actually accomplished by the INTERNAL approach. 

7 We use this system prototype to compare and contrast the scheduling 
policies discussed. Our techniques are general and equally applicable to 
emergent server-based clusters with DVS enabled dual AMD Opterons 
and Intel Xeon processors. This cluster was constructed prior to the 
availability of such nodes to the general public. We are currently 
building a cluster of dual AMD Opteron’s with DVS capabilities which 
became available in fourth quarter 2004. 
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Figure 4: The PowerPack Framework. This software framework is used to measure, profile, and control several 
power-aware clusters including the NEMO cluster under study. Measurements are primarily obtained from the 
ACPI interface to the batteries of each node in the cluster and the Baytech Powerstrips for redundancy. The 
PowerPack libraries provide an API to control the power modes of each CPU from within the applications. Data is 
collected and analyzed from the Baytech equipment and the ACPI interface. 



NEMO is constructed with 16 Dell Inspiron 8600 laptops 
connected by 100M Cisco System Catalyst 2950 switch. Each 
node is equipped with a 1.4 GHz Intel Pentium M processor using 
Centrino mobile technology to provide high-performance with 
reduced power consumption. The processor includes on-die 32KB 
L1 data cache, on-die 1 MB L2 cache, and each node has 1 GB 
DDR SDRAM. Enhanced Intel SpeedStep technology allows the 
system to dynamically adjust the processor among five supply 
voltage and clock frequency settings given by Table 1. The lower 
bound on SpeedStep transition latency is approximately 10 
microseconds according to the manufacturer [18].  

We installed open-source Linux Fedora Core 2 (version 2.6) and 
MPICH (version 1.2.5) on each node and choose MPI (message 
passing interface) as the model of parallel computation. We use 
CPUFreq as the interface for application-level control of the 
operating frequency and supply voltage of each node. 

4.2 Power, energy and performance profiling 
For redundancy and to ensure correctness, we use two 
independent techniques to directly measure energy consumption. 

The first direct power measurement technique is to poll the 
battery attached to the laptop for power consumption information 
using ACPI. An ACPI smart battery records battery states to 
report remaining capacity in mWh (1mWh=3.6Joules). This 
technique provides polling data updated every 15-20 seconds. The 
energy consumed by an application is the difference of remaining 
capacity between execution beginning and finishing when system 
is running on DC battery power. To ensure reproducibility in our 
experiments, we do the following operations prior to all power 
measurements: 

1) Fully charge all batteries in the cluster; 

2) Disconnect (automatically) all laptops from wall outlet 
power remotely; 

3) Discharge batteries for approximately 5 minutes to 
ensure accurate measurements; 

4) Run parallel applications and record polling data.  

The second direct power measurement technique uses specialized 
remote management hardware available from Bay Technical 
(Baytech) Associates in Bay St. Louis, MS. With Baytech 
proprietary hardware and software (GPML50), power related 
polling data is updated each minute for all outlets. Data is 
reported to a management unit using the SNMP protocol. We 
additionally use this equipment to connect and disconnect 

building power from the machines as described in the first 
technique. 

To correlate the power profile and performance profile, we also 
generate profiles of tested applications automatically by using an 
instrumented version of MPICH. We do application performance 
and energy profiling separately because the overhead incurred by 
event tracing and recording.  

4.3 PowerPack Software 
While direct measurement techniques are collectively quite 
useful, it was necessary to overcome two inherent problems to use 
them effectively. First, these tools may produce large amounts of 
data for typical scientific application runs. Second, we must 
coordinate power profiling across nodes and hardware polling 
rates within a single application. 

To overcome these difficulties, we created a software tool suite 
called PowerPack. PowerPack performs automating power 
measurement data collection and analysis in distributed systems. 
PowerPack also includes several portable libraries for (low-
overhead) timestamp-driven coordination of power measurement 
data and DVS control at the application-level using system calls. 
ACPI is obtained and coordinated using our libraries libbattery.a. 
Lastly, we created software to filter and align data sets from 
individual nodes for use in power and performance analysis and 
optimization. The data in this paper is primarily obtained using 
our ACPI-related libraries; however data is verified using the 
Baytech hardware. 

