
Performance-Driven Task Co-Scheduling for
MapReduce Environments

Jordà Polo, David Carrera, Yolanda Becerra,
Jordi Torres and Eduard Ayguadé

Barcelona Supercomputing Center (BSC) -
Technical University of Catalonia (UPC)

Barcelona, Spain

Malgorzata Steinder
and Ian Whalley

IBM T.J. Watson Research Center
Hawthorne, NY 10532

Abstract—MapReduce is a data-driven programming model
proposed by Google in 2004 which is especially well suited for
distributed data analytics applications. We consider the man-
agement of MapReduce applications in an environment where
multiple applications share the same physical resources. Such
sharing is in line with recent trends in data center management
which aim to consolidate workloads in order to achieve cost
and energy savings. In a shared environment, it is necessary
to predict and manage the performance of workloads given
a set of performance goals defined for them. In this paper,
we address this problem by introducing a new task scheduler
for a MapReduce framework that allows performance-driven
management of MapReduce tasks. The proposed task scheduler
dynamically predicts the performance of concurrent MapReduce
jobs and adjusts the resource allocation for the jobs. It allows
applications to meet their performance objectives without over-
provisioning of physical resources.

Index Terms—MapReduce, Performance management, Task
scheduling

I. INTRODUCTION

MapReduce [1] is a framework originally designed by
Google to exploit large clusters to perform parallel com-
putations. It is based on an implicit parallel programming
model that provides an easy and convenient way to express
certain kinds of distributed computations, particularly those
that process large data sets. The framework is composed of an
execution runtime and a distributed file system that helps with
the distribution of tasks and data across nodes. The runtime
and the distributed file system also provide fault tolerance and
reliability, which are crucial in such a large-scale environment.

The MapReduce runtime consists of a single master process
and a large number of slave processes. When a MapReduce
application (or ‘job’) is submitted to the runtime, it is split into
a large number of Map and Reduce tasks, which are executed
by the slave nodes. The runtime is responsible for dispatching
tasks to slave nodes and ensuring their completion.

While MapReduce was originally used primarily for batch
data processing, it is now also being used in shared, multi-user
environments in which submitted jobs may have completely
different priorities: from small, almost interactive, executions,
to very long programs that take hours to complete. This change
makes task scheduling, which is responsible for selecting tasks
for execution across multiple jobs, even more relevant. Task

selection and slave node assignment govern a job’s opportunity
to make progress, and thus influences job performance.

In this paper we leverage Hadoop [2], a state of the
art MapReduce runtime and the supporting distributed file
system, to implement an application-centric task scheduler.
The proposed scheduler relies on estimates of individual job
completion times given a particular resource allocation, and
uses these estimates so as to maximize each job’s chances of
meeting its performance goal.

The remainder of the paper is structured as follows. Sec-
tion II introduces some technical background necessary to
understand MapReduce and Hadoop. Section III introduces
several techniques for estimating job completion time, and pro-
poses the performance-based scheduling technique. Section IV
presents the architecture of the scheduler and its integration
into Hadoop. Section V presents the experiments that support
the contribution of our work. Finally, Section VI shows the
related work and Section VII concludes the paper.

II. TECHNICAL BACKGROUND

A. MapReduce

When implementing a MapReduce program, the program-
mer has to implement only two functions: map(), which
processes fragments of input data to produce intermediate
results, and reduce(), which combines the intermediate results
to produce the final output. Each map input is a key-value
pair (with types defined by the programmer) that identifies a
piece of work. The output of each map is an intermediate
result also expressed as a key-value pair (also defined by
the programmer). The reduce input is composed of all the
intermediate values identified by the same key; therefore, the
reduce function can combine them to form the final result.

All nodes in the cluster execute the same function on differ-
ent chunks of input data. The MapReduce runtime distributes
and balances work across the nodes, dividing the input data
into chunks, assigning a new chunk when a node becomes
idle, and collecting the results.

There are many runtime implementations of this model in
various environments. In this paper we present a prototype
that is implemented on top of Hadoop [2], an open source
MapReduce framework discussed in the following section.

