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Abstract

We examine the implications of a new hazard-free combinational
logic synthesis method [8], which generates multiplexor trees from
binary decision diagrams (BDDs) — representations of logic func-
tions factored recursively with respect to input variables — on
extended burst-mode asynchronous synthesis. First, the use of the
BDD-based synthesis reduces the constraints on state minimization
and assignment, which reduces the number of additional state vari-
ables required in many cases. Second, in cases where conditional
signals are sampled, it eliminates the need for state variable changes
preceding output changes, which reduces overall input to output la-
tency. Third, selection variables can easily be ordered to minimize
the latency on a user-specified path, which is important for optimiz-
ing the performance of systems that use asynchronous components.
We present extensive evaluations showing that, with only minimal
optimization, the BDD-based synthesis gives comparable results in
area with our previous exact two-level synthesis method. We also
give a detailed example of the specified path optimization.

1 Introduction

There have been many recent advances in asynchronous circuits and
systems, both in tool design [1, 2, 3, 5, 7, 9, 10, 12, 13, 16, 15, 20,
21, 22] and actual systems design [6, 9, 10, 11, 14, 17]. However,
for maximum acceptability, it is imperative to be able to synthesize
circuits that work with existing systems, which are largely made
out of synchronous components. One particularly promising design
style is the extended-burst-mode [23].

This paper describes a new synthesis algorithm for asynchronous
controllers specified in extended-burst-mode [23]. This algorithm
assumes the target implementation to be a combinational circuit
with both primary outputs and state variables fed back. The combi-
national circuit is derived from a Binary Decision Diagram [4] using
a recently developed hazard-free combinational synthesis method
[8]. This algorithm is designed, first and foremost, to minimize
output latency.

This new approach has many advantages over other synthe-
sis methods [15, 16, 23, 22], which implement the combinational
logic as two-level AND-OR circuits. In many cases, the circuits
synthesized using this new method have considerably lower out-
put latencies than the circuits synthesized by the method in [23].
Furthermore, this method provides a platform to further minimize
the delay on user-specified input/output path, which can be very
important for achieving high performance in systems that use asyn-
chronous components.
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2 Controller Specification and Implementation

In this section, we summarize a design style, called extended burst-
mode, and an implementation style, called 3D, to specify and imple-
ment asynchronous controllers for heterogeneous systems — sys-
tems with both synchronous and asynchronous components. These
topics have been discussed in more detail in previous publications
[23, 22].
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Figure 1: Extended-burst-mode Specification.

Figure 1 shows an example of an extended burst-mode specifi-
cation. Signals not enclosed in angle brackets and ending with +

or � are terminating signals. These are edge signals. The signals
enclosed in angle brackets are conditionals, which are level sig-
nals whose values are sampled when all of the terminating edges
associated with them have occurred. A conditional ha+i can be
read “if a is high” and ha�i can be read “if a is low.” A state
transition occurs only if all of the conditions are met and all the
terminating edges have appeared. A signal ending with an asterisk
is a directed don’t care. If a is a directed don’t care, there must be
a sequence of state transitions in the machine labeled with a�. If
a state transition is labeled with a�, the following state transitions
in the machine must be labeled with a� or with a+ or a� (the
terminating edge for the directed don’t care). This specification de-
scribes a state machine having a conditional input (cntgt1), 3 edge
inputs (ok; frin; dackn), and 2 outputs (dreq; faout). Consider
the state transitions out of state 4. The behavior of the machine
at this point is: “if cntgt1 is low when dackn falls, change the
current state from 4 to 5 and lower the output dreq; if cntgt1 is
high when dackn falls, change the current state from 4 to 2 and
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lower output dreq.”
A directed don’t care may change at most once during a sequence

of state transitions it labels, i.e., directed don’t cares are monotonic
signals, and, if doesn’t change during this sequence, it must change
during the state transition its terminating edge labels. A terminating
edge which is not immediately preceded by a directed don’t care is
called compulsory, since it must appear during the state transition it
labels. frin is low when the specification is in state 4. It can rise at
any point as the machine moves through states 5 and 6 or through
state 2, depending on the level of cntgt1, and it must have risen by
the time the machine moves to states 6 or 2, because the terminating
edge frin+ appears between states 5 and 6 and between 4 and 2.

