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ABSTRACT 
In this paper, we study the problem of performance-driven 
multi-level circuit clustering with application to hierarchical 
FPGA designs. We first show that the performance-driven 
multi-level clustering problem is NP-hard (in contrast to the 
fact that single-level performance-driven clustering can be 
solved in polynomial time optimally). Then, we present an 
efficient heuristic for two-level clustering for delay 
minimization. It can also provide area-delay trade-off by 
controlling the amount of node duplication. The algorithm is 
applied to Altera’s latest APEX FPGA architecture which has 
a two-level hierarchy. Experimental results with 
combinational circuits show that with our performance-driven 
two-level clustering solution we can improve the circuit 
performance produced by the Quartus Design System from 
Altera by an average of 15% for APEX devices measured in 
terms of delay after final layout. To our knowledge this is the 
first in-depth study for the performance-driven multi-level 
circuit clustering problem.     
 

1. INTRODUCTION 
Circuit clustering is a technique that groups the gates of a 
circuit into clusters under the area bound and/or pin 
constraints to optimize certain metrics. Commonly used 
metrics include maximization of the connectivity within 
clusters (e.g.[6,10,16]) or minimization of the delay of the 
clustered circuits (e.g. [2,4]). In this paper, we focus on delay 
minimization of the clustered circuit. Circuit clustering is an 
important technique for various reasons. First, all modern 
circuit designs are very large in size. Clustering can reduce the 
complexity by a significant factor. Second, clustering can 
improve the quality of the results of other operations (such as 
partitioning or placement) especially in the multi-level 
optimization framework. For example, the hMetis algorithm 
used the multi-level clustering scheme for cutsize 
minimization in partitioning [11]. PRIME [4] and HPM [2] 
use simultaneous circuit partitioning/clustering with retiming 
for performance optimization. Finally, multi-level clustering is 
important for mapping circuits onto hierarchical 

 

architectures as shown in the next paragraph.  
 
An example of the increasing usage of hierarchical 
architectures can be seen in the FPGA field. In 1999, Altera 
shipped its APEX20K devices with up to 51,840 logic 
elements (equivalent to 4-input lookup-tables or 4-LUTs) and 
60,000 to 1.5 million usable gates [3]. In order to cope with 
the complexity of such high-capacity devices Altera uses a 
two-level architecture (Figure 1).  The first-level cluster is 
called a logic array block (LAB) consisting of 10 4-LUTs 
connected by the local interconnect array. Sixteen such LABs 
form the second-level cluster, called a MegaLAB. This 
architecture can take advantage of the locality of 
interconnections and use the faster local and semi-global 
interconnections to improve the performance of the circuit. 
 
 Previous work on performance-driven clustering focused only 
on the single-level clustering formulation. The early work by 
Lawler et al. [12] presented a polynomial-time delay-optimal 
algorithm for area-constrained circuit clustering under the unit 
delay model. In this model, a constant delay is associated with 
every interconnection between two gates in different clusters, 
and no delay is associated to an interconnection within the 
same cluster. A more realistic model, called the “general delay 
model”, was proposed by Murgai et al. [13], in which each 
gate may have a different delay. It assumes no delay for any 
interconnection inside the cluster and a constant delay for 
every interconnection between the clusters. Rajaraman and 
Wong [15] presented the first delay-optimal algorithm for 
area-constrained clustering under the general delay model. 
Other algorithms considering both area and pin constraints 
have been developed [17]. All the results discussed so far 

Figure 1 : APEX 20K MegaLAB Structure   
                      (Source: Altera Corp.) 



apply to combinational circuits only.  For sequential circuits, 
Pan et al. [14] proposed a polynomial-time clustering 
algorithm with retiming that achieves quasi-optimal delay 
under the general delay model. PRIME [4] provides 
significant space and time complexity improvement of [14] 
while maintaining quasi-optimal delay solutions. 
 