B. Hadoop

Hadoop [2] is an open source MapReduce runtime provided
by the Apache Software Foundation. It uses the Hadoop Dis-
tributed File System [3] (HDFS) as shared storage, enabling
data to be shared among distributed processes using files.
The HDFS implementation has a master/slave architecture:
the master process (‘NameNode’) manages the global name
space and controls operations on files, while a slave process
(‘DataNode’) performs operations on blocks stored locally,
following instructions from the NameNode.

The Hadoop runtime consists of two types of processes:
‘JobTracker’ and ‘TaskTracker’. The singleton JobTracker
partitions the input data into splits using a splitting method
defined by the programmer, populates a local task-queue based
on the number of obtained splits, and distributes work to the
TaskTrackers that in turn process the splits. If a TaskTracker
becomes idle, the JobTracker picks a new task from its queue
to feed it. Thus, the granularity of the splits has consider-
able influence on the balancing capability of the scheduler.
Another consideration is the location of the data blocks, as
the JobTracker tries to minimize the number of remote blocks
accessed by each TaskTracker.

Each TaskTracker controls the execution of tasks on a node.
It receives a split descriptor from the JobTracker, divides the
split data into records (through the ‘RecordReader’ compo-
nent), and spawns a new worker process that actually processes
all the records in the split. Such worker process will run a
so-called Map task. The TaskTracker will also be in charge
to run the so-called Reduce tasks as soon as they can be
initiated. Notice here that a Map task will evetually result
in the execution of a map() function, and that a Reduce
task will behave anlogously with reduce() functions. The
programmer can also decide how many simultaneous map()
and reduce() functions can be run concurrently on a node.
When a TaskTracker finishes processing a split and is ready
to receive a new one, it contacts the JobTracker.

The execution of a job is divided into a Map phase and
a Reduce phase. In the Map phase, the Map tasks of the
job are run. Each Map task comprises the execution of the
actual map() function as well as some supporting actions (for
example, data sorting). The data being output by each Map
task is written to a circular memory buffer. As soon as this
buffer reaches a threshold, its content is sorted by key and
flushed to a temporary disk file. If a Map task generates more
than one such file, they are merged into a single file and then
served via HTTP to nodes running Reduce tasks.

During the Reduce phase, Reduce tasks are run. Reduce
tasks are divided into three sub-phases: copy, sort and reduce,
which makes it possible to allocate resources to Reduce tasks
earlier. The first sub-phase (copy) can run whilst Map tasks
are still executing, fetching the partial map results as they
are completed. This is beneficial as Reduce tasks will then
already have most of the data when the last map finishes, and
also because it helps to balance the load on the network. The
reduce sub-phase, which runs the actual reduce() function, is

able to start after the map outputs that pertain to this particular
reducer have been copied and sorted, and the final result is then
written to the distributed file system.

III. PERFORMANCE-DRIVEN CO-SCHEDULING

In this section we present the design, operation and objec-
tives of the task scheduling mechanism introduced in this pa-
per. The mechanism consists of two components: completion
time estimation, and task co-scheduling strategy.

A. Design goals

The main goal of the task scheduling mechanism presented
in this paper is to enable a MapReduce runtime to dynamically
allocate resources in a cluster of machines based on the ob-
served progress rate achieved by the jobs, and the completion
time goal associated with each job. A necessary component of
such a system is an estimator that maps the resource allocation
for a job to its expected completion time. Such an estimator
may easily be obtained if information about the total amount
of computation to be performed by a job is known in advance.
One way to provide this information would be to derive it from
prior executions of the job. However, this approach is neither
practical, as we cannot guarantee that prior executions of the
job exist, nor accurate, as prior executions of the job were
likely performed over a different data set and may therefore
have completely different characteristics.

