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Performance-Driven Cascade Controller Tuning
with Bayesian Optimization

Mohammad Khosravi, Varsha Behrunani, Piotr Myszkorowski, Roy S. Smith, Alisa Rupenyan and John

Lygeros

Abstract—We propose a performance-based autotuning
method for cascade control systems, where the parameters
of a linear axis drive motion controller from two control
loops are tuned jointly. Using Bayesian optimization as all
parameters are tuned simultaneously, the method is guar-
anteed to converge asymptotically to the global optimum
of the cost. The data-efficiency and performance of the
method are studied numerically for several training config-
urations and compared numerically to those achieved with
classical tuning methods and to the exhaustive evaluation
of the cost. On the real system, the tracking performance
and robustness against disturbances are compared ex-
perimentally to nominal tuning. The numerical study and
the experimental data both demonstrate that the proposed
automated tuning method is efficient in terms of required
tuning iterations, robust to disturbances, and results in
improved tracking.

Index Terms—PID tunining, auto-tuning, Gaussian pro-
cess, Bayesian optimization

I. INTRODUCTION

Routine maintenance of mechatronic systems requires the
periodic tuning of PID controllers of linear or rotational drives
to counter the gradual decline of performance due to the
increase of friction, loosening of mechanical components, or
wear. The corresponding PI and PID gains are often set to
conservative values to ensure operation for a broad range of
loads or mechanical properties, focusing on disturbance rejec-
tion. While gain autotuning is in principle possible, existing
off-the-shelf autotuning routines often interfere with safety
mechanisms in manufacturing systems and are often avoided.

In classical model-based controller design, a model of the
plant is derived from first-principle methods or identified using
experimental data, and then a controller is designed based on
this model [1]. For example, symmetric optimum tuning [2],
and its extensions [3] provide relations between the controller
gains and the achievable performance in terms of settling time,
phase margin, overshoot, and other relevant metrics. Model-
based methods are data-efficient and tuning can be achieved
with relatively few iterations. For cascade control systems
however, multiple cycles of tuning might be required, and the
achieved values of the controller parameters are mostly on
the conservative side. Whenever first-principle methods cannot
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be used, optimization problems arise in obtaining the final
controller, both in computation of the model and the controller,
through the minimization of prediction error criterion, or
criteria based on controller stability and transient smoothness.
A controller that best fits the frequency response of the optimal
controller is obtained by optimization or order reduction tech-
niques [4]. Performance-based objective functions based on
calculating the error signal between the system output and the
input reference signal such as e. g. Integral Square Error (ISE),
Integral Absolute Error (IAE) or Integral Time Absolute Error
(ITAE), are often minimized to tune controller parameters
using genetic algorithms [5] or Particle Swarm Optimization
[6], and often require a large number of evaluations to ensure
that a global optimum is found. Standard methods, such as
the Ziegler-Nichols rule [7] or relay tuning with additional
heuristics [8], [9] are routinely used for the tuning in practice
and will be used here as benchmark results in simulation.

Various data-driven methods for controller design have been
proposed, e.g. virtual reference feedback tuning (VRFT) [10],
[11], data-driven inversion-based control [12], direct learning
of linear parameter varying (LPV) controllers from data [13],
data-driven controller tuning in mixed-sensitivity loop-shaping
framework. Data-driven tuning has been explored in an iter-
ative learning approach in [14], and also combined with a
learned process model in [15]. While they find application,
the methods often work under assumptions of linearity or
time invariance for the plant or the closed loop system.
Iterative learning approaches might require multiple iterations
or interventions through external probing signals or specially
designed references. Data-driven methods often do not allow
for constraints in the input and output variables, and the choice
of reference models is also dependent on prior knowledge of
the system [16].

Bayesian optimization (BO) is used for hyperparameter
tuning in high-dimensional machine learning models, but it
has also gained attention in engineering and has been ap-
plied e.g., to control of quadrotors combined with learned
dynamics [17], optimization of process set-up parameters [18],
and collision avoidance [19]. Bayesian data-driven approaches
have been also proposed for the tuning of PID controllers
and of nonlinear systems [20]–[23]. These approaches are
particularly interesting because of the inherent data-efficiency
and flexibility of the Bayesian optimization (BO) method. BO
in controller tuning, where stability is guaranteed through safe
exploration, has been proposed in [20], and applied to robotic
applications [24], and in process systems [22]. Constraint BO
tuning is proposed in [25].
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Figure 1: The structure of ball-screw system: 1© DC motor, 2©
coupling joint, 3© ball-screw interface, 4© nut, 5© ball-screw
shaft, 6© guideway and 7© table (load), following [26].