It is obvious that efficient performance-driven multi-level 
clustering is important for hierarchical architectures with 
different delays among the components at different levels of 
the chip. In this paper, we study the problem of performance-
driven multi-level circuit clustering for combinational circuits. 
We first show that the performance-driven multi-level 
clustering problem is NP-hard (in contrast to the fact that 
single-level performance-driven clustering can be optimally 
solved in polynomial time). Then, we present an efficient 
heuristic for two-level clustering for delay minimization. It 
can also provide the area-delay trade-off by controlling the 
amount of node duplication. The algorithm is applied to the 
latest APEX FPGA architecture from Altera which has a two-
level hierarchy. Experimental results show that with our 
performance-driven two-level clustering solution we can 
improve the circuit performance produced by the Quartus 
Design System from Altera by an average of 15% for APEX 
devices measured in terms of delay after final layout. 
 
The rest of the paper is organized as follows. Section 2 defines 
the circuit clustering problem under a two-level delay model. 
Section 3 discusses the complexity of the problem. Section 4 
presents our heuristic algorithm, called Two-Level Clustering 
(TLC) for performance-driven two-level clustering. We 
discuss the two phases of the TLC algorithm, labeling and 
clustering and the area-delay trade-off by node duplication. 
Section 5 presents the experimental results and Section 6 
concludes the paper. 
 

2. PROBLEM FORMULATION 
A combinational network can be represented as a directed 
acyclic graph N= (V, E), where V is the set of nodes, and E is 
the set of directed edges. Each node in V represents a gate in 
the network and an edge (u,v) is in E if  and only if there is an 
interconnection between gates u and v in the network. Every 
node u is associated with two parameters: delay d(u) and area 
w(u). A first-level cluster is a set of nodes U ⊂  V of the 
network whose total area does not exceed a prescribed bound, 
say M1.  For a first-level cluster p, if we use w(p)  to denote 
the total area of the cluster, we have: 

A second-level cluster is a set of first-level clusters whose 
total area does not exceed another constant, M2.  For a second-
level cluster b, if w(b) denotes the area of  b, we have : 

The two-level delay model that we use is the following:  
1) Every node u has a delay d(u).  
2) An interconnection between two nodes in the same first-
level cluster has a fixed delay D1. 
3) An interconnection between two nodes in different first-
level clusters, but in the same second-level cluster has a fixed 
delay of D2. 
4) An interconnection between two nodes in different second-
level clusters has a fixed delay D3. 
 
We can now define the two-level clustering problem as 
follows: Given a combinational network, cover the network 
with two-level clusters subject to the area constraints. A 
feasible solution to the two-level clustering problem contains 
two sets:  
1) a set S1={V1, V2, ..Vn} representing first-level clusters 

where: 

2) a set S2={X1,X2, ..,Xm}  representing  second-level clusters 
where: 

The clusters may have common nodes, but the clustered 
network must be logically equivalent to the input network. 
Our goal is to minimize the delay through the network 
according to the two-level delay model. The delay through the 
network is the maximum delay along any path from a primary 
input node to a primary output node (recall that we are dealing 
with combinational circuits). Figure 2 shows an instance of the 
two-level clustering problem where M1=2 and M2=4. For 
d=1,D1=2, D2=3,D3=4 the circuit has a delay of 18. 
 
In the next section, we discuss the complexity of the two-level 
clustering problem. In Section 4, we present a heuristic for this 
problem. 
 

Figure 2 : An example of a Two-Level Clustering  
                                      Solution 
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3. PROBLEM COMPLEXITY ANALYSIS 
In [15] the authors proved that the area-constrained single-
level clustering problem under the delay model defined in 
Section 2 (without D3) can be solved in polynomial time. In 
contrast, we show in this paper that when the problem is 
extended to two levels of clusters, it becomes NP-hard. In [8] 
we provide a proof for the NP-hardness of the two-level 
clustering problem. In this section, we outline the 
transformation procedure so that the reader can understand 
where the difficulty comes from. Generally speaking, the main 
difference between the single-level and the multi-level 
clustering problems is node duplication. In the single-level 
case, node duplication is performed whenever it may reduce 
the delay without consideration of the increase in the number 
of clusters. On the other hand, in the multi-level case node 
duplications can occur in the same second-level cluster (but 
among different first-level clusters). In this case, the cluster 
capacity constraint must be taken into consideration. For that 
reason in our heuristic we do not allow node duplication inside 
a second-level cluster for area-reduction reasons. 
 
