

Performance-Driven Multi-Level Clustering
with Application to Hierarchical FPGA Mapping

 Jason Cong Michail Romesis

 UCLA Computer Science Department UCLA Computer Science Department
 Los Angeles, CA 90095 Los Angeles, CA 90095
 cong@cs.ucla.edu michail@cs.ucla.edu

ABSTRACT
In this paper, we study the problem of performance-driven
multi-level circuit clustering with application to hierarchical
FPGA designs. We first show that the performance-driven
multi-level clustering problem is NP-hard (in contrast to the
fact that single-level performance-driven clustering can be
solved in polynomial time optimally). Then, we present an
efficient heuristic for two-level clustering for delay
minimization. It can also provide area-delay trade-off by
controlling the amount of node duplication. The algorithm is
applied to Altera’s latest APEX FPGA architecture which has
a two-level hierarchy. Experimental results with
combinational circuits show that with our performance-driven
two-level clustering solution we can improve the circuit
performance produced by the Quartus Design System from
Altera by an average of 15% for APEX devices measured in
terms of delay after final layout. To our knowledge this is the
first in-depth study for the performance-driven multi-level
circuit clustering problem.

1. INTRODUCTION
Circuit clustering is a technique that groups the gates of a
circuit into clusters under the area bound and/or pin
constraints to optimize certain metrics. Commonly used
metrics include maximization of the connectivity within
clusters (e.g.[6,10,16]) or minimization of the delay of the
clustered circuits (e.g. [2,4]). In this paper, we focus on delay
minimization of the clustered circuit. Circuit clustering is an
important technique for various reasons. First, all modern
circuit designs are very large in size. Clustering can reduce the
complexity by a significant factor. Second, clustering can
improve the quality of the results of other operations (such as
partitioning or placement) especially in the multi-level
optimization framework. For example, the hMetis algorithm
used the multi-level clustering scheme for cutsize
minimization in partitioning [11]. PRIME [4] and HPM [2]
use simultaneous circuit partitioning/clustering with retiming
for performance optimization. Finally, multi-level clustering is
important for mapping circuits onto hierarchical

architectures as shown in the next paragraph.

An example of the increasing usage of hierarchical
architectures can be seen in the FPGA field. In 1999, Altera
shipped its APEX20K devices with up to 51,840 logic
elements (equivalent to 4-input lookup-tables or 4-LUTs) and
60,000 to 1.5 million usable gates [3]. In order to cope with
the complexity of such high-capacity devices Altera uses a
two-level architecture (Figure 1). The first-level cluster is
called a logic array block (LAB) consisting of 10 4-LUTs
connected by the local interconnect array. Sixteen such LABs
form the second-level cluster, called a MegaLAB. This
architecture can take advantage of the locality of
interconnections and use the faster local and semi-global
interconnections to improve the performance of the circuit.

 Previous work on performance-driven clustering focused only
on the single-level clustering formulation. The early work by
Lawler et al. [12] presented a polynomial-time delay-optimal
algorithm for area-constrained circuit clustering under the unit
delay model. In this model, a constant delay is associated with
every interconnection between two gates in different clusters,
and no delay is associated to an interconnection within the
same cluster. A more realistic model, called the “general delay
model”, was proposed by Murgai et al. [13], in which each
gate may have a different delay. It assumes no delay for any
interconnection inside the cluster and a constant delay for
every interconnection between the clusters. Rajaraman and
Wong [15] presented the first delay-optimal algorithm for
area-constrained clustering under the general delay model.
Other algorithms considering both area and pin constraints
have been developed [17]. All the results discussed so far

Figure 1 : APEX 20K MegaLAB Structure
 (Source: Altera Corp.)

apply to combinational circuits only. For sequential circuits,
Pan et al. [14] proposed a polynomial-time clustering
algorithm with retiming that achieves quasi-optimal delay
under the general delay model. PRIME [4] provides
significant space and time complexity improvement of [14]
while maintaining quasi-optimal delay solutions.

It is obvious that efficient performance-driven multi-level
clustering is important for hierarchical architectures with
different delays among the components at different levels of
the chip. In this paper, we study the problem of performance-
driven multi-level circuit clustering for combinational circuits.
We first show that the performance-driven multi-level
clustering problem is NP-hard (in contrast to the fact that
single-level performance-driven clustering can be optimally
solved in polynomial time). Then, we present an efficient
heuristic for two-level clustering for delay minimization. It
can also provide the area-delay trade-off by controlling the
amount of node duplication. The algorithm is applied to the
latest APEX FPGA architecture from Altera which has a two-
level hierarchy. Experimental results show that with our
performance-driven two-level clustering solution we can
improve the circuit performance produced by the Quartus
Design System from Altera by an average of 15% for APEX
devices measured in terms of delay after final layout.

