Performance-Driven Processor Allocation

Julita Corbalan, Xavier Martorell, Jesus Labarta
Departament d’Arquitectura de Computadors (DAC)
Universitat Politécnica de Catalunya (UPC)

{juli,xavim,jesus}@ac.upc.es

Abstract important in NUMA systems, such as the SGI

: . . Origin2000 [SGI198]. This work attacks the problem of

This work is focused on processor allocation in shared- S . .

) the processor allocation in an execution environment

memory multiprocessor systems, where no knowledge S .

A . - where no knowledge of the application is available

of the application is available when applications are sub- - .

. ; .~~~ " when applications are submitted.
mitted. We perform the processor allocation taking into

account the characteristics of the application measure . L
. . any researchers have considered the use of application
at run-time. We want to demonstrate the importance o

an accurate performance analysis and the criteria used i:?r:]aracteristics In processor scheduling [Brecht96]
distribute the processors. With this aim, we present th hiang94][Marsh91][Nguyen96][NguyenZv96][Parso

SelfAnalyzeran approach to dynamically analyzing the Nns96]. In these works, parallel applications are charac-

o o c}erized by different parameters such as the maximum
performance of applications (speedup, efficiency an

execution time), and the Performance-Driven ProcessosrpeedUp’ the average parallelism, or the size of the

Allocation (PDPA), a new scheduling policy that distrib- worklng Set' performing the processor a_IIocat|on W'th'_
o ...__out taking into account these characteristics can result in
utes processors considering both the global conditions

of the system and the particular characteristics of run bad utilization of the machine. For instance, allocating

. o . . a high number of processors to a parallel application
ning applications. This work also defends the impor-_ . : .
. . . ith small speedup will result in a loss of processor per-
tance of the interaction between the medium-term an

the long-term scheduler to control the multiprogram- ormance.
ming level in the case of the clairvoyant scheduling p0|_TraditionaI|y, characteristics of parallel applications

icies'. We have implemented our proposal in an SGlyere calculated in two different ways. The first
Origin2000 with 64 processors and we have comparegpproach is that the user or system administrator per-
its performance with that of some scheduling policiestorms several executions under different scenarios, such
proposed so far and with the native IRIX scheduling as the input data or the number of processors, and col-
policy. Results show that the combination of ®elfAn- ects several measurements. A second approach, used in
alyzerPDPA with the medium/long-term scheduling research environments [Brecht96] [Chiang94]
interaction outperforms the rest of the scheduling po"'[HeImboIdQO] [Leutenegger90] [Madhukar95]
cies evalugted. The _eval_u_atlon shows that in workloadsfparsons%] [Sevcik94], defines a job model, character-
where a simple equipartition performs well, the PDPAzing the applications by a set of parameters, such as the
also performs well, and in extreme workloads where allayerage of parallelism or the speedup. This information
the applications have a bad performance, our proposal provided to the OS as am priori input, to be taken

can achieve a speedup of 3.9 with respect to an equipafpio account in subsequent executions.
tition and 11.8 with respect to the native IRIX schedul-

ing policy. This approach has several drawbacks. First of all, these
) tests can be very time-consuming, even, they can be pro-
1 Introduction hibitive due to the number of combinations. Further-

The performance of current shared-memory multipro-more, many times the performance of the application
cessors systems heavily depends on the allocation dfepends on the particular input data (data size, number

processors to parallel applications. This is especiallyf iterations). Second, the behavior of the applications is
influenced by issues such as the characteristics of the

1. Those scheduling policies that consider the application processors assigned to them, or the run-time mapping of
characteristics processes to processors, or the memory placement.

These issues determine the performance of the applic&Results show that the combination of tt®elfAna-
tions and are only available at run-time. Finally, the dif- lyzerrPDPA with the medium/long-term scheduling
ferent analytic models proposed so far are not able tanteraction outperforms the rest of the scheduling poli-
represent the behavior of the application at run-timecies evaluated. The evaluation shows that, in workloads
Moreover, analytic models try to characterize the appli-where a simple equipartition performs well, tR®PA
cation when it is individually executed, not in a sharedalso performs well, and in extreme workloads where all
environment. Most of the previous approaches are basetthe applications have a bad performance, our proposal
on analytic models. can achieve a speedup of 3.9 with respect to an equipar-
tition and 11.8 with respect to the native IRIX schedul-
On the other hand, the typical way to execute a paralleing.
application in production systems is through a long-term
scheduler, i.e. a queueing system [Feitelson95]. Th&he remainder of this paper is organized as follows:
gueueing system manages the number of applicationSection 2 presents the related work. Section 3 presents
that are executed simultaneously, usually known as théhe execution environment in which we have developed

multiprogramming levél In this execution environ- this work. Section 4 presents tROPAscheduling pol-
ment, jobs are queued until the queueing system decidd8y- Section 5 presents the evaluation of FlePAcom-
to execute it. This work is based on execution environ-Pared to some scheduling policies proposed so far and

ments where the applications arrival is controlled by athe IRIX scheduling policy. Finally, section 6 presents
long-term scheduler. the conclusions of this work.

This work relies on the utilization of the characteristics 2 Related Work

of the applications calculated at run-time and on usingyjany researchers have studied the use of characteristics
this information for processor scheduling. In particular, o the applications calculated at run time to perform pro-
we propose to use the speedup and the execution tiM&ssor scheduling. Majumdat al [Majumdar91], Par-
ywth P processors. This work is focused on demonstratygns et al [Parsons96], Sevcik [Sevcik94][Sevcik89],
ing the importance of: the accuracy of the measurementéhiang et al [Chiang94] and Leuteneggeet al

of the application characteristi_cs, the criteria us_ed _tO[LeuteneggerQO] have studied the usefulness of using
perform the processor scheduling, and the coordinatioppplication characteristics in processor scheduling.
with the queueing system, in the performance that mayrpey have demonstrated that parallel applications have
be achieved by parallel applications. With this aim, weyery different characteristics such as the speedup or the
present: (1) a new approach to measure the speedup aggerage of parallelism that must be taken into account
the execution time of the parallel applications, B&fA- py the scheduler. All these works have been carried out

nalyzer (2) a new scheduling policy that uses the ging simulations, not through the execution of real
speedup and the execution time to distribute Processorgypications, and assumiagpriori information.
the Performance-Driven Processor Allocation (PDPA)

policy, (3) and a new approach to coordinating thegome researchers propose that applications should mon-
(medium-term) scheduler with the queueing systemyor themselves and tune their parallelism, based on their
(long-term scheduler). performance. Vos®t al [Voss99] propose to dynami-