4.4 Power-performance microbenchmarks 
We measure and analyze results for a series of microbenchmark 
codes (part of our PowerPack tool suite) to profile the memory, 
CPU, and network interface energy behavior at various static 
DVS operating points. These microbenchmarks are grouped into 
three categories: 

1) Memory-bound microbenchmark 

2) CPU-bound microbenchmark 

3) Communication-bound microbenchmark 

We leave disk-bounded microbenchmark for future study, though 
disk-bound applications will provide more opportunities to DVS 
for energy saving. We provide detailed discussions of our 
microbenchmark techniques in a related paper [15]. 

4.5 Energy-performance efficiency metrics 
When different operating points (i.e. frequency) are used, both 
energy and delay vary even for the same benchmark. A fused 
metric is required to quantify the energy-performance efficiency. 
Brooks et al suggest using EDP (Energy-Delay Product) for high-
end workstation and ED2P (Energy-Delay-Squared Product) for 
high performance server [6]. Cameron et al propose weighted 
ED2P metrics for DVS-enabled power aware cluster [7]. To 
ensure greater emphasis on performance, more weight on the 
delay factor is required. 

In this work, we use ED2P ( 2DE × ) and ED3P ( 3DE × ) to 
choose “optimal” operating point (i.e., the CPU frequency that 
has the minimum ED2P or ED3P value for given benchmarks) in 
DVS scheduling for power-aware clusters. ED2P is proportional 

Table 1: Operating points for the Pentium M 1.4GHz 
processor 

Frequency Supply voltage 

1.4GHz 1.484V 

1.2GHz 1.436V 

1.0GHz 1.308V 

800MHz 1.180V 

600MHz 0.956V 



to Joule/MIPS2, and ED3P is proportional to Joule/MIPS3. Since 
ED3P metric puts more performance constraint than ED2P metric, 
smaller performance loss is expected for scheduling with ED3P in 
contrasting to scheduling with ED2P. In this work, both energy 
and delay are normalized with the values at the highest 
frequencies. 

5. EXPERIMENTAL RESULTS AND 
DISCUSSION 
This section presents our experimental results on three DVS 
scheduling strategies for the NAS parallel benchmarks (NPB) [3]. 
The benchmarks, which are derived from computational fluid 
applications, consist of five parallel kernels (EP, MG, CG, FT and 
IS) and three pseudo-applications (LU, SP and BT). These eight 
benchmarks feature different communication patterns and 
communication to computation ratios. We note experiments as 
XX.S.# where XX refers to the code name, S refers to the 
problem size, and # refers to the number of nodes. For example, 
LU.C.8 is the LU code run using the C sized workload on 8 
nodes. In all our figures, energy and delay values are normalized 
to the highest CPU speed (i.e. 1400 MHz). This corresponds to 
energy and delay values without any DVS activity.  

To ensure accuracy in our energy measurements using ACPI, we 
collected data for program durations measured in minutes. In 
some cases we used large problem sizes to ensure application run 
length was long enough to ensure accurate measurements. In other 
cases we iterate application execution. This ensures the relatively 
slow ACPI refresh rates (e.g. 15-20 seconds) accurately record the 
energy consumption of the battery for each node. Additionally, 
we repeated each experiment at least 3 times or more to identify 
outliers. 

5.1 CPUSPEED DAEMON Scheduling 

Figure 5 shows NAS PB results using CPUSPEED daemon 
controlled scheduling on our distributed power-aware cluster. We 
evaluate the effect of two versions of CPUSPEED: one is version 
1.1 included in Fedora 2 and the other is version 1.2.1 included in 
Fedora 3. In version 1.1, the default minimum CPU speed 

transition interval value is 0.1 second; in version 1.2.1, the default 
interval value has been changed to 2 seconds. Since we have 
observed that CPUSPEED version 1.1 always chooses the highest 
CPU speed for most NPB codes without significant energy 
savings [15], only results of the improved CPUSPEED 1.2.1 are 
shown in Figure 5. 

The effects of CPUSPEED vary with different codes. For LU and 
EP, it saves 3~4% energy with 1~2% delay increase in execution 
time. For IS and FT, it reduces 25% energy with 1~4% delay. For 
SP and CG, it reduces 31~35% energy with 13~14% delay 
increase. However, for MG and BT, it reduces 21% and 23% 
energy at the cost of 32% and 36% delay increase. 