The rest of the paper is organized as follows. Section 2 defines
the circuit clustering problem under a two-level delay model.
Section 3 discusses the complexity of the problem. Section 4
presents our heuristic algorithm, called Two-Level Clustering
(TLC) for performance-driven two-level clustering. We
discuss the two phases of the TLC algorithm, labeling and
clustering and the area-delay trade-off by node duplication.
Section 5 presents the experimental results and Section 6
concludes the paper.

2. PROBLEM FORMULATION
A combinational network can be represented as a directed
acyclic graph N= (V, E), where V is the set of nodes, and E is
the set of directed edges. Each node in V represents a gate in
the network and an edge (u,v) is in E if and only if there is an
interconnection between gates u and v in the network. Every
node u is associated with two parameters: delay d(u) and area
w(u). A first-level cluster is a set of nodes U ⊂ V of the
network whose total area does not exceed a prescribed bound,
say M1. For a first-level cluster p, if we use w(p) to denote
the total area of the cluster, we have:

A second-level cluster is a set of first-level clusters whose
total area does not exceed another constant, M2. For a second-
level cluster b, if w(b) denotes the area of b, we have :

The two-level delay model that we use is the following:
1) Every node u has a delay d(u).
2) An interconnection between two nodes in the same first-
level cluster has a fixed delay D1.
3) An interconnection between two nodes in different first-
level clusters, but in the same second-level cluster has a fixed
delay of D2.
4) An interconnection between two nodes in different second-
level clusters has a fixed delay D3.

We can now define the two-level clustering problem as
follows: Given a combinational network, cover the network
with two-level clusters subject to the area constraints. A
feasible solution to the two-level clustering problem contains
two sets:
1) a set S1={V1, V2, ..Vn} representing first-level clusters

where:

2) a set S2={X1,X2, ..,Xm} representing second-level clusters
where:

The clusters may have common nodes, but the clustered
network must be logically equivalent to the input network.
Our goal is to minimize the delay through the network
according to the two-level delay model. The delay through the
network is the maximum delay along any path from a primary
input node to a primary output node (recall that we are dealing
with combinational circuits). Figure 2 shows an instance of the
two-level clustering problem where M1=2 and M2=4. For
d=1,D1=2, D2=3,D3=4 the circuit has a delay of 18.

In the next section, we discuss the complexity of the two-level
clustering problem. In Section 4, we present a heuristic for this
problem.

Figure 2 : An example of a Two-Level Clustering
 Solution

 M)p(ww(b) 2
bp

≤= ∑
∈

 VV and ni1 for M)V(w,VV
n

1i
i1ii =≤≤≤⊂

=
�

1

m

1i
i2i1i SX and mi1 for M)X(w ,SX =≤≤≤⊂

=
�

 M)u(ww(p) 1
pu

≤= ∑
∈

D1
D2

D3

1st level cluster

2nd level cluster

3. PROBLEM COMPLEXITY ANALYSIS
In [15] the authors proved that the area-constrained single-
level clustering problem under the delay model defined in
Section 2 (without D3) can be solved in polynomial time. In
contrast, we show in this paper that when the problem is
extended to two levels of clusters, it becomes NP-hard. In [8]
we provide a proof for the NP-hardness of the two-level
clustering problem. In this section, we outline the
transformation procedure so that the reader can understand
where the difficulty comes from. Generally speaking, the main
difference between the single-level and the multi-level
clustering problems is node duplication. In the single-level
case, node duplication is performed whenever it may reduce
the delay without consideration of the increase in the number
of clusters. On the other hand, in the multi-level case node
duplications can occur in the same second-level cluster (but
among different first-level clusters). In this case, the cluster
capacity constraint must be taken into consideration. For that
reason in our heuristic we do not allow node duplication inside
a second-level cluster for area-reduction reasons.

The decision version of the two-level clustering problem is the
following: Given a combinational network, is there a feasible
clustering solution such that the maximum delay of the
network under the two-level delay model is smaller than a
given constant D? In order to show that this problem is NP-
hard we reduce the 3-SAT problem to it. It is known that the
3-SAT problem is NP-complete [9].