_) o cally detect parallel loops dominated by overheads and
Our approach has been implemented in an Origin200Q, ~serialize them. Nguyenet al [Nguyen96]

with 64 processors. Applications from the SPECFPgS[NguyenZV%] proposeSelfTuning, to dynamically
benchmark suite and from the NAS benchmarks havgneasure the efficiency achieved in iterative parallel
been used to evaluate the performance of our proposglegions and select the best number of processors to exe-
All the benchmarks used in the evaluation are parallel¢te them considering the efficiendjhese works have

ized with OpenMP [OpenMP2000] directives. Finally, yemonstrated the effectiveness of using run-time infor-
in the current implementation we assume that applicasation.

tions are malleable [Feitelson97], applications that can

adjust to changing allocations at runtime. Other authors propose to communicate these application

characteristics to the scheduler and let it to perform the
processor allocation using this information. Hamidza-
deh [Hamidzadeh94] proposes to dynamically optimize
1. Inour environment, the multiprogramming level is nor- the processor allocation by dedicating a processor to

mally set to allow the simultaneous execution of a search the optimal allocation. This proposal does not
small number of applications (two, three or four).

consider characteristics of the applications, only the syseated processors. Second, we differ in the way the appli-
tem performance. Nguyen et al cation characteristics are acquired. We believe that
[Nguyen96][NguyenZV96] also use the efficiency of the parameters such as the speedup can only be accurately
applications, calculated at run-time, to achieveegoal- calculated as the relation between two measurements, as
efficiencyin all the processors. Brecket al [Brecht96] opposed to [Nguyen96]. Furthermore, since the execu-
use parallel program characteristics in dynamic procestion time of the applications is used by the scheduler, we
sor allocations policies, (assumirg priori informa- propose a new approach to estimate the execution time
tion). McCannet al [McCann93] propose a scheduler of the whole application. Our measurements are based
that dynamically adjust the number of processors allo-on the time, not on the hardware performance counters.
cated to the parallel applications to improve the procesin this way our method is independent from the archi-
sor utilization. Their approach considers the applicationtecture. Third, we have implemented and evaluated our
provided idleness to allocate the processors, resulting iproposal using real applications and a real architecture,
a large number of re-allocations. the Origin2000. Simulations do not consider important
issues of the architecture such as the data locality. And
To obtain application characteristics, previous systemdinally, we consider the benefit provided by the interac-
have taken approaches such as the use of the hardwatien of the (medium-term) scheduler with the long-term
counters provided by the architecture, or monitoring thescheduler (queueing system).
execution time of the different phases of the applica-
tions. Weissman [Weissman98] uses the performanc8 Performance-Driven Processor Allocation
counters provided by modern architectures to improv
the thread locality. McCangt al [McCann93] monitor
the idle time consumed by the processors. Ngusteal

Shis section presents the three components of this work.
Figure 2 shows the general overview of our execution

[Nguyen96][NguyenzV96] combined both, the use ofenvironment. (1) Parallel applications calculate their

. erformance through th&elfAnalyzerwhich informs
hardware counters and the measurement of the idle per}; : :
. he scheduler about the achieved speedup with the cur-
ods of the applications.

rent number of processors, the estimation of the execu-
The most studied characteristic of parallel applicationstlon time of the whole application, and the requested

has been the speedup. Several theoretical studies ha\r}gmber of processors. (2) Periodically (at e n-

analyzed the relation between the speedup and othdpm' expiration) the scheduler wakes up and applies the
characteristics such as the efficiency. Eager, Zahorjagcheduling policy, th®DPA The PDPA distributes the
and Lazowska define in [Eager89] the speedup and thBrocessors among the parallel applications considering
efficiency. Speedup is defined for each number of pro-their characteristics, global system status, such as the
cessorsP as the ratio between the execution time with "umber of processors allocated in the previquantum
one processor and with processors. Efficiency is and the requested number of processors of each applica-

defined as the average utilization of tRallocated pro- tion. Once the processor allocation has been decided,

cessors. The relationship between efficiency andhe scheduler enforces it by suspending or resuming the
speedup is shown in Figure 1 application’s processes. The scheduler informs the

applications about the number of processors assigned to

_T(1) _S(P) each one and applications are in c_harge of adapting their

S(P) = T(P) - E(P) = P parallelism to their current allocation. In our work, the
] o o scheduler is a user-level application, and it must enforce
Figure 1: Speedup and efficiency definitions the processor allocation through the native operating

system calls such as suspend, or resume. Finally, the
scheduler interacts with the queueing system to dynami-
glally modify the multiprogramming level (3). The result

IS a multiprogramming level adapted to the particular
characteristics of the running applications.

Helmbold et al analyze in [Helmbold90] the causes of
loss of speedup and demonstrate that the super-line
speedup exists basically due to memory cache effects.