The input signals are globally partitioned into level signals (con-
ditionals), which can never be used as edge signals, and edge signals
(terminating or directed don’t care), which can never be used as
level signals. If a level signal is not mentioned on a particular state
transition, it may change freely. If an edge signal is not mentioned,
it is not allowed to change.

More generally, an extended-burst-mode asynchronous finite
state machine [23] is specified by a state diagram which consists of
a finite number of states, a set of labeled state transitions connecting
pairs of states, and a start state. Each state transition is labeled with a
set of conditional signal levels and two sets of signal edges: an input
burst and an output burst. An output burst is a set of output edges,
and an input burst is a non-empty set of input edges (terminating or
directed don’t care), at least one of which must be compulsory.

In a given state, when all the specified conditional signals have
correct values and when all the specified terminating edges in the
input burst have appeared, the machine generates the corresponding
output burst and moves to a new state. Specified edges in the input
burst may appear in arbitrary temporal order. However, the condi-
tional signals must stabilize to correct levels before any compulsory
edge in the input burst appears and must hold their values until after
all of the terminating edges appear. The minimum delay from the
conditional stabilizing to the first compulsory edge is called the
setup time. Similarly, the minimum delay from the last terminating
edge to the conditional changing is called the hold time. Actual
values of setup and hold time of conditional signals with respect
to “sampling” edges depend on the implementation. Conditional
signal levels need not be stable outside of the specified sampling
periods. Each signal specified as a directed don’t care may change
its value monotonically at any time including during output bursts,
unless it is already at the level specified by the next terminating
edge. Outputs may be generated in any order, but the next set of
compulsory edges from the next input burst may not appear until
the machine has stabilized. This requirement — the environment
must wait generating the next set of compulsory edges until the
circuit stabilizes — called the fundamental-mode environmental
constraint.

There is an additional restriction to extended-burst-mode spec-
ifications, called the distinguishability constraint, which prevents
ambiguity among multiple input bursts emanating from a single
state: For every pair of input bursts i and j from the same state, ei-
ther the conditions are mutually exclusive, or the set of compulsory
edges in i is not a subset of the set of all possible edges in j.

2.1 3D Implementation

A 3D asynchronous finite state machine is a 4-tuple (X;Y; Z; �)
where X is a non-empty set of primary input symbols, Y a non-
empty set of primary output symbols, Z a possibly empty set of
internal state variable symbols, and � : X � Y � Z ! Y � Z
is a next-state function. The hardware implementation of a 3D
state machine (see figure 2) is a combinational network, which
implements the next-state function, with the outputs of the network
fed back as inputs to the network. There are no explicit storage
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Figure 2: 3D Asynchronous State Machine.

elements such as latches, flip-flops or C-elements in a 3D machine.
A 3D implementation of an extended-burst-mode specification

is obtained from the next-state table, a 3-dimensional tabular rep-
resentation of �. The next state of every reachable state must be
specified in the next-state table; the remaining entries are don’t
cares.

A machine cycle consists of an input burst followed by a con-
current output and state burst. Initially or after completion of the
previous output and state burst, the machine waits for an input burst
to arrive. When the machine detects that all of the terminating
edges of the input burst have appeared, it generates a concurrent
output/state burst, which may be empty.

2.2 2-level Synthesis

In the 3D implementation of extended-burst-mode machines, no
fed-back output or state variable change arrives at the network
input until all of the specified edges in the output and state burst
have appeared at the network output. These conditions are met by
inserting delays in the feedback paths as necessary. A 3D machine
can then be viewed as a combinational network alternately excited
by a set of input edges (during an input burst) and by a set of
fed-back output and state variable edges (during an output/state
burst). Thus each burst is a generalized transition of inputs to the
combinational network, as described below:

Generalized transition

A generalized transition is a triple (T;A;B) where T is a mapping
from a set of inputs to a set of input types, A a start-cube, and B
an end-cube. There are three types of inputs: rising edge, falling
edge, and level signals. Edge inputs can only change monotonically.
Level inputs must remain constant or undefined (don’t care), which
implies that each level input must hold the same value in both A
and B or be undefined in both A and B. Level inputs, if they are
undefined, may change non-monotonically,