The decision version of the two-level clustering problem is the 
following: Given a combinational network, is there a feasible 
clustering solution such that the maximum delay of the 
network under the two-level delay model is smaller than a 
given constant D? In order to show that this problem is NP-
hard we reduce the 3-SAT problem to it. It is known that the 
3-SAT problem is NP-complete [9].  
 
Given an instance of the 3-SAT problem with V variables and 
C clauses we make the transformation to the two-level 
clustering problem as follows: The network is represented as a 
graph with four types of nodes: literal nodes, clause nodes, 
consistency nodes and auxiliary nodes. There is a literal node 
corresponding to each of the literals xi or x’i in the 3-SAT 
problem. There is also a clause node cj corresponding to each 
clause of the 3-SAT. For each variable xi of the 3-SAT there is 
a consistency node ti. We have also some auxiliary nodes.  
The weights of these nodes are given in [8]. 

 
The edges of the graph are defined as follows: For every literal 
node there is an edge from the corresponding consistency node 
to the literal node. For every clause node there are three edges 

from every literal node of the clause to the clause node. Also 
from every clause node there is an edge to the same auxiliary 
node. The auxiliary nodes create a chain. An example of the 
graph created can be seen in Figure 3. The groupings of the 
consistency nodes with the literal nodes correspond to the 
assignments to a variable in the 3-SAT instance. In [8] we 
prove that the maximum delay of the network can have a 
certain minimum value if and only if a satisfiable assignment 
exists. 
 

4. THE TLC ALGORITHM 
In this Section we present our algorithm, named two-level 
clustering (TLC), which works in two phases. In the first 
phase (labeling phase) we label each node u with an estimated 
maximum delay in our clustering result. During this phase we 
create for each node u a two-level cluster that has u as a root 
node. The nodes are visited in topological order. 
 
In the second phase (clustering phase) we cover the network 
with the clusters created in the previous phase. In this phase 
the nodes are visited in reverse topological order. 
 

4.1 Labeling Phase 
In this phase we use the dynamic programming technique to 
compute the label l(u) for each node u from the primary inputs 
(PIs) to the primary outputs (POs) of the network in 
topological order. The label l(u) stands for the delay of node u 
in the two-level clustering solution computed by the TLC 
algorithm. For each of the primary inputs of the network, we 
assign l(u)=d(u). During the process we are visiting the 
predecessors of u until we fill a second-level cluster rooted at 
u.  
 
We maintain two lists of candidate nodes to include in the 
cluster. The first is called a first-level list that includes the 
candidates for filling the current first-level cluster. This list 
contains all the fanins to the set of nodes included in the 
current first-level cluster. There is also a second-level list that 
includes the candidates for root nodes for the next first-level 
cluster. This list in the same way includes all the fanins to the 
set of nodes contained in the second-level cluster so far. The 
procedure is the following: From the second-level list we 
choose the root node for the next first-level cluster. Then we 
fill the first-level cluster by choosing nodes from the first-level 
list which is updated dynamically. This procedure is repeated 
until we fill the second-level cluster. We would also like to 
mention that we impose a constraint on the maximum number 
of inputs that a first-level cluster can have when applied to the 
APEX devices, because the first-level clusters correspond to 
LABs in the Altera devices which cannot have more than 22 
inputs. 
 