Our work has several characteristics that differ from the

previously mentioned proposals. First of all, with

respect the parameters used by the scheduling policy,

our proposal considers two characteristics of the appli-

cations: the speedup and the execution time. We also

propose to consider the variation in these characteristics

proportionally to the variation in the number of allo- 1. Atypical quantum value is 100 ms

Waiting
applications

current
allocatior

processor - PDPAallogation policy
allocation &

Assigned=p «

ist Speedup[p]=x
ExecTime[p]=
Request :[p'!‘

enforcement

Operating
System

Shared-Memory
Multiprocessor
Architecture

Figure 2: General overview

3.1 Dynamic Performance AnalysisSelfA- putation. Once T(baseline) is computed, (1) in Figure 3,
nalyzer the application goes on measuring the execution time

. . . but with the number of processors allocated by the
The SelfAnalyzefCorbalan99] is a run-time library that scheduler. Ifbaselineis one processor, the calculated

dynamlcglly calculateg the speedup achlgved'by the pars'peedup will correspond with the traditional speedup
allel regions, and estimates the execution time of th

Sneasurement. Since the execution of some initial itera-
whole application. The&SelfAnalyzerexploits the itera-

i fruct f a sianificant ber of scientf i tions with one processor could consume a lot of time,
Ive structure of a significant number ot scientitic appli- ,, propose to set thigaselinegreater than one proces-

catlo.ns.. Th? main time-consuming code of .the.sesor. In [Corbalan99] we demonstrate that settiagpe-
appllcatlons IS composeq of a setof paraIIeI.Ioops InSIdEfine to four processors is a good trade-off between the
a s.eq.uentlal Iogp. Iterations of the sequential loop hav?nformation provided by the measurement and the
a S|m|lgr beh.awor'among them. Thgn, measureme;nts fo5mount of overhead introduced because of executing the
a part!cular iteration can be gonS|dered to prgdlct t_hefirst iterations with a small number of processors. How-
bl\?hawor%of the next iterations, also exploited in ever, this approach has the drawback that it does not
[Nguyen96]. allow us to directly compare speedups among applica-

. tions. Settingbaselineto four processors, the speedup
we pellevg that the speedup should be C?ICUIated as t. ith four processors of an application that scales well
relationship between two measurements: the sequentigh e one and the speedup with four processors of an
or reference execution time and the parallel execmiorbpplication that scales poorly will be also one
time. In [Corbalan99] we demonstrated that the speedup '

calculated as a function of only one measurement Calve use Amdahl's law [Amdahl67] to normalize the
not detect significant issues such as Fhe SUper'”neagpeedups inside an application. Amdahl's law bounds
speedups. Figure 3 shows the formulation “S?d by th e speedup that an application can achieve with P pro-
SelfAnalyzeto calculate the speedup and to estimate th%essors based on the fraction of sequential code
execution time. '

To calcul h d BelfAnal h We call this function the Amdahl’s Factor (AF), see (2)
0 caculate the spesdup, ¢ nalyzemeasures the jn Figure 3. In this way, we calculate the AF of thase-

execution time of each outer sequential iteration and; . -4 \;se this value to normalize the speedups calcu-
also monitors the sequential and parallel regions inSid?ated by theSelfAnalyzer

the outer loop. It executes some initial iterations of the

Ss qutalptlaltlogp with da predfeflned nfumttr)1er of pr309550rs(‘:onsid(-)ring the characteristics of these parallel applica-
(baseling, to be used as reference for the speedup Comt'ions, and taking into account their iterative structure,

(1)S(p = WXAF(Baseline, wherear(Baseling = m 2)
O Baselinél

[AF(Baseling x T(baseling
0 S(p

Figure 3: Calculation of the speedup and execution time estimation

(3) ExTimg p = ConsumedTime x ItersRemainin%

Start Appl

* alloc=Initial_allocation

stateNO_REF

Efficiency(currentyhigh_eff
alloc=allocistep

Efficiency(current)tow_eff EﬁiCiency(cgl(Jgem)high_e
aloc=alocstep Efficiency(current)tow_eff
alloc=alloc

System Changes stem Changes g
LessProcessors?=TRUE %IocstegL MD_. MoreProcessors?=TRUE
alloc=allocste stateDEC | o [StaleSTABLE| state3NC alloc=allocistep
) . LessProcessors?=FALSE MoreProcessors?=FALSE

alloc=alloc alloc=allocstep

Not System Changes
alloc=alloc

Figure 4: PDPA Application state diagram

we are able to estimate the complete execution time oént states: eitherPerformance Not yet Calculated

the application by using the calculated speedup and théPNC), or Performance CalculatedPC). The applica-

number of iterations that the application executes, (3) irtion is in thePNC state when the speedup with the cur-

Figure 3. This estimation is calculated by adding therent number of assigned processors has not been yet

consumed execution time until the moment with thecalculated, and in th®C when the speedup has been

estimation of the remaining execution time. The remain-calculated. At the start of the application and each time

ing execution time is calculated as a function of thethe processor allocation is changed, the application is in

number of iterations not yet executed and the speeduthe PNC state. If the processor allocation is modified

that the application is achieving on each iteration. when the application is in theNC state, the current cal-
culations (speedup and execution time) are discarded,

To calculate the speedup and the execution timeS#ie and a new calculation with the current number of pro-

fAnalyzerneeds to detect the following instrumentation cessors is started.

points in the code: the starting of the application, the

iterative structure, and the start and end of each paralle8.?2 The Performance-Driven Processor

loop. In the current implementation, the invocation of Al|ocation: PDPA

the SelfAnalyzeat these points can be done in two dif-

ferent ways: (1) if the source code is available, the appli-The PDPAallocates processors among the applications

cation can be re-compiled and tBelfAnalyzecalls can consic_iering issues such as the number of processors
be inserted by the compiler. (2) If the source code is noi’lsed in the system, the speedup achieved by each appli-

available, both the iterative structure and the paraIIeFat'on’ anq thg estimation of the exegutlon t.'”.‘e.“’f the
loops are dynamically detected. whole application. The goal of tHfeRDPAIis to minimize

the response time, while guaranteeing that the allocated
When the source code is not available, we detect th@rOCcessors are achieving a good efficiency.

instrumentation points using dynamic interposition . L .
[Serra2000]. Calls to parallel loops are identified by the | "¢ PDPAconsiders each application to be in one of the
states shown in Figure 4. These states correspond with

f the function that lates the loop. Thi
address of the function that encapsulates the loop Itégnds of the performance of the application. These

sequence of values (addresses) is passed to anoth . :
mechanism that dynamically detects periodic patterns. | tates and the transitions among them are .detgrmlned
receives as input a dynamic sequence of values and it i oth by the pgrformance achieved by the application and
able to determine whether they follow a periodic pat- by some poll_cy parameters, TIRDPA paramet.e.rs are
tern. Once we detect the iterative parallel region, thethe tgrget efficiencyhigh_efj, the minimum efficiency
performance analysis is started. considered accgpt.ablbw_efb, and the number of pro-
cessors that will increment/decrement the application
allocation gtep. In Section 3.2.2 we will present the