In this paper, we propose a technique to dynamically
estimate the completion time of a job during its execution. In
doing so, we take advantage of the fact that MapReduce jobs
are a collection of a large number of smaller tasks. Specifically,
we hypothesize that from a subset of tasks that have completed
thus far, we can predict the properties of remaining tasks. We
acknowledge the fact that MapReduce tasks vary widely in
their execution characteristics depending on the data set they
process. Hence, we do not expect this estimation technique
to provide accurate predictions all the time, but we do expect
that when combined with dynamic scheduling it will permit
fair management of completion times of multiple jobs.

The technique targets a highly dynamic environment, such
as that described in [4], in which new jobs can be submitted at
any time, and in which MapReduce workloads share physical
resources with other workloads, either MapReduce or not.
Thus, the actual amount of resources available for MapRe-
duce applications can vary over time. The dynamic scheduler
introduced in this paper uses the completion time estimate for
each job given a particular resource allocation to adjust the
resource allocation to all jobs. The minimum unit of resource
allocation is the slot, which corresponds to a worker process
created by a TaskTracker.

The scheduler presented here can be considered pre-emptive
in that it can interrupt the progress of one job in order to
allocate all of its resources to other jobs with higher priority;
but it does not interrupt tasks that are already executing.
Interrupting executing tasks could be beneficial in the case
of reduce tasks with a long copy phase, an issue that is part
of our future work. In the current system, when a job reaches

the system and a task for this job is scheduled to start, in the
event that all the slots are occupied, the job has to wait for at
least one task to complete before being started.

B. Job performance estimation

We are given a set of jobs M to be run on a MapReduce
cluster. Each job m is associated with a completion time goal,
Tmgoal. The Hadoop cluster includes a set of TaskTrackers TT ,
each TaskTracker (TTt) offering a number of execution slots,
st, which can host a task belonging to any job. A job (m)
is composed of a set of tasks. Each task (tmi) takes time αmi
to be completed, and requires one slot to execute. The set
of tasks for a given job m can be divided into tasks already
completed (Cm), not yet started (Um), and currently running
(Rm). We also use Cm,t to denote the set of tasks of job m
already completed by TaskTracker t.

Let µm be the mean completed task length observed for any
running job m:

µm =

∑
i⊂Cm

αmi

|Cm|
(1)

Let µmt be the mean completion time for any task belonging
to a job m and being run on a TaskTracker TTt:

µtm =

∑
t⊂TT,i⊂Cm,t

αmi

|Cm,t|
(2)

Notice that as the TaskTrackers are not necessarily identical,
in general µm 6= µtm. When implementing a task scheduler
which leverages a job completion time estimator, both µm and
µtm should be considered. However, in the work presented in
this paper, only µm is considered, i.e., all µtms are presumed
equal. Three reasons have motivated this decision: 1) a design
goal is to keep the task scheduler simple, and therefore all slots
are considered identical. Under this assumption, estimating the
resource allocation required by each job given its completion
time goal is an easy task that can be performed with cost
O(M). If the differences between TaskTrackers are taken
into account, the cost of making the best task allocation for
multiple jobs can easily grow to be exponential. 2) the scenario
in which task scheduling occurs is highly dynamic, and thus
the task scheduling and completion time estimate for each
job refreshed every few minutes. Therefore, a highly accurate
prediction provides little help when scheduling of tasks in a
scenario in which external factors can change the execution
conditions over time. The approach is focused on dynamically
driving the slot allocation to different jobs under changing
conditions; and 3) the completion time estimate for a job
m can only benefit from having information relative to a
particular TaskTracker if at least one task that belongs to the
job has been scheduled in that TaskTracker. In practice, it is
likely that each job will have had tasks scheduled on only a
small fraction of the total TaskTrackers.

For any currently executing (on-the-fly) task tmi we define
βmi as the task’s elapsed execution time, and δmi as the

remaining task execution time. Notice that αmi = βmi +δmi , and
that δi and αmi are unknown. Our completion time estimation
technique relies on the assumption that, for each on-the-fly
task tmi , the observed task length αmi will satisfy αmi = µm,
and therefore δmi = µm − βmi .