The original version of CPUSPEED 1.1 was equivalent to no 
DVS (our 1400 MHz data point) since threshold values were 
never achieved. CPUSPEED version 1.2.1 improves energy-
performance efficiency for scientific codes significantly by 
adjusting the thresholds. We intend to study the affects of varying 
thresholds for applications that perform poorly even under the 
improved version in future work. Overall, CPUSPEED 1.2.1 does 
a reasonable job of conserving energy. However, for energy 
conservation of significance (>25%) 10% or larger increases in 
execution time are necessary, which is not acceptable to the HPC 
community. The history-based prediction of CPUSPEED is the 
main weakness of the CPUSPEED DAEMON scheduling 
approach. This motivates a study of scheduling techniques that 
incorporate application performance profiling in the prediction of 
slack states. 

5.2 EXTERNAL Scheduling 
In this section, we examine coarse-grain, user-driven external 
control which assumes users know the overall energy-
performance behavior of an application but treat the internals of 
the application as a black box.  

Section 4 describes the steps necessary to create a database of 
microbenchmark information for use in identifying DVS settings 
appropriate to an application. Applications with communication/-
computation or memory/computation ratios that match micro-
benchmark characteristics allow a priori selection of DVS 
settings. Here, our goal is to analyze this DVS scheduling 
approach for the power mode settings in our system.  

Table 2 gives raw figures for energy and delay for all the 
frequency operating points available on our system over all the 
codes in the NAS PB suite. As is evident, such numbers are a bit 
overwhelming to the reader. Furthermore, selecting a “good” 
frequency operating point is a subjective endeavor. For instance, 
BT at 1200 MHz has 2% additional execution time (delay) with 
7% energy savings. Is this “better” or “worse” than BT at 1000 
MHz with 4% additional execution time and 20% energy savings? 
Such comparisons require a metric to evaluate. For this type of 
comparison, we use the ED3P (ED3) metric to weight 
performance as significant compared to energy savings.  

Figure 6 shows the energy-performance efficiency of NPB 
benchmarks using external control with ED3P (ED3) metric. This 
figure is obtained as follows:  For each benchmark, compute the 
ED3 value at each operating point using corresponding 
normalized delay and normalized energy, and use the operating 
point which has the smallest ED3 value as the scheduling point 
thereafter. If two points have the same ED3 value, choose the 
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Figure 5: Energy-performance efficiency of NPB codes 
using CPUSPEED version 1.2.1. The results are sorted by 
normalized delay. Normalized delay is total application 
execution time with DVS divided by total application 
execution time without DVS. Values < 1 indicate 
performance loss. Normalized energy is total system 
energy with DVS divided by total system energy without 
DVS. Values < 1 indicate energy savings. 



point with best performance. The effect of external DVS 
scheduling shown in Figure 6 reduces energy with minimum 
execution time increase and selects an operating frequency that is 
application dependent – thus overcoming the weakness of 
CPUSPEED.  

The effects of external DVS scheduling can be classified in three 
categories:  

1) Energy reduction with minimal performance impact. 
For FT, it saves 30% energy with 7% delay increase in 
execution time. For CG, it save 20% energy with 4% 
delay increase in execution time.  

2) Energy reduction and performance improvement at the 
same time8. For SP, it saves 9% energy and also 
improves execution time by 1%. For IS, it saves 25% 
energy with 9% performance improvement.  

3) No energy savings and no performance loss. BT, EP, 
LU, MG fall into this category.  

Figure 6 uses ED3 as an energy-performance metric that favors 
performance to energy saving. We listed the energy and delay 
values for the frequency operating points that ED3P would select 
automatically for a user given a data set as shown in Table 2. If 
users allow slightly larger performance impact for more energy 
saving, ED2P (ED2) or EDP (ED) could be selected as the 
energy-performance metric. Figure 7 shows the effects of ED2P 
metrics used with external DVS scheduling. The trend is the same 
as Figure 6, but the metric may select frequency operating points 
where energy savings have slightly more weight than execution 
time delays. For example, ED2P would select different operating 
points for FT corresponding to energy savings of 38% with 13% 
delay increase; for CG, it selects 28% energy with 8% delay 
increase. For SP, it selects 19% energy with 3% delay increase. 