In order to choose what nodes to include in the cluster rooted 
at u, we use their label delay and their maximum distance 
calculated so far from the root node. For every node v, we use 
g(v) to denote the immediate successor of v with the maximum 
distance to the root node u. We define:  
 

           f(v,u)=l(v) + distance(g(v), u)  
 

Obviously, f(v,u) is a lower bound on the delay along any path 
from a primary input to the root node u that passes through v. 
The greater the value of the function, the bigger the need to 
include the node in the cluster. Therefore we use f(v,u) as a 

t t1  t2  t3 

 x3x’3  x2 x’2 
 x1 x’1 

 c1  c2 

 a1 

 a2 

Figure 3 : An example of the graph for c1=x1x’2x3  
                           and c2=x1x2x’3  



LABEL(u): 
distance(u)←d(u) 
Second_Level_List←{u} 
While second_level_cluster_area<M2 AND 
 Second_Level_List ≠∅  
     Create new first-level cluster 
     Choose from Second_Level_List node v with   
           max(f(v,u)) 
     root_node ← v 
     First_Level_List←{root_node} 
     FILL_FIRST_LEVEL_CLUSTER(First_Level_List)   
     Update Second_Level_List 
     First_Level_List←∅  
Endwhile 
Compute l1(u) 
Compute l2(u) 
L(u)=max{l1(u),l2(u)} 
 
* * * * * * * * * * * * * * * * * * * * * * * * * * * 
FILL_FIRST_LEVEL_CLUSTER (First_Level_ 
List) : 
While first_level_cluster_area<M1 AND 
 First_Level_List ≠∅   
      Choose from First_Level_List node v with   
            max(f(v,u)) 
      current_node ← v 
      Add current_node to first-level cluster 
      For every fanin w of current_node 
            Add node w to First_Level_List 
            Update g(w) 
     Endfor 
Endwhile 

ALGORITHM: TLC 
Sort the nodes in topological order 
For every node u in network 
          LABEL(u) 
L←PO 
While L is not empty 
          Remove a node u from L 
          Add cluster(u) to solution while duplicating only

the nodes belonging to ε-network 
           Add all inputs of cluster(u) to L 
Endwhile 
 

guide for the choice of a node from the first-level list and the 
second-level list. 
 
After we have finished filling the second-level cluster, we 
compute the label of the root node u of the corresponding 
second-level cluster as follows. This procedure is similar to 
the approach in [15] where they consider all possible paths 
from an input to the root node.  
 
All paths can be divided into two categories: 

a) Paths that lie enitrely inside the second-level cluster. Such 
paths start from a primary input node that is included in the  
second-level cluster. The maximum delay along any such path 
is : 
   l1(u)=  max{f(v,u)+D|v ∈  cluster(u)∩PI, D=D1 if  v and g(v) 
               are in the same first-level cluster  else D=D2} 

b) Paths that cross the second-level cluster. Among these 
paths the maximum delay is: 
   l2(u)= max{f(v,u)+D3| v is connected to at least one node of  
              cluster(u) but does not belong to cluster(u)} 

Then the label of u is the maximum of l1(u) and l2(u). 
 
A description for the labeling phase is given in Fig. 4. In order 
to reduce the total area of the circuit, we do not allow any 
node duplications inside a second-level cluster. The reason is 
that it is not clear if such node duplication helps to reduce the 
delay, as it may reduce the delay of some first-level cluster, 

but also reduce the capacity of the second-level cluster. Still 
we allow node duplications in different second-level clusters. 
 

4.2 Clustering Phase 
In the clustering phase we choose what clusters from those 
created in the previous phase to include in order to cover the 
network. 
 
This phase is also similar to the clustering phase of [15]. We 
maintain a list L of nodes whose clusters we will include. 
Initially L contains all the primary outputs of the network. At 
each step we choose one node from L, we generate the cluster 
rooted from the node and we insert into the list all the inputs to 
that cluster. This way we can have node duplication as 
mentioned before. When L becomes empty, the generated 
clusters cover the whole network. Figure 5 shows the 
summary for the entire algorithm. 