In this case the number of times that the iterative struc) . .
solution adopted in the current approach to define these

ture executes is not available. In that case,S3edAna-

lyzer is not able to estimate the execution time of theparameters.

application and it assumes that the most useful charac- . .

tepri?stic to the scheduler is the execution time of one3'2'1 Application state diagram

outer iteration. The PDPA can assign four different states to applica-
tions: NO_REFnitial statg, DEC, INC, and STABLE

As far as the status of the performance calculation igsee Figure 4). Each quantum tR®PA processes the

concerned, applications can be internally in two differ- performance information provided by the applications,

compared with the performance achieved in the prevition time to decide the next state. The MoreProcessors()
ous quantum, and with the policy parameters, andalgorithm presented in Figure 5 is executed to determine
decides the application state for next quantum. The statthe next state. MoreProcessors() returning TRUE means
transitions determine the processor allocation for thisghat the additional processors associated to the transition
application in the next quantum, even if the next state iqo this state has provided a “real benefit” to this applica-
the same. tion. In that case the next state is sei€C. MorePro-
cessors() returning FALSE means that the additional
All the applications start in thO_REFstate This state processors were not useful to the applications. In that
means that théDPA has no performance knowledge case the next state is set$3TFABLE If the next state is
about this application (at the starting point). The procesiNC, the application will receivstepadditional proces-
sor allocation associated with the starting of a newsors in the next quantum. If the next stateSISABLE
application is the same as an equipartition (approxithe application will loose thetepadditional processors
mately total_processors_machine/total_applications), ifeceived in the last transition.
there are enough free processors, otherwise it assigns
the available free processors. Once tR®PA is TheDEC state means that the application has performed
informed about the achieved speedup with the previoudvadly until the currenuantum The LessProcessors()
allocation, it compares the efficientwith high_effand ~ @lgorithm presented in Figure 5 is executed to determine
low_eff If the efficiency is greater thahigh_eff the the next state. LessProcessors() returning TRUE means
PDPA considers that the application performs well andthat the application has not yet achieved an acceptable
sets the next state #§C. If it is lower thanlow_eff the ~ Performance. In that case the next state will DEC.
PDPA considers that the application performs poorly LessProcessors() returning FALSE means that the per-
and sets the next state BEC. Finally, thePDPAmay formance is currently acceptable and the next state must
consider that the application has an acceptable perfold®STABLE If the next state IDEC, the application will

mance that does not justify a change and the PDPA sef@0sestepmore processors in the negtiantum If the
the next state :8TABLE next state iSSTABLEthe application will retain the cur-

rent allocation.

If the next state idNC, the application will receive in

the next quantum the current number of allocated pro-The STABLEstate means that the application has the
cessor plustep If the next state iDEC the application ~Maximum number of processors that fABPA consid-

will receive in the next quantum the current number of€rs acceptable. Typically, once an application becomes
allocated processor minssep If the next state iSTA- STABLEt remainsSTABLEuntil it finishes. The alloca-

BLE the processor allocation will be maintained. tion in this state is maintained. Only if the policy param-
eters are defined dynamically might tR®PA change
The INC state means that the application has performedhe state of an application froBTABLEO eitherINC or
well until the currentquantum In this state theeDPA ~ DEC. If low_effhas been increased and the efficiency
uses both the speedup and the estimation of the exec@chieved with the current allocation is not acceptable,
the next state will b®EC and the application will loose

1. Calculated as the ratio between the speedup®vtto- step processors. In a symmetric way, liigh_eff has
cessors ang.
MoreProcesso(p

{

RelativeSpeedup=ExTime(LastAllocation)/ExTime(current)

IncrementProcessors=current/LastAllocation

if (Efficiency(current)>high_efj &&
Speedup(current)>Speedup(LastAllocation) &&
RelativeSpeedup>#{crementProcessorkigh_eff) returnTRUE

else returrFALSE

}

LessProcessors()

{
if (Efficiency(current)dow_ef) returnTRUE
else returrfFALSE

}

Figure 5: Algorithms to determine if the application achieves a good or bad performance

been decreased the next state willR€ and the appli- 3.2.3 Implementation issues

cation will receivestepadditional processors. The PDPAchecks the internal status of the applications

and maintains the processor allocation to those applica-
3.2.2 PDPA parameters tions that are in théNC state. Transitions in the state
As we have commented before, there are three paramelagram are only allowed either when all the applica-
ters which determine the “aggressiveness” ofRPA tions are in thePC state or if there are unallocated pro-
These parameters can be either statically or dynamicallgessors. The aim of this decision is to maintain the
defined. Statically defined, for instance by the systenmllocation of those applications that are calculating their
administrator, or dynamically defined, for instance as aspeedup. If we modify the speedup of an application in
function of the number of running applications. PNCstate as a consequence of the processing of another
application, it could result in inaccurate allocations.
In the current PDPA implementation high_eff and
low_eff are dynamically defined anstepis statically To those applications that are PC state, thePDPA
defined. ThePDPAcalculates the values bigh_effand allocates a minimum of one processor. This decision has
low_effat the start of each quantum, before processindgeen taken considering that the efficiency of an applica-
the applications. The value bfgh_effis calculated as a tion with one processor is 1.0. This assumption is also
function of the ratio between the total number of proces-done in scheduling policies such as the equipartition and
sors allocated in the lagfuantumand the number of the equal_eff. Moreover, it simplifies thgelfAnalyzer
processors in the system. We have adopted this solutioand thePDPAimplementation.
because this ratio is a good hint about the level of scal-
ability that thePDPA must require of parallel applica- Applications in PC state are sorted by speedup. This
tions to allocate them more processors. The higher thiarrangement is done to give a certain priority to those
ratio is, the higher thénigh_effvalue will be. Experi- applications that perform better, and assuring that these
mentally, thehigh_effvalues ranges from 1.0 (ratio>0.9) applications will receive processors. Finally, tRBPA
to 0.7 (ratio<0.75). The value ¢dw_effis defined as a maintains the history of the applications states, and does
function of high_eff In the current implementation it not allow that applications change fro®@TABLEto
has been set to the valuehih_effminus 0.2. eitherDEC or INC more than three times. The number
of transitions is limited to avoid an excessive number of
Stepis a parameter that sets the increments or decrereallocations that will generate a loss of performance. It
ments in the allocation of an application. This parametethas been tuned empirically considering the particular
is used to limit the number of re-allocations that are suf-characteristics of the workloads used. Further research
fered by the applications. Settirgiepto a small value with different workloads and applications will allow us
we achieve more accuracy in the number of allocatedo tune this parameter.
processors but the overhead introduced by the re-alloca-
tions can be significant. In the current implementation,3.2.4 Interface