The benefits of external control are limited by three factors: 1) the 
application’s energy-performance crescendos using DVS; 2) the 
granularity of DVS control; and 3) reduced benefits for workload 
imbalance and heterogeneous distribution across the computing 
nodes. 

                                                                 
8 The results that IS and SP don’t achieve better performance at highest 

frequency are repeatable. Similar phenomena have also been observed 
for other benchmarks and by other researchers.  The initial explanation 
is that message communication is not sensitive to frequency above 
certain threshold. Within a busy network, higher frequency may increase 
the probability of traffic collision and result longer waiting time for 
packet retransmission. However, this explanation requires to be verified 
through further analysis and experiments. 
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Figure 6: Energy-performance efficiency of NPB codes 
using EXTERNAL DVS control. ED3P is chosen as the 
energy-performance metric in this figure. The results are 
sorted by normalized delay. 

Table 2: Energy-performance profiles of NPB 
benchmarks 

Only partial results are shown here. In each cell, the number on the 
top is the normalized delay and the number at the bottom is the 
normalized energy. The column “auto” means scheduling using 
CPUSPEED. The columns “XXX MHz” refer to the static external 
setting of processor frequency. 

CPU Speed 

Code 
auto 

600 

MHz 

800 

MHz 

1000 

MHz 

1200 

MHz 

1400 

MHz 

1.36 1.52 1.27 1.14 1.05 1.00 
BT.C.9 

0.89 0.79 0.82 0.87 0.96 1.00 

1.14 1.14 1.08 1.04 1.02 1.00 
CG.C.8 

0.65 0.65 0.72 0.80 0.93 1.00 

1.01 2.35 1.75 1.40 1.17 1.00 
EP.C.8 

0.97 1.15 1.03 1.02 1.03 1.00 

1.04 1.13 1.07 1.04 1.02 1.00 
FT.C.8 

0.76 0.62 0.70 0.80 0.93 1.00 

1.02 1.04 1.01 0.91 1.03 1.00 
IS.C.8 

0.75 0.68 0.73 0.75 0.94 1.00 

1.01 1.58 1.32 1.18 1.07 1.00 
LU.C.8 

0.96 0.79 0.82 0.88 0.95 1.00 

1.32 1.39 1.21 1.10 1.04 1.00 
MG.C.8 

0.87 0.76 0.79 0.85 0.97 1.00 

1.13 1.18 1.08 1.03 0.99 1.00 
SP.C.9 
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Figure 7: Energy-performance efficiency of NPB codes 
using EXTERNAL control. ED2P is chosen as the energy-
performance metric in this figure. The results are sorted 
by normalized delay. 



The first limitation determines whether DVS is useful for an 
application or not. Figure 8 shows graphically the energy-
performance profiles under external DVS scheduling using 
energy-delay crescendos (see Section 2). These figures indicate 
that we can group the eight benchmarks into four categories: 

Type I (EP): near zero energy benefit, linear performance 
decrease when scaling down CPU speed. 

Type II (BT, MG and LU): near linear energy reduction and near 
linear delay increase, the rate of delay increase and energy 
reduction is about same. 

Type III (FT, CG and SP): near linear energy reduction and linear 
delay increase, but the rate of delay increase is smaller than the 
rate of energy reduction. 

Type IV (IS): near zero performance decrease, linear energy 
saving when scaling down CPU speed. 

This classification matches the effects of external control shown 
in figure 6 and figure 7. In other words, the observed trends 
indicate basically that Type III and Type IV save energy while 
Type I and Type II do not save energy. 

The second and third limitations are not shown in the figure but 
can be understood analytically: a real parallel application will 
consist of combinations of dependent computation modules which 
belong to two or more of the categories mentioned above. If we 
only schedule a single static CPU speed for all nodes during the 
whole execution, benefits obtained from Type III and Type IV 
will be compromised by the impact of Type I and Type II. 
Therefore, we need to use internal control to overcome this 
limitation. Internal control (discussed next) must consider 
application execution phases.  

5.3 INTERNAL Scheduling 
We use FT.C.8 and CG.C.8 as examples to illustrate how to 
implement internal scheduling for different workload and its 
effects and limitation. Each example starts with performance 

profiling and then the DVS scheduling strategy is derived by 
analyzing the profiles. The effects of the scheduler are verified 
with experimental results.  