 

4.3 Area-Delay Trade-Off  
Although our algorithm is performance-driven we may impose 
some restrictions on the amount of node duplications in order 
to control the area of the resulting solution. For this reason in 
the clustering phase we choose to duplicate only the nodes that 
belong to the ε-network of the circuit. A node belongs to the ε-
network if its slack is smaller than a predefined value ε. The 
slack s(u) of a node u is computed as follows: 
 

                   s(u)=q(u)-l(u) 
 
where l(u) is the label of the node and q(u) is the required time 
of the node defined as: 
 
         q(u)=min{q(v)-d(e)-d(u)|e(v,u)∈ E} 
 
The timing slack is used to determine the timing criticality of a 
node. If we duplicate only the nodes of the ε-network we can 
have a big improvement in area traded for a small degradation 
of performance. 
 

4.4 Algorithm Complexity Analysis 
In order to make the complexity analysis of the algorithm we 
assume that the nodes have integer areas. We label each node 
of the network, so if the network has N nodes we repeat the 
labeling phase O(N) times. Since we want to fill the second-
level cluster we will choose a new node O(M2) times. Every 
time we choose a node we have to make updates for each 
fanin of that node. If the maximum in-degree of the network is 

  Figure 4 :  The labeling phase of the TLC algorithm 
                Figure 5 :  The TLC algorithm 



I, the whole labeling phase takes O(N⋅M2⋅I) time. In the case 
of FPGA devices where all nodes are 4-input LUTs, I is equal 
to 4.  In this case the complexity of of the labeling phase 
becomes O(N⋅M2). The clustering phase has an O(N) time 
compexity, so the total time complexity of the algorithm is 
O(N⋅M2⋅I). 
 
Since we want to keep the information about every node’s 
corresponding cluster, the space complexity of the algorithm is 
O(N⋅M2). 
 

5.EXPERIMENTAL RESULTS 
We have implemented the TLC algorithm in C++/STL and 
integrated it into the UCLA RASP System [7]. We ran our 
experiments on a SUN ULTRA10 workstation with a 440 
MHz CPU and 1024 MB of memory. The experimental 
procedure was the following: From a given gate-level netlist, 
we first ran a script, shown in Figure 6, for the UC Berkeley 
SIS System [1] and the UCLA RASP System including the 
FlowMap algorithm [5], to generate a 4-input LUT network. 
As an output we have two files: one with a .TDF extension 
describing the new network which is logically equivalent to 
the original network and a file with an .ESF extension that 
describes the clustering constraints. The first-level clusters are 
assigned to LABs (see Section 1) and the second-level clusters 
to MegaLABs.  
 
We used the commercial synthesis tool Quartus II v.1.0 from 
Altera to test our results. For every circuit we ran four 

experiments. First we provided to Quartus as an input the 
original bounded network without any clustering constraints. 
Then we requested from Quartus to use the clustering results 
from our algorithm. We have three versions of our algorithm. 
The first one allows duplications without any restrictions at 
all. The second version duplicates only the nodes belonging to 
the ε-network of the circuit. The third version allows no 
duplication at all. The experimental flow is graphically 
presented in Figure 7. 
 
In Table 1 we present the results from all four experiments. 
The device we used was the EP20K600EFC672–1X from the 
APEX20KE family. According to the APEX device 
architecture defined in Section 1 we set M1 to be 10 and M2 to 
be 160. The delay model we used was the following: D1= 0.36 
ns, D2=0.85 ns, D3 = 1.57ns, NODE_DELAY=0.61ns. The data 
used are extracted from the timing analysis tool used in 
Quartus. We used combinational circuits from the MCNC and 
ISCAS benchmark sets.  
 
We see that on the average the maximum delay decreased by 
9% when we ran TLC without any node duplications, and by 
11% when we allowed partial node duplications. In the latter 
case the area of the equivalent circuit is increased by 33%. 
The version with full node duplications provides the best 
performance results (an average of 15% improvement over the 
Quartus results) but with a very big area penalty. The results 
show that our clustering algorithm produces satisfying results 
compared to a well-known commercial tool. We believe that 
the improvement is largely due to the use of our two-level 
clustering formulation and solution. The runtime of our 
program alone is always under 1 minute for all designs 
reported in Table 1.  
 