this parameter has been tuned empirically and set to foufable 1 shows the main primitives of the interface

processors. between the parallel library and the scheduler, and
between theSelfAnalyzerand the scheduler. The first
four rows are used by the parallel library to interact with
the scheduler: requesting for cpus, checking the number
Table 1: Interface
Function Description
int cpus_request(int P) Request for P cpus to the scheduler
int cpus_current() Returns the number of cpus allocated to the application
int cpus_preempted_work() Returns the number of preempted threads
work_t get_preempted_work() Returns the pointer to the first preempted thread
int cpus_speedup(int P, double speedup) Sets the speedup achieved when P cpus are allocated to the applicatign
int cpus_predicted_time(int P,double time) Sets the execution time estimated when P cpus are allocated to the application

of allocated cpus, checking whether there are preemptetthe number of available processors. Moreover, it inter-
threads and recovering them. These are the main funacts with the CpuManager through a kernel interface in
tions to implement the dynamic processor allocationthe following way: NthLib informs the scheduler about
mechanism. The last two primitives are used bygb- the number of requested processors and the scheduler
Analyzerto inform the scheduler about the calculatedinforms NthLib about the number of processors avail-
speedup and the estimation of the execution time of thable to this application.

application.

The CpuManager [CorbalanML99] is a user-level pro-
3.3 Queueing system coordination: cessor scheduler. It implements tR®PA scheduling
Dynamic multiprogramming level policy. It follows the approach proposed in [Tucker89],

that assumes that applications perform better when the

As we h_ave commented before_, th_e multlprqgrammlngnumber of running threads is the same as the number of
level defines the number of applications running Concur'processors

rently in the system. Non-clairvoyant scheduling poli-

cies typically allocate as many processors as possible tEor the following experiments, the CpuManager imple-
the running applications, since they are not able to deter '

ments the queueing system. Then, in this particular

mine how they will perform. They assign the minimum implementation it communicates with tR®©PAby call-

between the total requested number pf processors ar g it directly. The queueing system launches a new
the number of processors of the machine. application each time a running application finishes, and

But hen the total ted ber of every quantum it asks to tiRDPAwhether a new appli-
ut, even when the total requested number of processors, ;i - can be started.

is greater than the total number of processors in the
machine, the®DPA may decide to Iea_/e Some proces- ¢ o1 iation
sors unallocated. In that case, the logical approach is t0

allow the queueing system to start a queued applicationin order to evaluate the practicality and the benefits of
We propose to check after each re-allocation the scethe PDPAwe have executed several parallel workloads
nario conditions and to decide whether a new applicaunder different scenarios:

tion can be started. The conditions that must be met are

the following: Equip: Applications are compiled with the NanosCom-
piler and linked with NthLib. The CpuManager is exe-
» Are there free processors? cuted and it applies the equipartition policy proposed in
e Are all the running applications in the staBsA- [McCann93]. Equipartition is a space sharing policy
BLE, orDEC? that, to the extent possible, maintains an equal allocation

« Evenifthere are some application in tiNC phase, of processors to all jobs. The initial allocation is set to
does the number of unused processors reach a cerzero. Then, the allocation number of each job is
tain percentage? (currently defined by the adminis-increased by one in turn, and any job whose allocation
trator in a 20%) has reached the number of requeStebcessors drops

These conditions are checked in tdewAppl()function out. This process continues until either there are no

call implemented by the scheduler and consulted by thgemaining jobs or until alP processors have been allo-

queueing system. cated. The only information provided by the application
is its current processor requirement

4 Execution environment and implementa-

tion PDPA Applications are compiled with the NanosCom-

iler and linked with NthLib. The CpuManager applies

e PDPA scheduling policy. Three different variations
have been executed to demonstrate the usefulness of the
different components of our approach. BDPA as
proposed in Section 3. (ZPDPA(S), the PDPA only
considers the speedup. The benefit in the execution time
provided by the extra processor allocation is not consid-

ered. (3)PDPA(idleness), the speedup is calculated as a

The work done in this paper has been developed usin
the NANOS execution environment: The NanosCom-
piler, NthLib, and the CpuManager (the medium-term
scheduler).

Applications are parallelized through OpenMP direc-
tives. They are compiled with the NanosCompiler
[NANOS99], which generates code to NthLib

[Martorell95][Martorell96]. NthLib constructs the struc-

ture of parallelism specified in the OpenMP directives 1. Specified as a command line parameter of the applica-
and it is able to adapt the structure of the application to tion or setting an environment variable