We propose an automated data-driven tuning method which
maximises the performance of a motion system by finding
optimal controller parameters. Frequently, tuning of cascade
controllers requires multiple iterations switching between con-
trollers at different levels to find an optimum. This paper
proposes a model-free autotuning method that is based on the
optimization of the combined performance features, extracted
from the encoder signals. The proposed method allows con-
sidering arbitrary application-oriented performance metrics,
defined based on the preferences of the user. Accordingly,
the main contributions of this work are: 1) Simultaneous,
automated tuning of the parameters of a cascade controller; 2)
Numerical demonstration for convergence of the proposed al-
gorithm to the global optimum of the cost, due to the properties
of the underlying Bayesian optimization method; 3) Achieving
superior performance compared to benchmark tuning methods;
4) Experimental validation for different trajectories, loads,
and disturbance rejection, demonstrating the robustness of the
proposed approach.

The rest of this paper is organized as follows: Section II in-
troduces the general problem of performance-driven cascaded
controller tuning in linear axis drives. Section III presents the
plant model derived from first principles and system identi-
fication techniques. Section IV introduces the performance-
based approach with numerical results comparing the proposed
tuning method with standard tuning methods, also with an
evaluation of the performance metrics on a grid. Experimental
validation is reported in Section V.

II. PERFORMANCE-BASED TUNING

The system of interest is a ball-screw drive, a positioning
mechanism used routinely in machining systems. Notable
applications of such systems are in the semiconductor industry,
in biomedical engineering, and in the photonics and solar
technologies. The ball-screw drive components are shown in
Figure 1. The AC motor is connected via a coupling joint to a
ball-screw shaft fixed to a supporting frame. The shaft carries
a nut which converts the rotational motion of the shaft linear
motion of the nut through a screw-nut interface. The system
is equipped with encoders for measuring the nut position, the
rotational speed of the motor and the linear speed of the ball-
screw shaft, and a sensor for measuring the motor current. The
set voltage of the motor is controlled through a motor drive and
a programming logic controller (PLC). Typically, the motor
rotates the shaft, the nut moves from initial to final position,
remains there for some time and returns to the initial position.
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Figure 2: The performance-based controller tuning scheme.

The position and speed of the nut are controlled such that they
follow designed ideal reference trajectories (see Figure 4).

We introduce a performance metric indicating the quality of
tracking, calculated from the position and speed error signals.
The error signals and the performance metric are functions
of the vector of parameters describing the controller, denoted
here by x. Let the performance function be f : X → R

where X is the space of admissible controller parameters. With
respect to controller parameters, x, the performance function
does not have a tractable closed-form expression, even when
the dynamics of system are known. For a given x ∈ X , the
value of the performance metric f(x) has a black-box oracle

form, and can be obtained experimentally from the position
and speed tracking error signals e(p) and e(s), for controller pa-
rameters set to x. We propose tuning the controller parameters
based on a data-driven procedure of performing a sequence
of experiments, collecting data, assessing the corresponding
performance, and utilizing Bayesian optimization as a black-
box optimization technique for deriving optimal vector of
controller gains (see Figure 2). The estimated performance at
each trial is provided to the performance-based tuning unit
which is essentially a Bayesian optimization module. This
unit models the performance metric using Gaussian process

regression (GPR) [27], and finds the optimal parameters based
on a suitable Bayesian optimization algorithm as Gaussian

process lower confidence bound (GP-LCB) [28].
The proposed tuning approach is performance-based,

model-free and data-driven. One of the main advantages of
utilizing Bayesian optimization is its potential in explicitly
modeling noise which is automatically considered in the
uncertainty evaluation without skewing the result [28]. The
simultaneous optimization of all parameters guarantees con-
vergence to the global optimum performance, following from
the properties of Bayesian optimization, at the cost of more
iterations compared to classical approaches.

III. SYSTEM STRUCTURE AND MODEL

A. Mathematical Model of System

The motor deriving the ball-screw system is a permanent-

magnet synchronous motor, with a permanent magnet on the
rotor providing the exciting field. Let Rs and Ls respectively
denote the resistance and the inductance of the stator. From
Kirchhoff’s voltage law and the back electromotive force
(EMF) which comes from Faraday’s law of induction, in the
dq-frame we have

vd(t) = Ls
d

dt
id(t) +Rsid(t)− Lsωm(t)iq(t),

vq(t) = Ls
d

dt
iq(t) +Rsiq(t) + Lsωm(t)id(t) +Kbωm(t),
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where [vd vq]
T and [id iq]

T are respectively the vectors of stator
voltage and stator current in dq-coordinates, Kb is the back
EMF constant and ωm is the angular velocity of the motor
and shaft. The d-component of the current, id, only influences
the component of the magnetic field in the direction of the
rotor axis and does not contribute to the torque generation. To
minimize losses a PID-controller regulates vd(t) to compensate
the voltage induced by iq and ensures that id = 0 at all times.
Consequently, the resulting dynamics of motor is

vd(t) = −Lsωm(t)iq(t),

vq(t) = Ls
d

dt
iq(t) +Rsiq(t) +Kbωm(t).