A generalized transition cube [A;B] is the smallest cube that
contains the start- and end-cubes A and B. It represents the set of
all minterms that can be reached during a legal transition from a
point in start-cube A to a point in end-cube B, assuming that the
inputs can change in arbitrary order. Open generalized transition
cubes, [A;B), (A;B], and (A;B), denote [A;B]�B, [A;B]�A,
and [A;B)�A respectively. Note that [A;B) = ;, ifA = B. The
start-subcube A0 is a maximal subcube of A such that the value of
every rising edge input i in A0 is 0, if it is � in A, and the value of
every falling edge input j inA0 is 1, if it is � inA. The end-subcube
B0 is a maximal subcube of B such that the value of every rising
edge input i in B0 is 1, if it is � in B, and the value of every falling
edge input j in B0 is 0, if it is � in B. Intuitively, the longest
transitions, disregarding non-monotonic signals, are those that lead
from A0 to B0.
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Figure 3: Generalized Transition Cube [A;B].

A generalized transition (T;A;B) is a static transition for f iff
f(A) = f(B); it is a dynamic transition for f iff f(A) 6= f(B).
No change in level inputs can enable output changes directly, that
is, at least one edge input must change from 0 to 1 or from 1 to 0 in
a generalized dynamic transition.

During a generalized transition (T; A;B), each output signal is
assumed to change its value at most once. If not, a function hazard
is said to be present. Below is the definition of function hazard
adapted for generalized transitions:

Definition 1 A combinational function f contains a function haz-
ard during a generalized transition (T; A;B) iff

1. there exists a pair of minterms X;Y in A such that f(X) 6=
f(Y ), or

2. there exists a pair of minterms X;Y in B such that f(X) 6=
f(Y ), or

3. there exists a pair X;Y in (A;B) such that Y 2 [X;B0

) and
f(A) 6= f(X) and f(Y ) 6= f(B).

An extended-burst-mode transition is a generalized transition
with the following requirements:

1. For every pair of mintermsX andY in [A;B), f(X) = f(Y ).

2. For every pair of minterms X and Y in B, f(X) = f(Y ).

Theorem 1 Every extended-burst-mode transition is function-
hazard-free.

An edge signal that changes from 0 or � to 1 or from 1 or �
to 0 during an extended-burst-mode transition from A to B is a
terminating signal in [A;B]. An edge signal whose value is � in
B is a directed don’t care in [A;B]. A level signal whose value

is � in [A;B] is an undirected don’t care. In a dynamic extended-
burst-mode transition, the output is enabled to change only after all
of the terminating edges appear.

In order for a 2-level AND-OR implementation of an output or
a state variable function to be hazard-free, a set of covering require-
ments [23, 16] must be satisfied for each burst, i.e., extended-burst-
mode transition. It was shown in [23] that it is not always possible
to satisfy the covering requirements for all of the specified bursts
under the presence of non-monotonically changing (undefined) con-
ditionals, if the single transition time (STT) state assignment [19] is
used. The approach taken in [23] was to insert a state burst between
a conditional input burst and the corresponding output burst in order
to guarantee that the covering requirements can be satisfied for all
of the specified bursts. Unfortunately, the early state burst between
the input burst and output burst increased the input/output latency
significantly, and also tended to increase the circuit area.

3 BDD-based Combinational Synthesis

In this paper, we use a new BDD based combinational synthe-
sis technique from [8]. This approach imposes a different set of
requirements to guarantee freedom from all hazards, but we will
show that it is always possible to meet these requirements without
the multiple transition time state assignment that was required in
the method of [23], resulting in greatly reduced latency in many
cases.

Combinational networks that describe next-state functions are
constructed from a BDD (binary decision diagram) description.
The basic gates that comprise combinational networks are ANDs,
ORs, NANDs, NORs, inverters, and MUXes. We assume that every
basic gate is atomic, i.e., a single transition of a gate input cannot
cause a multiple transitions at the output. We do not rely on inertial
delays, that is, we assume a pure gate delay model, and allow for
arbitrary wire delays.

3.1 Multiplexer Networks derived from BDDs

The following definition of a Binary Decision Diagram is from [4].