function of efficiency. In this case, we have tried to separated instruction and data L1 cache (32 Kbytes),
implement the approach proposed in [NguyenZV96],and a secondary unified instruction/data cache (4
which calculates the efficiency measuring the sources ofMbytes).
overhead: idleness, processor stall time, and system
overhead. In our applications, we found the systemlo evaluate our proposal we have selected four different
overhead to be negligible, and in current architecturesapplications: swim, hydro2d, apsi, and BT (class=A).
like the Origin2000, the hardware does not provide theThe swim, hydro2d and apsi are applications from the
performance counters to calculate the processor staBPECFp95, the BT is from the NASPB [Jin99]. Each
time. Due to the difficulties of implementing their com- one of them has different behavior considering the
plete approach, we have implemented a similarspeedup. Table 2 presents the characteristics of these
approach only considering the idleness as source odpplications, from higher to lower speedup. Swim
overhead. achieves a super-linear speedup, BT has a moderate-
high speedup, hydro2d has low speedup and apsi has
Equal_eff: Applications are compiled with the very bad speedup. In all the applications, except in apsi,
NanosCompiler and linked with the NthLib. The Cpu- the maximum speedup is achieved with 32 processors.
Manager applies the equal_eff proposed inThe complete performance analysis of these applica-
[NguyenzV96]. The goal of the equal_eff is to maxi- tions and their speedup curves can be found in
mize the system efficiency. It uses the dynamically cal-{Corbalan99].
culated efficiency of the applications, obtained through
the SelfAnalyzerto extrapolate [Dowdy88] the com- Compilation of benchmarks from the SPECFp has been
plete efficiency curve. Once extrapolated, the equal_efflone using the following command line options for the
works in the following way: it initially assigns a single native MIPSpro f77 compiler: -64 -mips4 -r10000 -
processor to each application, and then it assigns th®fast=ip27 -LNO:prefetch_ahead=1. Compilation of
remaining processors one by one to the application wittthe BT has been done using the Makefile provided with
the currently highest (extrapolated) efficiency. the NASPB distribution.

SGI-MP: Applications are compiled with the MIPSpro Table 3 describes the four different workloads designed
F77 compiler and linked with the MP-library. The com- to evaluate the performance of tROPA The column
mercial IRIX scheduling policy has been used. In thisinstances is the number of times that the application is
case, the NANOS execution environment is not involvedexecuted and the request column is the number of
at all. The queueing system has been used to control theequested processors.
multiprogramming level. In this scenario, the environ-
ment variables that define the application adaptabilit\Workload 1 is designed to evaluate the performance of
have been set to the following valdes thePDPAwhen applications perform well, and the allo-
MP BLOCKTIME=200000 and cation of the equipartition policy directly achieves a
OMP DYNAMIC=TRUE. good performance. Workload 2 has been designed to
- evaluate th&DPAperformance when some of the appli-
5.1 Architecture, applications and work- cations perform well and some perform badly. Workload
loads 3 evaluates the performance when applications have a
medium and bad speedup and, finally, workload 4 evalu-
All the workloads have been executed in an OriginZOOOates thePDPA when all the app“cations have very bad
[Laudon97][SGI98] with 64 processors. Each processoperformance. Since we are not assumangiori knowl-
is a MIPS R10000 [Yeager96] at 250 MHZ, with two edge of the applications, we have set the requested num-
ber of processors to 32 in all the applications.

1. These values have been tuned empirically to perform
well under all the applications used in this work

Table 2: Parallel applications

Characteristic/Application(input) swim(ref) BT.A hydro2d(train) apsi(ref)
Exec.Time. in Sequential 212.2 sec. 1066.21 sec. 223.7 sec. 99 sec.
Speedup with 8/16/32 processors. 21.6/38.2 6.1/12.420.85 4.6/5.46.3 0.93/0.93/0.92

Table 3: Workload description

swim BT hydro2d apsi
instances request instances request instanceq requsg st instandes req best
wi 6 32 6 32
w2 6 32 6 32
w3 6 32 6 32
w4 12 32

The multiprogramming level has been set to four in allequal_eff performs well since the applications can effi-
the executions. The queueing system applieBirat ciently use a large number of processors. We can also
Come First Servegbolicy, and we assume that all the appreciate the importance of considering the benefit
applications have been queued at the samé-time provided by the additional processors to the applica-
tions. If we observe the average execution time of swim,
The dynamic page migration mechanism of IRIX hasWe see how thé>DPA outperforms the?DPAS). The
been activated and we have checked that results af€ason is that theDPAS) allocates more processors to

slightly better than without this mechanism. some instances of swim, allocating less processors to the
rest of running applications. With tHeDPA(S) the stan-
5.2 Results dard deviation in the execution time of the different

. L instances is greater than RDPA The execution time
Figure 6 presents the average execution time per app'?ange is (6.5,14.6) iPDPAS) and (6.5,8.5) ifPDPA
cation in the different scenarios for the four Workloads.-l-he importance of considering the benefit provided by

We also show the total execution time of the workloadsy,e 4 qgitional processors is more significant when the
under the different scheduling policies. Results from|0ad of the system is high. In that case, without consid-

workload 1 show that th®DPAbased scheduling poli- - gying this parameter the processor allocation can
cies PDPAandPDPA(S)) perform well, compared with o .ome unfair. In the rest of workloads the difference

equipartition. ThePDPA(idleness) does not perform betweenPDPA and PDPA(S) is less significant, since
well, demonstrating the importance of an accurate estifhe load of the system is low.

mation of the performance. In this workload, the

In the workload 2, the®DPA-based scheduling policies
1. Instances from different applications have been merged outperform the rest of scheduling policies. In this case,

in the queue the workload execution time has been significantly
800 —
= 71 &= Equip — i
8 600 = POPA o) 600
] = PDPA(S) >
£ 1= PDPA(IdIeness) £ 1
8 400 — *E 400 —
= S |
3 =
% 200 8 200+ H
S g] H
3: o - 0 |_||_| |_|
swim BT.A Total BT.A apsi Total
Workload 1 Workload 2
B g 1500 -
2 A2
£ g]
= = 1000
S s
g =]
8 3 500
> < b
w |
hydro2d apsi Total 0- ;
apsi Total
Workload 3 Workload 4

Figure 6: Per application(avg) and total execution time of the parallel workloads.