6. CONCLUSIONS & FUTURE WORK 
We presented an algorithm for the performance-driven two-
level clustering problem, which has application for 
hierarchical FPGA designs. Our algorithm is performance-
driven. We showed that this problem is NP-hard. 
Experimental results showed that the clustering solution 
created by our algorithm improved the circuit performance 
produced by the Quartus System Design from Altera by an 
average of 15% for APEX devices. To our knowledge this is 
the first in-depth study for the performance-driven multi-level 
circuit clustering problem. 
 
Future work can be focused on three areas: 
a) Expand the algorithm for sequential circuits. Right now 

we can only handle combinational circuits.  
b) Use a more realistic delay model that considers geometric 

information. For example the delay between adjacent 
MegaLABs is sometimes only the half of the delay 
between distant MegaLABs. 

c) Expand the algorithm to handle hierarchical architectures 
with three or more levels. 
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Script.rugged;  
Tech_decomp –a 1000 –o 1000; 
Dmig –k 2; 
Flowmap –k 4; 
Greedy_pack –k 4; 

               Figure 6: Script for the LUT mapping
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Circuit  #LUTs #I/Os Quartus  

Quartus 
+TLC  
(no ND) 

          
% 

Quartus
+TLC 
(full 
ND) %  % 

Quartus
+TLC  
(partial 
ND) %  % 

   
Delay 
(ns) 

Delay 
(ns)  

Delay 
(ns)  

Area 
(LUTs)  

Delay 
(ns)  

Area 
(LUTs)  

alu 321 22 35.71 33.02 7.5 30.51 14.6 1045 225.6 33.73 5.6 458 42.7 
apex2 1152 42 29.49 26.13 11.4 28.22 4.3 1804 56.6 30.82 -4.5 1417 23.0 
apex6 390 234 27.00 22.88 15.3 20.93 22.5 571 46.4 21.37 20.9 483 23.8 
C1908 146 58 32.32 26.40 18.3 25.41 21.4 827 466.4 27.31 15.5 227 55.5 
C5315 537 301 36.44 33.32 8.6 29.43 19.2 2032 278.4 31.21 14.4 776 44.5 
C880 166 86 36.30 29.58 18.5 24.71 31.9 364 119.3 27.15 25.2 225 35.5 
dalu 430 91 26.01 25.41 2.3 22.62 13.0 811 88.6 26.28 -1.1 496 15.3 
des 1569 501 34.86 30.02 13.9 29.65 14.9 3470 121.2 29.87 14.3 2346 49.5 
i10 819 481 47.30 42.44 10.3 37.92 19.8 3165 286.5 41.99 11.2 1118 36.5 
i9 212 141 25.07 21.32 15.0 21.75 13.3 393 85.4 21.12 15.8 236 11.3 
k2 526 88 29.42 29.72 -1.0 25.32 14.0 2258 329.3 27.07 8.0 804 52.9 
large 922 41 30.07 30.32 -0.9 26.51 11.8 1654 79.4 26.03 13.4 1194 29.5 
misex3 1058 28 26.82 23.70 11.6 21.83 18.6 1903 79.9 22.54 16.0 1318 24.6 
too_large 193 41 24.84 24.00 3.4 25.04 -0.8 262 35.8 23.80 4.2 252 30.6 
vda 297 56 28.54 24.34 14.7 20.21 29.2 1304 339.1 23.53 17.6 463 55.9 
x3 392 234 22.53 22.52 0.0 21.26 5.6 510 30.1 22.29 1.0 438 11.7 
Average     9.3  15.8  166.7  11.1  33.9 

                

               Table 1: Experimental results (ND stands for node duplication) 