Definition 2 A Binary Decision Diagram is a rooted, directed
graph with vertex set V containing two types of vertices. A non-
terminal vertex v has as attributes an argument index index(v) 2
f1; : : : ; ng and two children low(v); high(v) 2 V . A terminal
vertex v has as attributes a value value(v) 2 f0; 1g.

The correspondence between a BDD and a Boolean function is
defined as below:

Definition 3 A Binary Decision Diagram G having root vertex v
denotes a function fv defined recursively as:

1. If v is a terminal vertex:
(a) If value(v) = 1, then fv = 1.
(b) If value(v) = 0, then fv = 0.

2. If v is a non-terminal vertex with index(v) = i, then
fv(x1; : : : ; xn)
= xi � flow(v)(x1; : : : ; xn) + xi � fhigh(v)(x1; : : : ; xn).
xi is called the decision variable for vertex v.

In addition,

1. Each decision variable occurs at most once on every path from
a terminal vertex to the root vertex,

2. A reduced BDD is a BDD in which low(v) 6= high(v) for any
vertex v and no two subgraphs are identical.



A reduced ordered BDD (ROBDD) is a canonical form with the
following restriction: for any non-terminal vertex v, if low(v) is a
non-terminal, then index(v) < index(low(v)), and if high(v) is
a non-terminal, then index(v) < index(high(v)).

A reduced free BDD (free BDD) is a BDD which does not require
a strict variable ordering (unlike in an OBDD) but still requires that
each decision variable is encountered at most once when traversing
a path from a terminal vertex to the root vertex.
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Figure 4: (a) BDD (b) MUX network derived from BDD (c) Sim-
plified network (by constant propagation).

A multi-level network can be derived directly from a BDD by
replacing each vertex with a two-input MUX with the decision
variables as the select inputs of the MUXes. Figure 4b shows
a MUX network derived from the BDD in figure 4a. If one or
more input of a MUX is constant, the MUX can be replaced with a
simpler gate, such as a NAND or a NOR. This constant propagation
is carried out topologically from inputs to outputs. Figure 4c shows
an equivalent network after the constant propagation.

3.2 Hazard-free Combinational Synthesis

We use the approach from [8] to synthesize hazard-free combina-
tional circuits under extended-burst-mode transitions. This method
is based on building a BDD for a specified function and deriving a
multi-level circuit from it. To ensure that the resulting multi-level
circuit is hazard-free, a requirement called the trigger signal order-
ing (TSO) must be satisfied. This requirement imposes constraints
on the variable ordering of the BDD. It was shown in [8] that if this
variable ordering is satisfied, then the resulting multi-level circuit
is free of logic hazards for a set of specified transitions. Note that
every input change in [8] was assumed to be monotonic during each
transition. We will prove that the resulting circuit is free of logic
hazards for a set of specified extended-burst-mode transitions, in
which some inputs may change non-monotonically, as long as the
TSO requirement is satisfied.

A trigger state is a state in which an input change enables the
output to change. A trigger signal is an input signal whose transition
enables the output to change; a non-trigger signal is an input signal
which is enabled to change but cannot by itself enable the output
to change. The TSO requirement states that trigger signals in a
trigger state must appear before the non-trigger signals of the same
trigger state in the variable ordering.

In the generalized transition cube that corresponds to an
extended-burst-mode dynamic transition, all terminating signals are
trigger signals in one or more minterms, because terminating edges
can appear in any temporal order and the last one that appears is a
trigger signal. Note that no terminating signal can be a non-trigger
signal, because no output change can be enabled until all termi-
nating edges appear. Furthermore, all don’t care signals (directed

or undirected) are non-trigger signals in one or more minterms,
because their values may change anywhere, including in the trig-
ger states, in the generalized transition cube. Clearly, no don’t care
signal can be a trigger signal in any minterm in the generalized tran-
sition cube, because don’t care signals can never enable outputs to
change. Therefore, we can impose a set of ordering requirements,
which do not conflict, as a sufficient condition for hazard freedom
per generalized transition cube, although the TSO requirement in
[8] is an imposition on each trigger state in the transition cube.

Now we can state the variable ordering requirements for the
extended-burst-mode transitions as follows: Along every path from
root to terminal of the BDD whose corresponding cube intersects
the generalized transition cube, no don’t care signal of a dynamic
transition appears before a terminating signal of the same.