Given an instance of the 3-SAT problem with V variables and
C clauses we make the transformation to the two-level
clustering problem as follows: The network is represented as a
graph with four types of nodes: literal nodes, clause nodes,
consistency nodes and auxiliary nodes. There is a literal node
corresponding to each of the literals xi or x’i in the 3-SAT
problem. There is also a clause node cj corresponding to each
clause of the 3-SAT. For each variable xi of the 3-SAT there is
a consistency node ti. We have also some auxiliary nodes.
The weights of these nodes are given in [8].

The edges of the graph are defined as follows: For every literal
node there is an edge from the corresponding consistency node
to the literal node. For every clause node there are three edges

from every literal node of the clause to the clause node. Also
from every clause node there is an edge to the same auxiliary
node. The auxiliary nodes create a chain. An example of the
graph created can be seen in Figure 3. The groupings of the
consistency nodes with the literal nodes correspond to the
assignments to a variable in the 3-SAT instance. In [8] we
prove that the maximum delay of the network can have a
certain minimum value if and only if a satisfiable assignment
exists.

4. THE TLC ALGORITHM
In this Section we present our algorithm, named two-level
clustering (TLC), which works in two phases. In the first
phase (labeling phase) we label each node u with an estimated
maximum delay in our clustering result. During this phase we
create for each node u a two-level cluster that has u as a root
node. The nodes are visited in topological order.

In the second phase (clustering phase) we cover the network
with the clusters created in the previous phase. In this phase
the nodes are visited in reverse topological order.

4.1 Labeling Phase
In this phase we use the dynamic programming technique to
compute the label l(u) for each node u from the primary inputs
(PIs) to the primary outputs (POs) of the network in
topological order. The label l(u) stands for the delay of node u
in the two-level clustering solution computed by the TLC
algorithm. For each of the primary inputs of the network, we
assign l(u)=d(u). During the process we are visiting the
predecessors of u until we fill a second-level cluster rooted at
u.

We maintain two lists of candidate nodes to include in the
cluster. The first is called a first-level list that includes the
candidates for filling the current first-level cluster. This list
contains all the fanins to the set of nodes included in the
current first-level cluster. There is also a second-level list that
includes the candidates for root nodes for the next first-level
cluster. This list in the same way includes all the fanins to the
set of nodes contained in the second-level cluster so far. The
procedure is the following: From the second-level list we
choose the root node for the next first-level cluster. Then we
fill the first-level cluster by choosing nodes from the first-level
list which is updated dynamically. This procedure is repeated
until we fill the second-level cluster. We would also like to
mention that we impose a constraint on the maximum number
of inputs that a first-level cluster can have when applied to the
APEX devices, because the first-level clusters correspond to
LABs in the Altera devices which cannot have more than 22
inputs.

In order to choose what nodes to include in the cluster rooted
at u, we use their label delay and their maximum distance
calculated so far from the root node. For every node v, we use
g(v) to denote the immediate successor of v with the maximum
distance to the root node u. We define:

 f(v,u)=l(v) + distance(g(v), u)

Obviously, f(v,u) is a lower bound on the delay along any path
from a primary input to the root node u that passes through v.
The greater the value of the function, the bigger the need to
include the node in the cluster. Therefore we use f(v,u) as a

t t1 t2 t3

 x3x’3 x2 x’2
 x1 x’1

 c1 c2

 a1

 a2

Figure 3 : An example of the graph for c1=x1x’2x3
 and c2=x1x2x’3

LABEL(u):
distance(u)←d(u)
Second_Level_List←{u}
While second_level_cluster_area<M2 AND
 Second_Level_List ≠∅
 Create new first-level cluster
 Choose from Second_Level_List node v with
 max(f(v,u))
 root_node ← v
 First_Level_List←{root_node}
 FILL_FIRST_LEVEL_CLUSTER(First_Level_List)
 Update Second_Level_List
 First_Level_List←∅
Endwhile
Compute l1(u)
Compute l2(u)
L(u)=max{l1(u),l2(u)}

*
FILL_FIRST_LEVEL_CLUSTER (First_Level_
List) :
While first_level_cluster_area<M1 AND
 First_Level_List ≠∅
 Choose from First_Level_List node v with
 max(f(v,u))
 current_node ← v
 Add current_node to first-level cluster
 For every fanin w of current_node
 Add node w to First_Level_List
 Update g(w)
 Endfor
Endwhile

ALGORITHM: TLC
Sort the nodes in topological order
For every node u in network
 LABEL(u)
L←PO
While L is not empty
 Remove a node u from L
 Add cluster(u) to solution while duplicating only

the nodes belonging to ε-network
 Add all inputs of cluster(u) to L
Endwhile

guide for the choice of a node from the first-level list and the
second-level list.