(1)

The motor develops an electromagnetic torque τm = Ktiq

proportional to the stator q-component of current. One can
obtain the transfer function of motor as

M(s) :=
Ωm(s)

Vq(s)
=Kt

(

KtKb+(Lss+Rs)
( Tm(s)

Ωm(s)

)

)−1
, (2)

where Ωm, Vq and Tm are the Laplace transform of ωm, vq and
τm, respectively.

The main limitation on the accuracy of the linear position is
due to the first axial mode of the ball-screw system [29], which
is determined by the flexibility characteristics of the translating
components. This includes the inherent stiffness of the ball-
screw and the bearings as well as the interactions between
the carriage table, the nut and the ball-screw [26], [29], [30].
The first axial dynamics of the ball-screw servo drive can
be modelled using a simplified two degree of freedom mass-
spring-damper system [26]. If we let Jm, Bm and θm be inertia,
damping coefficient and angular displacement of the motor,
and Jl, Bl, θl and ωl the corresponding quantities of the load,
a torque balance leads to

Jm
dωm

dt
+Bmωm +Bml(ωm − ωl) +Ks(θm − θl) = τm,

Jl
dωl

dt
+Bl ωl −Bml(ωm − ωl)−Ks(θm − θl) = τl,

(3)

where Ks is the total equivalent axial stiffness, τl is the torque
disturbance of the load and Bml is the damping coefficient
between the coupling and the guides. As Bl has a negligible
impact on resonance, one can set Bl = 0 [26]. Taking the
Laplace transform leads to

ï

Θm(s)
Θl(s)

ò

= H(s)−1

ï

Tm(s)
Tl(s)

ò

, (4)

where capital letters denote the Laplace transform of the
corresponding quantities and H(s) is defined as

H(s) :=

ï

Jms
2+(Bm+Bml)s+Ks −Bmls−Ks

−Bmls−Ks Jls
2+(Bl+Bml)s+Ks

ò

.

Due to the structure of the linear axial system, the torque
disturbance of the load comparing to motor torque is negli-
gible. Therefore, to derive the transfer function from motor
torque to the angular velocity, we set Tl(s) = 0. Let D(s) de-
note the determinant of H(s). To obtain the transfer functions
relating the motor to the angular velocities, we define transfer
functions

F1(s) := Ωm(s)/Tm(s) = (Jls
2 + Bmls + Ks)/D(s),

F2(s) := Ωl(s)/Tm(s) = (Bmls + Ks)/D(s), and subse-
quently,

F3(s) :=
Ωl(s)

Ωm(s)
=

F2(s)

F1(s)
=

Bmls+Ks

Jls2 +Bmls+Ks
. (5)

Combining with (2) leads to the transfer function between
the voltage applied to the armature and rotational velocity of
the load [30]

G(s) :=
Ωl(s)

Vq(s)
=

Ωm(s)

Vq(s)

Ωl(s)

Ωm(s)
= M(s) F3(s)

= Kt
(

KtKb+(Lss+Rs)F1(s)
−1

)−1
F3(s).

(6)

Moreover, if Ks ≫ 1, one can approximate F1(s)
−1 by

((Jm + Jl)s+Bm).
This approximation is valid for the low range of frequencies,

typically [0, 105] Hz, which includes the main frequency range
of the operation of the system. The final transfer function is

G(s) = Kt

Å

KtKb +
(

Lss+Rs
)(

(Jm + Jl)s+Bm
)

ã−1

Å

Bmls+Ks

Jls2 +Bmls+Ks

ã

.

(7)

B. The Control Scheme

The system is controlled by a PLC that runs a custom-made
software package named LASAL. The controller consists of
three cascaded loops as shown in Figure 3, where the output
signals of each outer loop serve as the reference for the next
inner loop. The first block in the axis controller is the inter-
polation block that receives the trajectory specifications from
the user and determines the references for the position and
the speed in the system. The interpolation block requires four
inputs: position setpoint, speed setpoint, desired acceleration
and desired deceleration. Once these inputs are provided, the
interpolation block generates a reference speed and position
trajectory using the equations of motion. The outer-most con-
trol loop is for linear position control. The middle control loop
regulates the linear speed. The output of the interpolation block
provides these loops with the designed nominal reference for
the position and the feed-forward reference for the speed. The
motor encoder detects the position of the motor and provides
the feedback for both the position and speed control loops.

The controller in the position control loop is a P-controller
as Cp(s) = Kp, whereas the controller in the speed control
loop, is a PI-controller as Cs(s) = Kv +Ki/s. One can also
introduce Cv(s) in the form of Cs(s) = Kv(1+1/Tn(s)) where
Tn is the integral time constant of the controller. The speed
control loop provides the reference for the current controller,
which is the inner-most loop. The feedback in this loop is the
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Q
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Figure 3: Block diagram of the system
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Table I: Parameters of the current controller and the plant.