C. Task Scheduling

The task scheduler presented in this work consists of two
components: a scheduling policy that assigns a priority to each
job, and an allocation algorithm that assigns free slots to jobs
based on their priority. Jobs are organized in a ordered queue
based on their priority.

The priority of each job is calculated based on the number
of slots to be allocated concurrently to each job over time
so that it can make its goal. For such purpose, our technique
needs to estimate the amount of work still pending for each
job, assuming that each allocated slot will be used for time µm.
Such estimation needs to consider both the tasks that are in the
task queue waiting to be started, as well as the tasks currently
in execution. Based on these two parameters, we propose that
the number smreq of slots to be allocated in parallel to this job
can be estimated as:

smreq =
(

P
i⊂Rm

δm
i

µm
+ |Um|) ∗ µm

Tmgoal − Tcurr
− |Rm| (3)

where Tmgoal is the completion time goal for the job m, and
Tcurr is the current time. Therefore, the order in the task list
is defined by the value smreq dynamically calculated for each
job. Notice that smreq is a real value, and it is unlikely that two
jobs have equal smreq values at a given moment. If that does
occur, the jobs will be differentiated arbitrarily.

The scheduling policy must consider some special cases.
Immediately after a job is submitted, there is no data available
and it is not possible to estimate the required slots or the
completion time. Therefore, jobs with no completed or running
tasks always take precedence over other jobs. If there is more
than one such job, the oldest one comes first. There is another
scenario that requires special attention: jobs that have already
missed their deadline. For such a job, the scheduler tries to
at least complete it as soon as possible, prioritizing it over
any other kind of job, which helps avoid job starvation. In
summary, the priority of the job is calculated as follows: First,
jobs that have already missed the deadline. Second, recently
submitted jobs for which there is no available data. Finally,
executing jobs based on their smreq.

The second component of the task scheduler, the scheduling
algorithm, assigns available task slots to jobs according to
their priority. Notice that in the event that several jobs have
the same priority, one of them is chosen arbitrarily. This is
not a problem since once a slot is allocated to one of these
jobs, its priority will decrease, and next slot will be allocated
to one of the other jobs that previously had the same priority.
When two jobs that have already missed their deadlines are
competing for resources, the scheduler fairly equalizes their
expected completion times with respect to their goals.

Although most of the behavior of the scheduler is defined
by the scheduling policy, it can also significantly contribute
to the execution progress made by the jobs. In particular,
the scheduler must decide what to do with slots that are not
needed: that is, the case in which:∑

m⊂M
smreq <

∑
t⊂TT

st (4)

In this situation, the scheduler may decide to keep the
extra slots free, or to allocate them to jobs currently in the
system. The first case can be useful in a Hadoop cluster
provisioned on demand, wherein decommissioning nodes that
are not required can result in freeing resources and therefore
in a reduction in the Total Cost of Ownership (TCO) of the
cluster [5]. The second case is useful in static Hadoop clusters,
where making as much progress as possible on current jobs
leaves more resources available for future jobs. As both cases
are interesting, we have implemented two versions of the
scheduler. The min-scheduler allocates a maximum of smreq
slots to job m . The max-scheduler allocates excess slots to
jobs with the highest priority. Recall that priorities are updated
after each allocation, so the process does not necessarily assign
all the excess slots to the same job.

D. About Mappers and Reducers

The discussion in the previous sections applies to both Map
and Reduce tasks. Each TaskTracker has a number of slots for
Map tasks and another number of slots for Reduce tasks. The
usual case for a MapReduce application is that execution time
is dominated by the time required to complete the Map tasks,
but cases where the Reduce tasks dominate can also occur. In
both cases, jobs start with a Map phase, in which performance
data is collected, and is followed by the Reduce phase.