After we have finished filling the second-level cluster, we
compute the label of the root node u of the corresponding
second-level cluster as follows. This procedure is similar to
the approach in [15] where they consider all possible paths
from an input to the root node.

All paths can be divided into two categories:

a) Paths that lie enitrely inside the second-level cluster. Such
paths start from a primary input node that is included in the
second-level cluster. The maximum delay along any such path
is :
 l1(u)= max{f(v,u)+D|v ∈ cluster(u)∩PI, D=D1 if v and g(v)
 are in the same first-level cluster else D=D2}

b) Paths that cross the second-level cluster. Among these
paths the maximum delay is:
 l2(u)= max{f(v,u)+D3| v is connected to at least one node of
 cluster(u) but does not belong to cluster(u)}

Then the label of u is the maximum of l1(u) and l2(u).

A description for the labeling phase is given in Fig. 4. In order
to reduce the total area of the circuit, we do not allow any
node duplications inside a second-level cluster. The reason is
that it is not clear if such node duplication helps to reduce the
delay, as it may reduce the delay of some first-level cluster,

but also reduce the capacity of the second-level cluster. Still
we allow node duplications in different second-level clusters.

4.2 Clustering Phase
In the clustering phase we choose what clusters from those
created in the previous phase to include in order to cover the
network.

This phase is also similar to the clustering phase of [15]. We
maintain a list L of nodes whose clusters we will include.
Initially L contains all the primary outputs of the network. At
each step we choose one node from L, we generate the cluster
rooted from the node and we insert into the list all the inputs to
that cluster. This way we can have node duplication as
mentioned before. When L becomes empty, the generated
clusters cover the whole network. Figure 5 shows the
summary for the entire algorithm.

4.3 Area-Delay Trade-Off
Although our algorithm is performance-driven we may impose
some restrictions on the amount of node duplications in order
to control the area of the resulting solution. For this reason in
the clustering phase we choose to duplicate only the nodes that
belong to the ε-network of the circuit. A node belongs to the ε-
network if its slack is smaller than a predefined value ε. The
slack s(u) of a node u is computed as follows:

 s(u)=q(u)-l(u)

where l(u) is the label of the node and q(u) is the required time
of the node defined as:

 q(u)=min{q(v)-d(e)-d(u)|e(v,u)∈ E}

The timing slack is used to determine the timing criticality of a
node. If we duplicate only the nodes of the ε-network we can
have a big improvement in area traded for a small degradation
of performance.

4.4 Algorithm Complexity Analysis
In order to make the complexity analysis of the algorithm we
assume that the nodes have integer areas. We label each node
of the network, so if the network has N nodes we repeat the
labeling phase O(N) times. Since we want to fill the second-
level cluster we will choose a new node O(M2) times. Every
time we choose a node we have to make updates for each
fanin of that node. If the maximum in-degree of the network is

 Figure 4 : The labeling phase of the TLC algorithm
 Figure 5 : The TLC algorithm

I, the whole labeling phase takes O(N⋅M2⋅I) time. In the case
of FPGA devices where all nodes are 4-input LUTs, I is equal
to 4. In this case the complexity of of the labeling phase
becomes O(N⋅M2). The clustering phase has an O(N) time
compexity, so the total time complexity of the algorithm is
O(N⋅M2⋅I).

Since we want to keep the information about every node’s
corresponding cluster, the space complexity of the algorithm is
O(N⋅M2).

5.EXPERIMENTAL RESULTS
We have implemented the TLC algorithm in C++/STL and
integrated it into the UCLA RASP System [7]. We ran our
experiments on a SUN ULTRA10 workstation with a 440
MHz CPU and 1024 MB of memory. The experimental
procedure was the following: From a given gate-level netlist,
we first ran a script, shown in Figure 6, for the UC Berkeley
SIS System [1] and the UCLA RASP System including the
FlowMap algorithm [5], to generate a 4-input LUT network.
As an output we have two files: one with a .TDF extension
describing the new network which is logically equivalent to
the original network and a file with an .ESF extension that
describes the clustering constraints. The first-level clusters are
assigned to LABs (see Section 1) and the second-level clusters
to MegaLABs.