5.3.1 Internal scheduling for FT benchmark 
Performance Profiling: Figure 9 shows the performance profile 
of FT generated with MPICH trace utility by compiling the code 
with “–mpilog” option. The following observations are drawn 
from the profile.  

1) FT is communication-bound and its communication to 
computation ratio is about 2:1.  

2) Most execution time is consumed by all-to-all 
communication. 

 

 
Figure 9: Performance trace of FT.C.8 using MPE tool 
provided with MPICH. The traces are visualized with 
Jumpshot. 
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Figure 8: Energy-delay crescendos of NPB benchmarks. X-axis is CPU speed. Y-axis is the normalized value (delay and energy). 
The eight figures are grouped into four categories.  



3) The execution time per iteration is sufficiently big such 
that the CPU speed transition overhead can be ignored.  

4) The workload is almost balanced across all nodes.  

Scheduling Design: based on the above observation we divide 
each iteration into all-to-all communication phases and other 
phases. Therefore the CPU is set to low speed for all-to-all 
communication phase and restored to high CPU speed thereafter. 
Figure 10 shows how DVS control is inserted into the source 
code. 

 
Experiment Results: Figure 11 shows the energy savings and 
increase in execution time delays using internal scheduling. By 
choosing high_speed as 1400 MHz and low_speed as 600 MHz, 
internal scheduling can save 36% energy without noticeable delay 
increase. This is significant improvement over both external 
control and CPUSPEED. External control at 600MHz saves 38% 
energy but the cost is 13% delay increase. CPUSPEED saves 24% 
energy with 4% delay increase. This shows internal scheduling is 
preferred when the application contains obvious CPU-bound 
phases and non-CPU bounded phases and each phase lasts long 
enough to compensate for the CPU speed transition overhead. 

5.3.2 Internal Control for CG benchmark 
Performance Profiling: Figure 12 shows the performance profile 
of CG with the following observations: 

1) CG is communication intensive and synchronizes all 
nodes within each cycle. 

2) Wait and Send are major communication events. 

3) The execution time of each cycle is relatively small, the 
message communications are frequent and CPU speed 
transition overhead can not be ignored.  

4) Different nodes exhibit different communication and 
computation behavior. Nodes 4-7 have larger 
communication-to-computation ratio compared to nodes 
0-3. 

Scheduling Decision: Based on the above observations, we found 
it challenging to improve power-performance efficiency with 
phased-based DVS scheduling. We have implemented two phase-
based dynamic scheduling policies for CG: the first is to scale 
down CPU speed during communication; the second is to scale 
down CPU speed during MPI_Wait.  Both phase-based DVS 
scheduling approaches increase both energy and delay (1~3%). 
According to the asymmetric performance behavior on each node, 
we can set different speeds for each execution node. The DVS 
controls are inserted as shown in Figure 13.  

… 

call set_cpuspeed( low_speed) 

call mpi_alltoall( … ) 

call set_cpuspeed( high_speed) 

… 

Figure 10: INTERNAL control for FT benchmark 
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Figure 11: Normalized energy and delay of INTERNAL 
control, EXTERNAL scheduling and CPUSPEED. In 
INTERNAL control, high speed and low speed are set as 
1400 and 600 MHz respectively. All EXTERNAL control’s 
decisions (600MHZ-1400MHz) are given on the x-axis. 
CPUSPEED is shown as auto in this figure. Normalized 
delay is total application execution time with DVS divided 
by total application execution time without DVS. Values < 
1 indicate performance loss. Normalized energy is total 
system energy with DVS divided by total system energy 
without DVS. Values < 1 indicate energy savings. 

 
(a) Profile visualized at iteration granularity 

 
(b) Profile visualized at message granularity. 

 
(c) The meaning of the logo in (a) and (b) 

Figure 12: Performance trace of CG.C.8 using MPE tool 
provided with MPICH. The traces are visualized with 
Jumpshot.  



 
Experimental Results: The results from the experiments are 
shown in Figure 14. We provide results for two configurations: 
internal I which uses 1200 MHz as high speed and 800 MHz as 
low speed and internal II which uses 1000 MHz as high speed and 
800 MHz as low speed. Experiments show that internal I saves 
23% energy with 8% delay increase and internal II saves 16% 
energy with 8% delay increase. Both internal I and II scheduling 
for CG do not provide significant advantages over external 
scheduling at 800MHZ. This is reasonable since CG requires 
frequent synchronization and the external control aggregates gains 
and losses across all nodes.  