Here, we prove that the combinational network derived from a
reduced free BDD description is hazard-free during an extended-
burst-mode transition as long as the BDD satisfies the variable
ordering requirement for the transition stated above.

Lemma 1 If (T;A;B) is an extended-burst-mode transition for f ,
then fs(X) = fs(X) for every don’t care signal s in (T; A;B)

and for every minterm X in [A;B].

Definition 4 Subtransitions:

1. If s is not a constant 0 in (T;A;B), (T;As; Bs) is a subtran-
sition of (T;A;B) with the value of s fixed to 1.

2. If s is not a constant 1 in (T;A;B), (T;As; Bs) is a subtran-
sition of (T;A;B) with the value of s fixed to 0.

Note that (T; As; Bs) = (T;A;B), if s is a constant 1 in (T; A;B),
and (T;As; Bs) = (T;A;B), if s is a constant 0 in (T;A;B).

Lemma 2 If (T;A;B) is an extended-burst-mode transition for f ,
then

1. (T;As; Bs) is an extended-burst-mode transition for fs, if s
is not a constant 0;

2. (T;As; Bs) is an extended-burst-mode transition for fs, if s
is not a constant 1.

Corollary 1 If (T; A;B) is an extended-burst-mode dynamic tran-
sition for f and s is a don’t care in (T;A;B), then (T;As; Bs) is
an extended-burst-mode dynamic transition for fs and (T;As; Bs)

for fs.

Corollary 2 Static transitions of cofactors:

1. (T;As; Bs) is a static transition for fs if (T;A;B) is an
extended-burst-mode transition for f and s is a falling termi-
nating signal.

2. (T;As; Bs) is a static transition for fs if (T;A;B) is an
extended-burst-mode transition for f and s is a rising termi-
nating signal.

Theorem 2 The combinational networkC derived from a reduced
BDD (ordered or free) description of f is hazard-free during an
extended-burst-mode transition if it satisfies the variable ordering
requirement for the transition: no don’t care signal appears before
a terminating signal.



Proof: We prove by induction on the number of variables.
Base case: The sole input of the network is connected to the

select input of the multiplexor. The other input terminals are con-
nected to a constant 1 or 0. Since the multiplexor is atomic and
only the select input can change, f is hazard-free.

Inductive hypothesis: Now assume that a combinational net-
work derived from a reduced BDD representation of an n-input
function (n � 1), which satisfies the variable ordering require-
ments for an extended-burst-mode transition, is hazard-free during
the extended-burst-mode transition.

Now consider the network C derived from a reduced BDD
representation of function f with n + 1 input variables and an
extended-burst-mode transition (T;A;B) for f . Assume that the
select input of the multiplexor driving the output of C is s and the
data inputs are fs and fs, the Shannon cofactors of f with respect
to s and s. Then (T;As; Bs) is an extended-burst-mode transition
for fs if s is not a constant 0, and (T; As; Bs) is for fs if s is not
a constant 1, by Lemma 2. Since f satisfies the variable ordering
requirements, so do fs and fs. Therefore, fs is hazard-free if s is
not a constant 0, and fs is hazard-free if s is not a constant 1, by
the inductive hypothesis. We will consider 3 cases: s is a constant,
s is a don’t care, and s is a terminating signal.

1. s is a constant:
The multiplexor is a wire as long as s remains constant. Thus,
if s = 0, f = fs is hazard-free since s is not a constant 1.
Likewise, f is hazard-free, if s = 1.

2. s is a don’t care:
First we prove by contradiction that (T;A;B) must be a static
transition for f if s is a don’t care. Assume that (T;A;B)

is a dynamic transition for f . By Corollary 1, (T;As; Bs) is
an extended-burst-mode dynamic transition for fs. Suppose
s remains at 1 while fs changes. Then the change in fs
propagates to f , which means that there is a terminating signal
that enables f to change, regardless of s, violating the variable
ordering requirement.

By Lemma 1, f(X) = fs(X) = fs(X) for every X in
[A;B]. Therefore, (T;As; Bs) and (T;As; Bs) are static
transitions of same type, that is, both 0 ! 0 or both 1 ! 1,
for fs and fs respectively. By the inductive hypothesis, fs and
fs are hazard-free, therefore constant. Since the multiplexor
is atomic, f is hazard-free.