Controller C(s) Plant

Parameter Value Parameter Value

Kcp 60 Rs 9.02 Ω

Kci 1000 Ls 0.0187

Kcd 18 Kt 0.515 Vs rad−1

Kb 0.55 Nm A−1

Jm 0.27× 10−4 kg m2

Bm 0.0074

Jl 6.53× 10−4kg m2

Bml 0.014

Ks 3× 107

Q 1.8× 10−2 m

Max. Speed 8000 revolutions/minute

measured current of the armature. This loop is regulated by a
PID-controller block denoted by Cc(s) = Kcp+Kci/s+Kcds.
The output of the controller is the voltage setpoint for the
motor given to the motor drive.

Finally, the last block in Figure 3 is not part of the controller
but is used to convert the rotational velocity of the ball-
screw to linear speed. The factor Q is the linear displacement
resulting from one complete rotation of the motor.

The linear axis has three separate modes of operation
according to which control loops and parameters are chosen. In
position control mode (used in this work), all three feedback
loops are active and the position is the critical attribute of
the system. In this mode, the controller will try to adhere as
close as possible to the position reference even if that entails
deviating from the speed trajectory. In the speed control mode
(not considered here), the speed trajectory is prioritized, and
the position controller deactivated by setting the gain in the
position controller to zero, Kp = 0. Finally, in the current
control mode (also not considered here), only the inner-most
loop is active and the other controller gains are set to zero.

C. The Parameters of the Model

The transfer function of the plant as well as the control
loops depend on several parameters. As our work concentrates
on tuning the parameters of Cp(s) and Cs(s), it is assumed
that the parameters of Cc(s) are given. Values for most of
the parameters of the plant are provided or can be calculated
from the available data sheets. The only exception is Ks.
We estimate this parameter experimentally by fitting the step
response of the model using least squares. The resulting
parameter values are summarised in Table I.

IV. PERFORMANCE-BASED CONTROLLER TUNING:

NUMERICAL INVESTIGATION

A. Classical Tuning Methods

The numerical study provided in this section elucidates vari-
ous aspects and features of the proposed data-driven controller
tuning method and compares its performance to widely used
tuning techniques. The classical PID tuning approach is the
Ziegler-Nichols method, a heuristic designed for disturbance

rejection [7], and an automated method where the controller
is replaced by a relay and the PID coefficients are estimated
based the resulting oscillatory response of the system [8].
Other tuning approaches are also used in practice, where a
performance indicator of the system response is minimized,
e.g., the integral of time-weighted absolute error (ITAE) [31].

B. Performance-Based Tuning Method

The performance-based tuning proposed here utilizes
Bayesian optimization to tune the controller parameters (see
Figure 2). The main ingredient in Bayesian optimization is the
cost function, which is composed of a set of metrics capturing
the performance requirements of the system. For a linear
actuator, in addition to the standard controller tuning metrics
such as overshoot and settling time, the position tracking
accuracy and the suppression of mechanical vibrations known
as oscillation effects are of highest importance.
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h

T
90
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(s)

t
(f)

t
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Figure 4: The figure demonstrates various performance metrics
for position tracking (top) and speed tracking (bottom). The
reference and the observed trajectory are shown respectively
by the red line and black line.

Let the vector of controller gains be set to x :=
[Kp,Kv,Ki]

T and an experiment be performed in time in-
terval I := [t(i), t(f)] with these gains. Once the experiment
is completed, the corresponding error signals for position,
e(p) : I → R, and for speed, e(s) : I → R, are measured,
and used to calculate the tracking performance metric for x.

For position tracking, the corresponding performance met-
rics are the overshoot, h(p), the undershoot, h̄(p), the steady-
state error, e(p)

ss , the settling time, T (p)
90 , and the maximum ab-

solute position error (infinity norm), ‖e(p)‖∞. To minimize os-
cillations due to the excitation of vibration modes, the integral
of the time-weighted absolute value of the error of the position
response also defined [31] as e(p)

ITAE :=
∫ t(f)

t(i) (t− t(i))|e(p)(t)| dt,
is also included. The position zero error, e(p)

0 , is defined as
the error of the system once it returns to zero position (zero)
once the motion is completed and it is of high interest, as it
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Algorithm 1 Performance-based Tuning Method

1: Input: Set X (see (8)), training data set, D0, and trade-off
weights γ(p), γ(s).

2: Estimate the vector of hyperparameters θ̂.
3: D ← D0 and m← m0.
4: while stopping condition is not met do

5: Update the GP model: calculate µm and σm.
6: Derive xm+1 by solving (9).
7: Update Kp, Kv and Ki, run experiment and measure

signals e(p)
m+1 and e(s)

m+1.
8: Calculate the measured performance ym+1.
9: D ← D ∪ {(xm+1, ym+1)} and m← m+ 1.

10: end

11: Output: xm∗

BO
.

quantifies the oscillations in the system. The same metrics are
also used for the speed tracking error and superscript ‘(s)’ is
used to denote the corresponding speed metrics.