We used the commercial synthesis tool Quartus II v.1.0 from
Altera to test our results. For every circuit we ran four

experiments. First we provided to Quartus as an input the
original bounded network without any clustering constraints.
Then we requested from Quartus to use the clustering results
from our algorithm. We have three versions of our algorithm.
The first one allows duplications without any restrictions at
all. The second version duplicates only the nodes belonging to
the ε-network of the circuit. The third version allows no
duplication at all. The experimental flow is graphically
presented in Figure 7.

In Table 1 we present the results from all four experiments.
The device we used was the EP20K600EFC672–1X from the
APEX20KE family. According to the APEX device
architecture defined in Section 1 we set M1 to be 10 and M2 to
be 160. The delay model we used was the following: D1= 0.36
ns, D2=0.85 ns, D3 = 1.57ns, NODE_DELAY=0.61ns. The data
used are extracted from the timing analysis tool used in
Quartus. We used combinational circuits from the MCNC and
ISCAS benchmark sets.

We see that on the average the maximum delay decreased by
9% when we ran TLC without any node duplications, and by
11% when we allowed partial node duplications. In the latter
case the area of the equivalent circuit is increased by 33%.
The version with full node duplications provides the best
performance results (an average of 15% improvement over the
Quartus results) but with a very big area penalty. The results
show that our clustering algorithm produces satisfying results
compared to a well-known commercial tool. We believe that
the improvement is largely due to the use of our two-level
clustering formulation and solution. The runtime of our
program alone is always under 1 minute for all designs
reported in Table 1.

6. CONCLUSIONS & FUTURE WORK
We presented an algorithm for the performance-driven two-
level clustering problem, which has application for
hierarchical FPGA designs. Our algorithm is performance-
driven. We showed that this problem is NP-hard.
Experimental results showed that the clustering solution
created by our algorithm improved the circuit performance
produced by the Quartus System Design from Altera by an
average of 15% for APEX devices. To our knowledge this is
the first in-depth study for the performance-driven multi-level
circuit clustering problem.

Future work can be focused on three areas:
a) Expand the algorithm for sequential circuits. Right now

we can only handle combinational circuits.
b) Use a more realistic delay model that considers geometric

information. For example the delay between adjacent
MegaLABs is sometimes only the half of the delay
between distant MegaLABs.

c) Expand the algorithm to handle hierarchical architectures
with three or more levels.

7. ACKNOWLEDGEMENTS
This work is partially supported by Altera, Intel, Fujitsu
Laboratories of America under the California MICRO
program and the NSF Young Investigator Award MIP-
9357582. We would like to thank Dr. Chang Wu from Aplus
Design Technologies, Inc. for his valuable help.

Network with
clustering
constraints

 Original
 Network

 Altera
 Quartus

 SIS/ RASP

 4-Bounded
 Network

 TLC

 Figure 7 : Experimental flow

Script.rugged;
Tech_decomp –a 1000 –o 1000;
Dmig –k 2;
Flowmap –k 4;
Greedy_pack –k 4;

 Figure 6: Script for the LUT mapping

8. REFERENCES
[1] Brayton R.K., Rudell R., and Sangiovanni-Vincenteli

A.L. MIS: A Multiple-Level Logic Optimization, IEEE
Transactions on CAD, pages 1062-1081, Nov. 1987

[2] Cong J., Lim S.K., and Wu C. Performance Driven
Multi-level and Multiway Partitioning with Retiming,
ACM/IEEE 37th Design Automation Conference, Los
Angeles, CA, June 2000, pages 274-279.

[3] Cong J. and Xu S. Synthesis Challenges for Next-
Generation High-Performance and High-Density PLDs,
Asia and South Pacific Design Automation Conf.,
January 2000, pages 157-162.

[4] Cong J., Li H., and Wu C. Simultaneous Circuit
Partitioning/Clustering with Retiming for Performance
Optimization in Proc. ACM Design Automation Conf.,
1999.

[5] Cong J. and Ding Y. FlowMap: An Optimal Technology
Mapping Algorithm for Delay Optimization in Lookup-
Table Based FPGA Designs, IEEE Trans. On Computer-
Aided Design, 1994, pages 1-12.

[6] Cong J. and Lim S.K. Edge Separability Based Circuit
Clustering with Application to Circuit Partitioning. Asia
South Pacific Design Automation Conference,
Yokohama Japan, Jan.2000, pp.429-434.