3. s is a terminating signal:
Without loss of generality, consider only the case in which s
rises. By Corollary 2, fs undergoes a static transition. By the
inductive hypothesis, both fs and fs are hazard-free. Consider
the case in which fs = 0. We prove by contradiction that fs
must rise or remain a constant. Assume thatfs is initially 1 and
falls to 0, but s rises first. Since fs = 0 and fs = 1 initially,
f is enabled to rise as s rises. This is a static function hazard,
since f is assumed to be 0 at the end of the transition. Thus fs
must rise or remain a constant; in both cases, f is hazard-free.
Similarly, we can prove that f is hazard-free when fs = 1, by
proving that fs must fall or remain a constant. 2

Lemma 3 There always exists a BDD that satisfies the variable
ordering requirements for two dynamic input burst transitions from
a specification state.

Proof: For every pair of state transitions (u; v) and (u;w) ema-
nating from state u, there exist a compulsory transition signal i in
the input burst of (u; v) and j in the input burst of (u;w) such that
i is a constant in the input burst of (u;w) and j is a constant in the
input burst of (u; v). If i and j appear before any other variable

involved in the ordering, all variable ordering requirements can be
satisfied in the sub-BDDs. 2

Our strategy is to build an ROBDD using a global variable
ordering, if such an ordering can be found, or to build a free BDD.
If no global order exists, there is always a variable that can appear
first. This variable partitions the function into a left and right BDD.
The left and right BDDs do not have to have the same variable order,
so they can be constructed recursively using the same method.

In this 3D implementation of extended-burst-mode machines,
only input bursts can be dynamic transitions. If a unique code
is assigned to each specification state, we can always use fed-
back state variables as partitioning variables, so that the variable
ordering requirements of each specification state are satisfied locally
in each partition. Therefore, there exists a hazard-free free BDD
implementation for every legal extended-burst-mode specification.
State minimization is also constrained to avoid creating variable
ordering conflicts.

4 Sequential Synthesis Procedure

The sequential synthesis procedure consists of the following three
steps: (1) hazard-free state assignment (2) hazard-free state mini-
mization (3) state encoding.

4.1 Hazard-free State Assignment

We describe an algorithm for simultaneously minimizing and
assigning states which always results in a hazard-free single-
transition-time (STT) state assignment. In contrast, the previous
algorithm for extended-burst-mode [23] use a multiple-transition-
time assignment: a state variable change was required before an
output change, increasing latency significantly. Indeed, it can be
shown that multiple transitions are necessary for extended-burst-
mode when implemented with 2-level AND-OR logic, so the use
of BDDs has an inherent performance benefit.

This algorithm builds a primitive next-state table — a 3-
dimensional table with X-axis representing the input bit vector,
Y -axis the output bit vector, and Z-axis the specification states.
The algorithm assigns, according to the extended-burst-mode se-
mantics, a next state, which consists of two components: next
outputs and next specification state, to entries in the table. AnXY -
plane of the primitive next-state table is called a layer. Initially,
each specification state is assigned to a unique layer. The algo-
rithm then collapses the primitive next-state table into a reduced
next-state table by merging compatible specification states without
violating TSO requirements.

In order to describe the primitive next-state table construction
formally, a formal definition of the extended-burst-mode specifi-
cation, adapted from the definition of the burst-mode specifica-
tion in [16], is needed. An extended-burst-mode specification is
a directed graph, G = (V;E;C; I; O; v0; cond; in; out), where
V is a finite set of states; E � V � V is the set of state
transitions; C = fc1; : : : ; clg is the set of conditional inputs;
I = fx1; : : : ; xmg is the set of edge inputs; O = fz1; : : : ; zng
is the set of outputs; v0 2 V is the unique start state; cond labels
each state transition with a set of conditional inputs; in and out
are labeling functions used to define the unique entry cube of each
state. The function cond : E ! f0; 1; �gl defines the values of
the conditional inputs. The function in : V ! f0; 1; �gm defines
the values of the edge inputs and the function out : V ! f0; 1gn

defines the values of the outputs upon entry to each state.
Labeling functions transIN and transOUT are derived from

graph G. transIN : E ! P(I) defines the set of edge input
changes (input burst) and transOUT : E ! P(O) defines the
set of output changes (output burst). (P(I) and P(O) denote
the power set of inputs and the power set of outputs respectively.)