We take a weighted sum of the individual position met-
rics, denoted by F (p)

i (x), i = 1, . . . , N (p), with corresponding
weights γ(p)

i , i = 1, . . . , N (p), to generate a combined posi-
tion metric f (p)(x). Similarly, we generate a combined speed
metric, denoted by f (s)(x). In order to generate an overall
performance metric for controller tuning, we then take sum of
the two quantities as f(x) := f (p)(x) + f (s)(x).

The values of the different weights used are summarised in
Table II. Each of the weights depends on the scale and the
importance of corresponding metric and feature and can be
selected considering the particular application requirements,
e.g. maximization of tracking accuracy in position, minimiza-
tion of response time, or minimization of oscillations in the
system.

A fundamental constraint for tuning the controllers is the
stability of the closed-loop system during the tuning procedure.
This can be achieved by constraining the controller gains
to known ranges guaranteeing this feature. To this end, the
feasible set for x, denoted by X , is defined as a safe subset of

[Kp,min,Kp,max]×[Kv,min,Kv,max]×[Ki,min,Ki,max], (8)

where Kp,min, Kv,min and Ki,min are the smallest positive
values acceptable by the controller, Kp,max = 4200, Kv,max =
0.5, and Ki,max = 900. In practice, X is either provided
with the system, or estimated in a safe exploration procedure.
Here, we have derived X by a grid computation of the system
response for various controller parameters.

position speed

F
(p)
i

γ(p) F
(s)
i

γ(s)

T
(p)
90

105 T
(s)
90

5 · 102

h(p) 102 h(s) 2

‖e(p)‖∞ 103 ‖e(s)‖∞ 5 · 102

e
(s)
ITAE 104

Table II: Weights in the cost function

Note that f (p), f (s) and f are functions of controller gains x
in an oracle form. The controller parameters with optimal per-
formance, x∗, are the ones inducing minimum cost objective f .
To find these optimal values, we utilize Bayesian optimization,
summarized in Algorithm 1. Starting from feasible set X , we
perform a sequence of experiments. In the mth experiment, a
new vector of controller gains xm is used, and based on the
measured error signals, the corresponding performance f(xm)
is evaluated as ym. The first m0 experiments are for construct-
ing the initial data set D0 := {(xm, ym)|m = 1, 2, . . . ,m0}.

In many practical situations, D0 is already available from
previous attempts on tuning the controllers. Otherwise, one can
obtain D0 by performing experiments in which the controller
parameters are either derived from random perturbations of the
nominal gains, or based on a Latin hypercube experimental
design [32]. Using GPR and the collected data, we obtain a
surrogate function for the performance metric f as a Gaussian
process GP(µm, km), where µm : X → R is the mean
function predicting the value of f at different locations, and
km : X ×X → R is the kernel function evaluating the
uncertainty in the predictions. Here, we utilize squared expo-

nential kernel with hyperparameters tuned using D0. Since the
continuity of f does not change by possible saturation blocks,
they can be considered as well in the closed-loop. In this
situation, one should utilize kernels which are more suitable
for non-differentiable functions such as Matern kernels [27].
The controller gains are updated due to GP-LCB sampling
algorithm [28] as

xm+1 = argminx∈X µm(x)− βmσm(x) (9)

where σm(x) := km(x, x) indicates the variance in prediction
of performance function at x and βm is a constant specifying
the considered confidence bound around the mean function
µm. This procedure stops at iteration mBO either by reaching
the maximum number of iterations, or by sampling around
the same configuration of parameters with minimal cost more
than three times. The output of the algorithm is the vector of
controller gains with the best observed performance, xm∗

BO
.

One could also tune the gains of the two loops sequentially,
alternating between the gains of the inner and the outer loop,
utilizing BO for each step [33]. We do not pursue this direction
further here, since the combined tuning approach introduced
above is more likely to lead to a globally optimal solution.

C. Numerical Experiments

We now compare the system trajectories of the transfer
function model from Section III corresponding to BO tuning,
classical methods, and an exhaustive (grid) computation of
the performance metric on a 280 × 90 × 100 grid on X . To
apply Algorithm 1 we initialize with dataset D0 collected from
random locations in X . In each iteration, we solve the GP-LCB
optimization problem (9) by calculating the objective function
of (9) for the points of the grid and finding the point with
the optimal cost; note that this process does not require data
to be collected at all the grid points, only that the Gaussian
process is evaluated at these points. Table III shows that the
controller gains, as well as the performance resulting from the
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proposed method are almost the same as the performance of
optimal grid point, i.e., the performance-tuning method finds
the controller gains in the nearly flat region of performance
around the optimal gains.