reduced because of the communication with the longthe workload 4 in thé®DPAand in the SGI-MP environ-
medium term scheduler. The speedup with respect tonents. In thd?DPAthe apsi has consumed a 0.1% of the
both thePDPA(idleness) and the SGI-MP is 3.2. execution time in system mode (0.23sec. in system-
mode and 204sec. in user-mode). In the SGI-MP case,
Workload 3 does not show large differences in the indi-the apsi has spent a 27% in system mode (152sec. in
vidual performance, although the number of processorsystem mode and 562.7sec. in user-mode).
allocated to applications by teDPA-based scheduling
policies is very small, allowing the long-term scheduler Figure 7 shows the processor allocation made by the dif-
to start a new application, resulting in a better systenmferent scheduling policies when executing the parallel
utilization. This better utilization can be observed in theworkloads. Each column shows the average of proces-
execution time of the workload. Th&DPAbased sors allocated to each different application. In these
scheduling policies achieve speedups from 2 (withgraphs, we can observe how the scheduling policies that
respect to the equip.) to 6.2 (with respect to the SGltake into account the application characteristics distrib-
MP). ute the processors accordingly with the application per-
formance. Since there are a minimum of two instances
Finally, in workload 4, thé?DPA-based scheduling poli- of each application running concurrently the highest of
cies outperform the rest, mainly in the execution time ofthe columns should normally not exceed thirty-two pro-
the workload, and also in the individual performance.cessors (in the case of workload 4 sixteen).
Allocating a small, but sufficient, number of processors
to the apsi avoids undesirable memory interferencesWe can observe ho®DPA and PDPA(S) distribute the
Considering the workload execution time, tROPA- processors proportionally to the application perfor-
based scheduling policies achieve speedups from 2.hance.PDPA(S) is less restrictive and it assigns more
with respect to the equip. to 6.76 with respect to theprocessors. On the other hand, equal_eff does not have a
SGI-MP. rule to stop the processor allocation to the applications.
This is the reason why the equal_eff allocates a higher
We want to comment on the performance achieved imumber of processors to applications that perform badly,
the case of the SGI-MP environment. The problem is thdike apsi.PDPA(idleness) is not able to detect the good
large number of unnecessary context-switches. Theser bad behavior of the applications. The idleness is
context-switches generate a loss of performance becauséown as a bad hint of the real efficiency achieved by
they imply the reload of the data cache, remote memoryhe parallel applications. We can also observe in the case
accesses, and increase the system time consumed by tbiethe SGI-MP, how applications have adapted their par-
application. For instance, consider one apsi execution in

:q:JI
™
D = o
0y 5 5 g _ 2z
3] a Q 4 2
g i £
s § 7 g
© — swim = &
%) < T — BT.A
g = BT.A % 204 S
5 O
2 9 10
< <
0_
Workload 1 Workload 2
40+ 40 -~
. - s s o
3 s <« Z 7 ¥ g e < 2 5 T 3
g0y 35 £ 4 4 8 g4 2 & £ = 4§ 2
8 g % R s & s SR g
o 204 g = hydro2d & 20 g = s
a] = s a2
o
6 Q0
o 10 :%’ 10+
< ,_l
04 0
Workload 3 Workload 4

Figure 7: Processor allocation (avg) of each application under the different scheduling policies

allelism to the available processors, in a similar way to[Brecht96] T. B. Brecht, K. Guha. "Using Parallel Pro-

the equip. gram characteristics in dynamic processor allocation”,
Performance Evaluation, 27&28, pp. 519-539, 1996.

6 Conclusions

In this work, we have presentd@erformance-Driven
Processor Allocationa new scheduling policy that uses
both global system information and the application
characteristics provided by ti&elfAnalyzera dynamic
performance analyzelPDPA allocates processors to

[Corbalan99] J. Corbalan, J. Labarta, “Dynamic
Speedup Calculation through Self-Analysis”, Technical
Report number UPC-DAC-1999-43, Dep. d’Arquitec-
tura de Computadors, UPC, 1999.

applications that will take advantage of them, avoidin [CorbalanML39] J. Corbalan, X. Martorell, J. Labarta,
pp g ' 94a Processor Scheduler: The CpuManager “, Technical

unfair allocations, allocating processors to applicationﬁQe ort UPC-DAC-1999-69 Dep. d'Arquitectura de
that do not benefit from them, or even prejudicial alloca_Copmputadors UPC. 1999 P- q

tions, resulting in an increase in the execution time.

This work has been implemented and evaluated on a Chlang%4] S-H. Ch|a_1ng,_ R. K. Mansh_argmanl, M'. K.
ernon. “Use of Application Characteristics and Lim-

SGI Origin2000. We have demonstrated that it is impor-. . :

) . ._ited Preemption for Run-To-Completion Parallel Pro-
tant for the scheduler to receive accurate information . S

about the application characteristics. Our evaluatiorgessor Scheduling Policies”, ‘In ‘Proc. of the ACM
shows thatPDPA outperforms the considered schedul- IGMETRICS Conference, pp. 33-44, May 1994.

ing policies. [Dowdy88] L. Dowdy. “On the Partitioning of Multipro-
Finally, in this work we have considered the usefulness - >>0" Systems”. Technical Report, Vanderbilt Univer-

of the interaction between the medium and the Iong-S'ty’ June 1988.

term scheduler. Our experience has shown that it is Con['Eager89] D. L. Eager, John Zahorjan, E. D. Lawoska

venient to allow this kind of communication to improve “Speedup Versus Efficiency in Parallel Systems”, IEEE

valid for PDPA and also to any scheduling policy that S{g;gs on Computers, Vol. 38,(3), pp. 408-423, March

allocates processors to applications based upon their

performance. [Feitelson95] D. G. Feitelson, B. Nitzberg. “Job Charac-

teristics of a Production Parallel Scientific Workload on
7 Acknowledgments the NASA Ames iPSC/860”, in JSSPP Springer-Verlag,
This work has been supported by the Spanish MinistryLectures Notes in Computer Science, vol. 949, pp. 337-
of Education under grant CYCIT TIC98-0511, the 360, 1995.
ESPRIT Project NANOS (21907) and the Direccié Gen-
eral de Recerca of the Generalitat de Catalunya undgFeitelson97] D. G. Feitelson. “Job Scheduling in Multi-
grant 1999FI 00554 UPC APTIND. The researchprogrammed Parallel Systems”. IBM Research Report
described in this work has been developed using th&kC 19790 (87657), October 1994, rev. 2 1997.
resources of the European Center for Parallelism of Bar-
celona (CEPBA). [Hamidzadeh94] B. Hamidzadeh, D. J. Lilja, "Self-
Adjusting Scheduling: An On-Line Optimization Tech-
The authors would like to thank José Gonzalez and Tonnique for Locality Management and Load Balancing”,
Cortés for their valuable comments on a draft version ofint. Conf. on Parallel Processing, vol Il, pp. 39-46,
this paper. 1994.