Given a state transition, (u; v) 2 E, xi+ is in the input burst iff
ini(v) = 1 ^ ini(u) 6= 1, xi� is in the input burst iff ini(v) =

0 ^ ini(u) 6= 0, and xi� is in the input burst iff ini(v) = �. That is,
xi 2 transIN (u; v) iff ini(u) 6= ini(v) _ ini(v) = �. Similarly,
zj

+ is in the output burst iff outj(v) = 1 ^ outj(u) = 0, zj� is
in the output burst iff outj(v) = 0 ^ outj(u) = 1. That is, zj 2
transIN (u; v) iff outj(u) 6= outj(v). Let ctransIN (u; v) =

fxi 2 transIN (u; v) j ini(u) 6= � ^ ini(v) 6= �g.
The unique entry condition is satisfied by the above definition.

The remaining requirements to ensure well-formed specifications
are:

� Every input burst must contain a compulsory edge. That is, for
every state transition (u; v), there exists xi 2 transIN (u; v)
such that ini(u) 6= � ^ ini(v) 6= �.

� Every pair of transitions emanating from the same state must
satisfy the distinguishability constraint. That is, for every pair,
(u; v); (u;w) 2 E, ctransIN (u; v) � transIN (u;w) im-
plies that either v = w or cond(u; v) and cond(u; w) are mu-
tually exclusive, that is, there existsk such that condk(u; v) 6=
condk(u;w) ^ condk(u; v) 6= � ^ condk(u; w) 6= �.

� For every sequence of state transitions, u ! v1 ! � � � !
vn ! w, with n � 1 and ini(u) = ini(w) 6= �, there exists
k 2 1; : : : ; n such that ini(vk) 6= �.

Given an extended-burst-mode specification, G, as described
above, let W be the set of conditional input bit vectors
f(c1; : : : ; cl) j ci 2 f0; 1g; i 2 1; : : : ; lg, X be the set of edge
input bit vectors f(x1; : : : ; xm) j xj 2 f0; 1g; j 2 1; : : : ;mg,
and Y be the set of output bit vectors f(y1; : : : ; yn) j yk 2
f0; 1g; k 2 1; : : : ; ng. A primitive next-state table is defined as
T = (V;W;X; Y; �; �), where V is the set of specification states,
and � : V �W �X�Y ! V [f�g and � : V �W �X�Y !
f0; 1; �gn define the next specification state function and the next
output function respectively.

Below, we describe the next-state assignment. L(u) is a sym-
bolic code assigned to state u. [cond(u; v); in(v); out(u); L(u)]
denotes a cube in f0; 1; �gl+m+n+r , where r is the length of state
variable bit vectors. Of course, the actual value of r will not be
determined until the state encoding is done. � in the place of con-
ditional inputs is a shorthand notation, meaning that all conditional
inputs are �. in0 is defined as: for all j 2 1; : : : ;m,

in0j(u) =
n

inj(u) if 9(u; v) : inj(v) 6= �
� otherwise :

The next-state assignment is as follows: For all k 2 1; : : : ; n
and for every state transition, (u; v)

� Conditional input burst setup:
for all M in [A;B], �k(M) = outk(u) and �(M) = u,
where
A = [�; in(u); out(u); L(u)],
B = [�; in0(u); out(u); L(u)].

� Input burst:
for all M in [A;B), �k(M) = outk(u) and �(M) = u,
where
A = [cond(u; v); in(u); out(u); L(u)],
B = [cond(u; v); in(v); out(u); L(u)].

� Output/state burst:
for allM in [A;B], �k(M) = outk(v) and �(M) = v, where
A = [cond(u; v); in(v); out(u); L(u)],
B = [cond(u; v); in(v); out(v); L(v)].

4.2 Hazard-free State Minimization

In the next step, the algorithm transforms the primitive next-state ta-
ble into a reduced next-state table by merging layers. Specification
states can be merged into a common layer, iff they are compatible,
as described below.