The closed-loop speed and position responses corresponding
to benchmark tuning methods to the performance-based tun-
ing responses, namely Zeigler-Nichols method, relay tuning,
and ITAE in Figure 5 show significantly higher overshoot
and oscillations compared to the performance-based tuning
responses, which also matches the ideal response obtained
by grid simulation. The position response tracks the input
reference precisely, and the speed response has a slight over-
shoot in the acceptable range. Table III shows the resulting
control gains and corresponding performance. The result of
the performance-based tuning is closest to the exhaustive eval-
uation results obtained on the grid while the gains obtained via
standard tuning approaches (Zeigler-Nichols, relay tuning, and
ITAE) are more aggressive. The number of training samples in
D0 has a direct influence on the number of iterations needed
to reach the stopping criterion that defines the converged
controller gains. A more informed prior model requires less
iterations during the optimization phase. We further performed
a Monte Carlo simulation, where the algorithm was initialized
with a different number of data points selected randomly from
X , and for each value of m0 Algorithm 1 was executed 1000
times for a maximum number of 60 iterations. Based on the
numerical experiments an initial data set D0 comprising 20-
50 different random configurations of parameters requires a
tuning phase of 20 up to 50 iterations in total for convergence,
which is a reasonable trade-off between the number of initial
samples and tuning phase iterations. On a real system, each
iteration takes up to 10 seconds. Since the performance metrics
can be fully automated, and the initial exploration phase needs
to be repeated only upon major changes in the system, the

Table III: Results of different tuning methods

Tuning method Kp Kv Ki f

Grid search (true optimal value) 225 0.39 90 4557

Ziegler Nichols 392 0.18 510 28434

ITAE criterion 255 0.11 420 31163

Relay Tuning 115 0.05 130 23396

Performance-based Tuning 240 0.39 100 4586
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Figure 6: Results of Monte Carlo experiments - numerical
verification for robustness with respect to changes in system
parameters and initial set

proposed tuning method can be efficiently implemented.
The numerical experiments provide the range of stability in

the controller gains. If the stability range is unknown, and
if unstable parameters cannot be detected in advance, the
application in reality might bring failures in the system. The
method applied in practice is not influenced by the model or
by the optimal parameters found in numerical experiments,
as it provides the true optima according to the corresponding
convergence criteria.

D. Robustness Analysis

In order to evaluate the robustness of the proposed method
with respect to variations in all system parameters and different
initial sets, we perform an extensive Monte Carlo analysis
(see Figure 6). We perturb the physical parameters of the
system randomly up to 5%, and initialize each experiment
with a random initial set of 30 random samples. Algorithm
1 is applied with fixed number of iterations to obtain the
control gains. We compute the true optimal gains for each of
the 100 experiments using particle swarm optimization. The
results are compared by means of optimality ratio, defined as
the performance of obtained control gains using Algorithm
1 normalized by the true optimal performance value. Figure
6 (left) shows that the performance improves iteratively and
converges to the optimal value. Figure 6 (right) shows that
the performance corresponding to the final (tuned) controller
parameters is considerably improved compared to the perfor-
mance corresponding to nominal values.

V. PERFORMANCE-BASED CONTROLLER TUNING:

EXPERIMENTAL RESULTS

The linear motion system (stage) used to validate the
proposed tuning method consists of a linear axis, a permanent
magnet AC motor with a servo drive, and a Programmable
Logic Controller (PLC), as shown in Figure 1. The system is
equipped with a linear encoder with a precision of 1µm/m
and sampling time of 1ms used for measuring the actual
position and speed of the stage. The input voltage to the
motor is provided based on the voltage reference signal from
a Sigmatek S-DIAS PLC. Since the bandwidth of the current
controller is above 1500Hz and the corresponding bandwidth
of the position controller does not exceed 400Hz, the current
closed-loop can be well approximated with a constant gain.
The proportional controller gains Kv and Kp of the cascade
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control loop are tuned, and the integral time constant Tn is
tuned instead of the the integral gain Ki.

For the joint tuning of the control parameters, the input
setpoints (position, speed, acceleration, deceleration) were set
identical for each run of the system. During the experiments,
acceleration and deceleration values were kept high to simulate
step input and step response in both position and speed control
modes, and the speed was set at 20 cm

s . The range of the
three control parameters was limited following the numerical
experiments to ensure that the system is always in a stable
mode: Kp ∈ (0, 65000],Kv ∈ (0, 7000], Tn ∈ (1000, 40000].

The position reference trajectory was a bi-directional step
response, where the nut moves from 0 to 50cm, remains
there for 10s, and returns to position 0. In this case, input
position and speed are set to 5cm and 100 cm

s
, respectively.

The modified weights used in the experimental implementation
of the performance-based tuning are provided in Table IV.
The termination criterion for tuning in practice was based on
either achieving a predefined number of iterations, or reaching
a minimum within a defined threshold and sampling at this
candidate configuration for at least 3 iterations.

A. Experimental Results: Performance and Robustness

Figure 7: Position and speed responses comparing tracking
traces of the system optimized with performance-based BO
tuning and traces corresponding to the nominal parameters
optimized by manual tuning. The insets show the initial
overshoot obtained with each method.