[7] Cong J., Peck J., and Ding Y. RASP: A General Logic
Synthesis System for SRAM-based FPGAs.
ACM/SIGDA International Symposium on Field-
Programmable Gate-Arrays, Monterey, California, Feb.
1996.

[8] Cong J. and Romesis M. Performance-Driven Multi-
Level Clustering with Application to Hierarchical FPGA
Mapping. UCLA CSD Technical Report #010007.

[9] Cook S.A. The complexity of theorem-proving
procedures. Proc. 3rd Ann. ACM Symp. On Theory of
Computing. New York, 1971, pages 151-158.

[10] Huang D.J. and Khang A.B. When clusters meet
partitions: New Density-Based Methods for Circuit
Decomposition. In Proc. European Design and Test
Conf., pages 60-64, 1995.

[11] Karypis G., Aggarwal R., Kumar V., and Shekhar S.
Multilevel Hypergraph Partitioning; Application in VLSI
Domain. Proceedings of the 34th annual conference on
Design Automation Conference, 1997, pages 526-529.

[12] Lawler E.L., Levitt K.N., and Turner J. Module
Clustering to Minimize Delay in Digital Networks, IEEE
Transactions on Computers, Vol. C-18, No.1, January
1966, page 47-57.

[13] Murgai R., Brayton R.K., and Sangiovanni – Vincentelli
A. On Clustering for Minimum Delay/Area, IEEE
International Conference on Computer-Aided Design,
November 1991, pages 6-9.

[14] Pan P., Karandikar A.K., and Liu C.L. Optimal Clock
Period Clustering for Sequential Circuits with Retiming.
IEEE Trans. on Computer-Aided Design, pages 489-498,
1998.

[15] Rajaraman R. and Wong D.F. Optimal Clustering for
Delay Minimization, Design Automation Conference,
1993, pages 309-314.

[16] Wei Y.C. and Cheng C.K. Ratio cut partitioning for
hierarchical designs. IEEE Trans. on Computer-Aided
Design, pages 911-921, 1992.

[17] Yang H.H. and Wong D.F. Circuit Clustering for Delay
Minimization under Area and Pin Constraints, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits, September 1997, pages 976-986.

Circuit #LUTs #I/Os Quartus

Quartus
+TLC
(no ND)

%

Quartus
+TLC
(full
ND) % %

Quartus
+TLC
(partial
ND) % %

Delay
(ns)

Delay
(ns)

Delay
(ns)

Area
(LUTs)

Delay
(ns)

Area
(LUTs)

alu 321 22 35.71 33.02 7.5 30.51 14.6 1045 225.6 33.73 5.6 458 42.7
apex2 1152 42 29.49 26.13 11.4 28.22 4.3 1804 56.6 30.82 -4.5 1417 23.0
apex6 390 234 27.00 22.88 15.3 20.93 22.5 571 46.4 21.37 20.9 483 23.8
C1908 146 58 32.32 26.40 18.3 25.41 21.4 827 466.4 27.31 15.5 227 55.5
C5315 537 301 36.44 33.32 8.6 29.43 19.2 2032 278.4 31.21 14.4 776 44.5
C880 166 86 36.30 29.58 18.5 24.71 31.9 364 119.3 27.15 25.2 225 35.5
dalu 430 91 26.01 25.41 2.3 22.62 13.0 811 88.6 26.28 -1.1 496 15.3
des 1569 501 34.86 30.02 13.9 29.65 14.9 3470 121.2 29.87 14.3 2346 49.5
i10 819 481 47.30 42.44 10.3 37.92 19.8 3165 286.5 41.99 11.2 1118 36.5
i9 212 141 25.07 21.32 15.0 21.75 13.3 393 85.4 21.12 15.8 236 11.3
k2 526 88 29.42 29.72 -1.0 25.32 14.0 2258 329.3 27.07 8.0 804 52.9
large 922 41 30.07 30.32 -0.9 26.51 11.8 1654 79.4 26.03 13.4 1194 29.5
misex3 1058 28 26.82 23.70 11.6 21.83 18.6 1903 79.9 22.54 16.0 1318 24.6
too_large 193 41 24.84 24.00 3.4 25.04 -0.8 262 35.8 23.80 4.2 252 30.6
vda 297 56 28.54 24.34 14.7 20.21 29.2 1304 339.1 23.53 17.6 463 55.9
x3 392 234 22.53 22.52 0.0 21.26 5.6 510 30.1 22.29 1.0 438 11.7
Average 9.3 15.8 166.7 11.1 33.9

 Table 1: Experimental results (ND stands for node duplication)