Definition 5 States u and v in V are compatible (denoted as
u � v) iff for every s in W �X � Y ,

1. �(u; s) = � _ �(v; s) = � _ �(u; s) = �(v; s) and

2. �(u; s) = � _ �(v; s) = � _ �(u; s) � �(v; s) and

3. if outk(u) = outk(v) for all k 2 1; : : : ; n, then for every pair
of state transitions, (u;wu) and (v; wv), i is a terminating
signal in (u;wu) and j is a don’t care in (u;wu) imply that i
is a terminating signal in (v; wv) or j is a don’t care in (v; wv),
that is, ini(wu) 6= ini(u) ^ ini(wu) 6= � ^ inj(wu) = �
implies ini(wv) 6= ini(v) ^ ini(wv) 6= � or inj(wv) = �.

Informally, the third criterion states that no input burst from u has
conflicting ordering requirements with an input burst in v that has
identical values of fed-back outputs.

The state minimization and encoding to complete the sequential
synthesis are described in [22].

5 Path Optimization Example

In synchronous designs, one of the important design objectives
is to carefully balance the computation blocks so that no part of
the circuits are idle while other parts are busy because the clock
period is determined by the worst-case delay of all the computation
blocks. However, asynchronous designs can proceed immediately
upon receipt of a completion signal, so it is often desirable to create
highly unbalanced asynchronous circuits, where one path has been
optimized, possibly at the expense of others, to optimize overall
system performance.

To illustrate this point and also provide a nice circuit example,
we consider a hypothetical problem posed by Ivan Sutherland [18].
When the circuit in figure 5 detects a transition on r (request), if
sel is high, it signals on s2 to start an expensive operation “C”, then
signals completion on a when it receives r2 from the operation;
otherwise, it does nothing except signal a as quickly as possible.
It is quite likely in this situation that the designer would want the
minimum possible latency from r to a in this case to maximize
overall system performance. The implementation shown does not
do a very good job of minimizing this latency, because there would
be a significant delay from r to s1 for most implementations along
with an additional delay through the “merge” element, which is an
XOR gate.

This controller uses the 2-phase signaling, i.e., every transition
of a signal is considered as a request or acknowledge. We have
included the extended-burst-mode specification in figure 5. If sel
is sampled high when r (request) toggles, the controller toggles s2,
signaling the block C to begin a computation. When C finishes the
computation, it toggles r2; the controller then toggles a (acknowl-
edge). However, if sel is sampled low when r toggles, then the
controller toggles a directly.

The result of applying our synthesis method from [23] turned out
to be remarkably similar to the naive design at the top of figure 5,
which we found disappointing. Our hand designs were better, but
also unsatisfactory. However, using this new BDD-based approach,
we were able to produce an extremely good result: the latency from
r to a was just the delay from the select input to the output of a
single multiplexor. The solution was generated by building a BDD
so that the decision variable r is placed as close to the output a
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Figure 5: Select/Merge Example.

as possible, while satisfying other requirements to keep the circuit
hazard-free. The final implementation is shown in figure 6.

It would be very easy to generalize this idea by allowing the
user to specify a set of particular paths to optimize, in order of
priority. The variable ordering in the BDD could be chosen to put
the high-priority inputs as close as possible to the output, subject to
the correctness constraints imposed by TSO, etc.

6 Experiments

We modified the 3D synthesis tool described in [23], in particular,
the hazard-free state assignment and combinational synthesis steps.
We used this modified tool in conjunction with the combinational
synthesis tool [8] to perform experiments (see table 1) on many
examples previously synthesized by the method described in [23].
With very modest efforts to find the optimal variable order (we
tried a few random orderings and picked the best result), most of
the examples required less area than the previous method, primar-
ily because of the reduction in the number of state variables due
to simpler state assignment. For a minority of the examples, area
increased somewhat. We believe that the area results will be fur-
ther improved with the development of heuristic variable ordering
algorithms tuned to our application.

A more important issue is output latency. Out of 39 examples
synthesized, 24 of them (the names with *) previously required state
variable changes before output changes for some of the specified
transitions. In these cases, using BDD-based synthesis rather than
2-level synthesis improved the output latency by 100% or more.
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