Initially, 49 samples were obtained for different values
of Kp, Kv and Tn. The required performance metrics were
extracted from each of the data sets and the corresponding cost
was calculated for each configuration of gains. Tuning the pa-
rameters using these training data for computing priors results

position speed

F
(p)
i

γ(p) F
(s)
i

γ(s)

T
(p)
90

2 · 101 T
(s)
90

2 · 101

h(p) 5 · 104 h(s) 103

‖e(p)‖∞ 5 · 104 e
(s)
ITAE 2.5 · 105

e
(p)
0

105 e
(s)
ss 5 · 102

h̄(s) 2 · 103

Table IV: Weights in the cost function

in convergence after 18 iterations. The optimal point is reached
after repeated sampling near the optimum of the cost. The
optimal values for the position and speed controller obtained
are Kp = 44500, Kv = 4000 and Tn = 12500. The system
response in position control mode using the above controller
configuration for set position of 50cm and set speed of 50 cm

s is
shown in Figure 7. The negligible oscillation on the response is
due to the amplified noisy resolver feedback, observed also in
the nominal configuration. The speed response in the position
control mode shown in Figure 7 also has an overshoot of 14%
which is higher than the speed control mode as expected but is
within an acceptable range with a maximum speed of 57.5 cm

s
.

This is also in part due to the noise of the system. The position
response steady state error is significantly smaller as compared
to that in nominal mode, and the overshoot in position is less
than 0.2cm with very fast settling so there is no tracking delay
or error. Performance-based tuning achieves better tracking
and lower overshoot for both speed and position modes, and
faster settling time for the more important position control
mode. The results are summarized in Table V, where it can
be seen that the optimized parameters have reached higher
values than the parameters from nominal tuning for the same
load.

Because of the large number of samples in the training
phase, the cost evolution during the BO iterations starts from
a very low estimated cost, but with high uncertainty, and
moves to higher cost, where the uncertainty is reduced after
10 iterations, as shown in Figure 8. Looking at the current

minimal cost, it can be seen that the BO-based tuning reaches
a low-uncertainty cost which is very close to the converged
results already at iteration 5. The algorithm converges after 18
iterations, according to the specified somewhat conservative
termination criterion.

We have further tested the robustness of the tuning approach
by providing reference trajectories with different profiles.
Figure 9 shows that the performance achieved with the BO
tuning exceeds the nominal performance when there are fast
changes in the speed, as in the top panels, and achieves
better tracking of the references. The speed undershoot is
significantly reduced, and better position stability is achieved
at standstill, which is an important performance requirement
for linear motion systems. For the trajectories shown in the
bottom panels of Figure 9 the performance is virtually the
same as nominal.

Standard tuning methods such as the Ziegler-Nichols rule
or relay tuning show excellent performance for disturbance re-
jection objectives. We have evaluated the BO-based controller
parameters with respect to disturbance rejection. Impulsive
disturbance forces were applied during the operation in the

Kp Tn Kv f (p) f (s)

mBO ×102 ×102 ×102 ×103 ×103

Nominal (no load) - 200 100 25 523 271
Perf.-based (no load) 67 445 125 40 401.9 224.9

Perf.-based (extra load) 43 650 130 42.5 254.2 281.8

Table V: Summary of all tuning results on the linear drive
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Figure 8: Predicted, actual observed cost, and associated
confidence interval at 3 standard deviations for performance-
based BO tuning on the system.

direction of movement of the system with additional load. The
resulting response is shown in Figure 10, and compared with
the system’s nominal performance when subjected to the same
type of disturbance. The response of the system shows a quick
recovery following the disturbance, as shown in Figure 10.
Even though the applied disturbance has significantly higher
magnitude than in the nominal case, the observed recovery is
faster for the performance-based tuned controller gains. This
is due to the performance metric term that corresponds to
tracking accuracy and position stability.

B. Discussion

The proposed performance-based BO tuning thus offers
a trade-off between grid based search, and heuristic-based
methods. The method requires more iterations to converge

Figure 9: Position and speed responses comparing tracking
with different trajectories. Upper panels: Position and speed
responses for different step signals; Bottom panels: Trajecto-
ries with varying speed setpoints.

Figure 10: Speed responses of the system without and addi-
tional load, comparing disturbance response of the nominal
controller and the BO-optimized controller.

compared to relay feedback tuning, but finds an optimum in
the specified performance objective. It provides disturbance
rejection and superior performance for various trajectories,
irrespective of the trajectory used in training, and is easily
adapted for different loads. The duration of the tuning pro-
cedure is acceptable in practice and does not exceed 120
iterations with a total duration of up to one hour. A potential
drawback is the required system knowledge to ensure stability.
Currently, this is achieved by limiting the optimization range
to avoid destabilizing values of the parameters. The ranges
are derived either based on the model of the system or based
on expert knowledge from operating the system. When the
ranges are not a priori known, and for the full automation of
the method, it would be useful to ensure a safety mechanism
in the performance-based tuning procedure. This could be
achieved either through the addition of the safety constraints
such as Gaussian processes in the BO algorithm or through
the modification of the acquisition function to account for the
probability of constraint violation [18]. Another possibility
is to detect experimentally when the system is approaching
critical regime and to include a safety penalty in the cost [25].