Overall: Internal scheduling provides DVS control with finer 
granularity than external scheduling. Internal scheduling achieves 
better (or at least as good) energy-performance efficiency. FT 
shows the benefit of phased-based internal scheduling; CG shows 
the benefit of heterogeneous internal scheduling. 

6. RELATED WORK 
Dynamic Voltage Scaling has been studied for decades, mostly in 
the area of energy-constrained, low power, real time system and 
mobile system. Researchers have developed various DVS 
scheduling algorithms to save energy under timing deadlines [20, 
23].  

As low power technologies have migrated to most core 
components of high-performance systems including processor, 
disk, memory, network card [8, 9, 11], researchers have studied 
the effects of power-aware  technologies on general purpose 
processors to conserve energy while maintaining performance.  

Some work has also been accomplished in distributed systems[5, 
8]. These studies focus on conserving energy in clusters of web 
servers. Energy is conserved by exploiting the characteristics of 
interactive workloads [16]. Tasks are scheduled and migrated to 
optimally conserve energy in data centers.  

However, the differences between interactive workloads and 
scientific workloads require different power management 
strategies. Hsu and Kremer use compiler-directed dynamic 
voltage and frequency scheduling to exploit slackness for energy 
savings using non-interactive scientific workloads [15]. This is an 
important step towards power-aware high performance computing 
though it targets sequential applications on a single processor. 
Recently, several research groups have studied using DVS 
scheduling to improve the energy-performance efficiency in high 
performance computing. Cameron et al and Freeh et al have 
demonstrated significant energy savings can be achieved with 
minimum performance impact by exploiting the computing 
efficiencies in parallel scientific computing [7, 13, 14]. Chen et al 
suggested scaling down the CPU speed on nodes that are not in 

the critical path so that energy can be saved without performance 
penalty [10].  

Our work is orthogonal to these studies. In this paper, though we 
provide further evidence that high-performance power-aware 
distributed computing is viable, we focus on implementing and 
analyzing various distributed DVS scheduling policies. Such 
policies are critical to automating middleware that alleviates users 
from thinking about power and energy consumption. Our results 
indicate given user-defined energy-performance efficiency 
metrics, our schedulers can reduce energy and guarantee 
performance. Our experiments all indicate that no single 
scheduling strategy fits all scientific codes.  

7. CONCLUSIONS AND FUTURE WORK 
In this paper we have designed and implemented distributed DVS 
scheduling for power-aware clusters, and created a framework for 
application-level power measurement and optimization. We 
directly measure, analyze, and compare several DVS strategies on 
a power-aware cluster to conserve power while maintaining 
performance in scientific parallel applications. 

Our results reinforce the recent discovery that significant amounts 
of energy can be saved in parallel scientific applications while 
maintaining performance. We achieved total energy savings as 
large as 36% with no negative impact on performance. However, 
we also showed that energy savings vary greatly with application, 
workload, system, and DVS strategy.  

We identified the primary weaknesses in history-based scheduling 
techniques applied to scientific applications. We also showed that 
the most flexible scheduling technique (INTERNAL) does not 
always provide significant gains over simpler implementations 
such as EXTERNAL command line settings. 

While this work brings us closer to middleware that can provide 
energy savings automatically with little user intervention, our 
techniques are largely manual and more work is needed to fully 
automate the process. Our future work includes attempting to 
improve automation and address the limitations of the various 
scheduling techniques. Our continuing goal is to improve energy 
savings while maintaining performance through better prediction 
methods more suitable to high-performance computing 
applications. 
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Figure 14: Normalized energy and delay of INTERNAL 
scheduling, EXTERNAL control and CPUSPEED 
scheduling for CG.  For INTERAL I, high speed is 1200, 
and low speed is 800; for INTERNAL II, high speed is 
1000 and low speed is 800. 

   … 

   if ( myrank .ge. 0 .and. myrank .le. 3) 

       call set_cpuspeed( high_speed) 

   else 

       call set_cpuspeed( low_speed) 

   endif 

   … 

Figure 13: INTERNAL control for CG benchmark 
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