8 References [Helmbold90] D. P. Helmbold, Ch. E. McDowell,

o gl : _ “Modeling Speedup (n) greater than n”, IEEE Transac-
[Amdahl67] G. M. Amdahl_, \./a“d'ty of the single pro . tions Parallel and Distributed Systems 1(2) pp. 250-256,
cessor approach to achieving large-scale computin

capabilities”, in Proc. AFIPS, vol. 30, pp. 483-485, April 1990.

1967. [Jin99] H. Jin, M. Frumkin, J. Yan. “The OpenMP

Implementation of NAS Parallel Benchmarks and Its
Performance”. Technical Report: NAS-99-011, 1999.

[Laudon97] J. Laudon and D. Lenoski, “The SGI Ori- [NguyenZV96] T. D. Nguyen, J. Zahorjan, R. Vaswani,

gin: A ccNUMA Highly Scalable Server”. Proc. 24th “Using Runtime Measured Workload Characteristics in

Int. Symp. on Computer Architecture, pp. 241-251, Parallel Processors Scheduling”, in JSSPP volume 1162

1997. of Lectures Notes in Computer Science. Springer-Ver-
lag, 1996.

[Leutenegger90] S. T. Leutenegger and M. K. Vernon.

“The Performance of Multiprogrammed Multiprocessor [OpenMP2000] OpenMP Organization. “OpenMP For-

Scheduling Policies”, In Proc. of the ACM SIGMET- tran Application Interface”, v. 2.0 http://

RICS Conference, pp. 226-236, May 1990. www.openmp.org, June 2000.

[Madhukar95] M. Madhukar, J. D. Padhye, L. W. [Parsons96] E. W. Parsons, K. C. Sevcik. “Benefits of
Dowdy, "Dynamically Partitioned Multiprocessor Sys- speedup knowledge in memory-constrained multipro-
tems”, Computer Science Department, Vanderbilt Uni-cessor scheduling”, Performance Evaluation 27&28,
versity, TN 37235, 1995. pp.253-272, 1996.

[Majumdar91] S. Majumdar, D. L. Eager, R. B. Bunt, [Serra2000] A. Serra, N. Navarro, T. Cortes, “DITools:
"Characterisation of programs for scheduling in multi- Application-level Support for Dynamic Extension and
programmed parallel systems”, Performance EvaluaFlexible Composition”, in Proceedings of the USENIX
tion 13, pp. 109-130, 1991. Annual Technical Conference, pp. 225-238, June 2000.

[Marsh91] B. D. Marsh, T. J. LeBlanc, M. L. Scott, E. P. [Sevcik94] K. C. Sevcik, "Application Scheduling and
Markatos, “First-Class User-Level Threads”. In 13th Processor Allocation in Multiprogrammed Parallel Pro-
Symp. Operating Systems Principles, pp. 110-121, Octcessing Systems”. Performance Evaluation 19 (1/3), pp.
1991. 107-140, Mar 1994.

[Martorell95] X. Martorell, J. Labarta, N. Navarro and [Sevcik89] K. C. Sevcik. “Characterization of Parallel-

E. Ayguade, “Nano-Threads Library Design, Implemen-ism in Applications and their Use in Scheduling”. In

tation and Evaluation”. Dept. d’Arquitectura de Com- Proc. of the ACM SIGMETRICS Conference, pp. 171-

putadors - UPC, Technical Report: UPC-DAC-1995-33,180, May 1989.

September 1995.
[SGI198] Silicon Graphics Inc. Origin2000 and Onyx2

[Martorell96] X. Martorell, J. Labarta, N. Navarro and Performance Tuning and Optimization Guide. http://

E. Ayguade, “A Library Implementation of the Nano- techpubs.sgi.com, Document Number 007-3430-002,

Threads Programming Model”. Proc. of the Second Int.1998.

Euro-Par Conf., vol. 2, pp. 644-649, Lyon, France,

August 1996. [Tucker89] A. Tucker, A. Gupta, “Process control and
scheduling issues for multiprogrammed shared-mem-

[McCann93] C. McCann, R. Vaswani, J. Zahorjan. “A ory multiprocessors”. In 12th Symposium Operating

Dynamic Processor Allocation Policy for Multipro- Systems Principles. pp. 159-166, December 1989.

grammed Shared-Memory Multiprocessors”. ACM

Trans. on Computer Systems, 11(2), pp. 146-178, MayVoss99] M. J. Voss, R. Eigenmann, "Reducing Parallel

1993. Overheads Through Dynamic Serialization”, Proc. of
the 13th Int. Parallel Processing Symposium, pp. 88-92,

[NANOS99] NANOS Consortium, “Nano-Threads 1999.

Compiler”, ESPRIT Project No 21907 (NANOS),

Deliverable M3D1. Also available at http:// [Weissman98] B. Weissman, “Performance Counters

www.ac.upc.es/NANOS, July 1999. and State Sharing Annotations: A Unified Approach to
Thread Locality”, Proc. of the 8th Int. Conf. on Archi-

[Nguyen96] T.D. Nguyen, J. Zahorjan, R.Vaswani, “Par-tectural Support for Programming Languages and Oper-

allel Application Characterization for multiprocessor ating Systems, pp. 127 - 138, 1998.

Scheduling Policy Design”. JSSPP, vol.1162 of Lectures

Notes in Computer Science. Springer-Verlag, 1996. [Yeager96] K. C. Yeager, “The MIPS R10000 Supersca-
lar Microprocessor”. IEEE Micro vol. 16, 2 pp. 28-40,
1996.

	Abstract
	1 Introduction
	2 Related Work
	3 Performance-Driven Processor Allocation
	3.1 Dynamic Performance Analysis: SelfAnalyzer
	3.2 The Performance-Driven Processor Allocation: PDPA
	3.2.1 Application state diagram
	3.2.2 PDPA parameters
	3.2.3 Implementation issues
	3.2.4 Interface

	3.3 Queueing system coordination: Dynamic multiprogramming level

	4 Execution environment and implementation
	5 Evaluation
	5.1 Architecture, applications and workloads
	5.2 Results

	6 Conclusions
	7 Acknowledgments
	8 References