The proposed tuning method automates the optimization of
a controller. The achieved performance is limited by the worst
point encountered during the tuning procedure. The method
can be implemented in an adaptive scheme by continuously
monitoring the performance and re-optimizing upon deviations
from the optimum. Several data-driven approaches for adaptive
control have been recently proposed, such as [34], [35] and
[36], with theoretical guarantees for stability of the proposed
control algorithms. The proposed performance-based tuning
method thus can be used for data-driven adaptive control,
provided a suitable safe BO algorithm is put in place.

VI. CONCLUSION AND OUTLOOK

We have presented a data-driven approach for cascade
controller tuning, where we model the performance of a
closed-loop system as a function of controller gains. We
apply a Bayesian optimization approach to derive controller
gains with optimal performance. The performance was first
evaluated in a simulation for a ball-screw linear axial system,
and compared to classical tuning approaches and the computed
optimal performance on a grid. The experimental validation of
the proposed method shows that it enables fast and standard-
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ized tuning, with a performance superior to other autotuning
approaches. It allows easy adaptation of the controller param-
eters upon changes in the load or the system’s mechanical
configuration. Extending the method with automatic detection
of instabilities will further increase its flexibility and potential
for practical use.

APPENDIX: GAUSSIAN PROCESSES REGRESSION

A Gaussian process (GP) is a collection of random variables
where each of its finite subsets is jointly Gaussian [27]. The
GP is uniquely characterized by the mean function, µ : X →
R, and the covariance/kernel function, k : X ×X → R, where
X ⊆ R

d is the set of location indices. The corresponding GP
is denoted by GP(µ, k). Gaussian processes provide flexible
models for Bayesian learning by introducing prior distributions
over the space of functions defined on X . Due to the favorable
properties of the Gaussian distributions, the marginal and the
conditional mean and variance can be computed on any finite
set of locations in a closed form. Let f : X → R be
an unknown function, GP(0, k) be the prior distribution for
estimating f , and noisy measurements at locations x1, . . . , xm
be respectively given as y1, . . . , ym. In other words, we know
that f ∼ GP(0, k) and yi = f(xi) + wi, for i = 1, . . . ,m,
where wi is the measurement noise with zero mean Gaussian
distribution N (0, σ2

w). Since there is no additional information
about the latent function f , we can set the mean of the GP prior
to zero. Let x ∈ X be a new location where the corresponding
measurement is not provided. Since the joint distribution of
the measurements data is Gaussian with a given mean and a
given covariance, one can predict the value of measurement
at the new location x using Bayes rule. First, we define Xm

and ym respectively as Xm := [x1, x2, . . . , xm] ∈ R
n×m and

ym := [y1, y2, . . . , ym]T ∈ R
m. Also, we define the Gram

matrix KXmXm
∈ R

m×m such that its element at the ith row
and the j th column is given by k(xi, xj). Consequently, due
to f ∼ GP(0, k), we know that ym ∼ N

(

0,KXmXm
+ σ2

wI
)

,
where I denotes the identity matrix. The joint distribution of
the training data {(xi, yi)}mi=1 with the new data point (x, yx),
where yx := f(x) is the unknown label for location x, can be
calculated as

ï

ym
yx

ò

∼ N

Å

0,

ï

KXmXm
+ σ2

wI kTxXm

kxXm
kxx

òã

, (10)

where kxXm
∈ R

m is the vector such that its ith element is
given by the kernel as k(x, xi), for any i = 1, . . . ,m, and
kxx := k(x, x). The posterior distribution of yx|Xm, ym is
a Gaussian distribution as yx|Xm, ym ∼ N (µm(x), σm(x)) ,
where the mean of prediction, µm(x), and the corresponding
covariance, σm(x), are given as

µm(x) := kTxXm

(

KXmXm
+ σ2

wI
)−1

ym, (11)

σm(x) := kxx − kTxXm

(

KXmXm
+ σ2

wI
)−1

kxXm
. (12)

The posterior mean µm(x) is a nonlinear function predicting
the value of f at location x with an uncertainty described
by σm(x). Accordingly, this is a nonlinear non-parametric
regression method called Gaussian process regression (GPR).
The hyperparameters of the kernel σf , L and σw collected in a

vector θ ∈ Θ can be estimated by minimizing the negative log
marginal log-likelihood of the joint distribution of the training
data, i.e.,

θ̂ := argminθ∈Θ − log p(ym|Xm, θ) , (13)

where p(ym|Xm, θ) is the probability density function of the
labels or measurements acquired at locations {xi}mi=1.
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