The scheduler cannot make assumptions about the Reduce
phase before seeing some Reduce tasks completing. Therefore,
in the absence of information from previous runs, the scheduler
needs to estimate the effort of the Reduce phase compared to
the Map phase, such that overall job execution time can be
predicted before the Reduce phase starts. In our system, a
user can use the configuration files of Hadoop to provide an
estimate of the relative cost of a Reduce task compared to
that of a Map task. If no estimate is provided, the scheduler
assumes that the computational cost of a Map task is the
same as that of a Reduce task. As the number of Map and
Reduce tasks to complete for a job is known in advance
(when the input is split), the scheduler can estimate the cost
of the Reduce phase once the Map phase is started. All the
experiments presented in this paper assume the Map phase
dominates the computational cost of the jobs.

IV. SYSTEM PROTOTYPE

The scheduler in Hadoop is part of the JobTracker and
is triggered by heartbeats sent from the TaskTrackers. These
heartbeats include status information such as the TaskTracker’s
number of free slots, and give the scheduler the data necessary
to schedule tasks. In response to the heartbeat, the scheduler

returns a number of tasks to be executed by the TaskTracker
that originated it.

Hadoop provides an interface that schedulers implement,
thereby permitting alternate schedule implementations. This
interface primarily consists of a function that takes the status
of a TaskTracker, and returns a list of tasks to be executed.

Our scheduler maintains a priority queue of tasks as de-
scribed in Section III-C. Each job for which a task has to be
scheduled is in one of the following states: NODATA for jobs
with no completed tasks, for which there is not yet enough
data to estimate the requirements of these jobs; ADJUST for
jobs for which data is available ans so the scheduler can decide
whether more slots or fewer slots are required; UNDEAD for
jobs that have missed their deadline.

The scheduler also determines smalloc,i, the number of slots
that should be allocated to each job m until the next run of
the scheduler. For jobs in the NODATA and UNDEAD state,
the maximum number of allocatable slots is the same as the
number of remaining tasks (|Um|), while for ADJUST jobs it
is based on the needs to meet the deadline (smreq).

As mentioned in Section III-C, we implemented two ver-
sions of the scheduler: min-scheduler and max-scheduler. The
min-scheduler processes the queue once, running at most
smalloc,i tasks concurrently for each job. The max-scheduler,
however, wishes to allocate all available slots. Therefore, it
processes the queue multiple times until all slots are allocated.

The current implementation updates the priority queue on
every call to the scheduler, which has a cost of O(n log n),
where n is the number of running jobs. This has proven
adequate for testing purposes and keeps the prototype sim-
ple. However, as the queue may not change much between
updates, and the number of available slots is usually small,
this approach results in unnecessary work. We plan to improve
efficiency by updating the queue in a background process.

The scheduler presented in this paper can be found at [6].

V. EXPERIMENTS

In this section we present four experiments carried out in
order to investigate the effectiveness of the job completion
estimation technique, as well as to evaluate the task scheduling
techniques we have implemented in the Hadoop JobTracker.
In a first experiment, we run three representative MapReduce
applications in isolation to evaluate the efficacy of the com-
pletion time prediction technique described in Section III-B.
In a second experiment we present an illustrative scenario in
which four applications with completion time goals compete
for resources, managed by the system prototype presented in
Section IV and using the min-scheduler described in Sec-
tion III-C. In a third experiment, we use the max-scheduler in
the same scenario. Finally, in a fourth experiment, we show the
behavior of Hadoop’s FairScheduler [7] in the same scenario.

For our experiments, we created a Hadoop cluster consisting
of 61 2-way 2.1Ghz PPC970FX nodes with 4GB of RAM. All
nodes were connected using gigabit ethernet and were running
Hadoop 0.21-dev on IBM JDK 1.6 on a 64-bit PPC 2.6.16
Linux kernel. One of the nodes was configured to be both the

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400

Ta
sk

le
ng

th
(s

)

Elapsed time (s)

(a) Task completion time

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

R
el

at
iv

e
er

ro
r(

%
)

Elapsed time (s)

(b) Relative error of the estimation

Fig. 1. Completion time estimation: WordCount

0

100

200

300

400

500

0 20 40 60 80 100 120

Ta
sk

le
ng

th
(s

)

Elapsed time (s)

(a) Task completion time

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120

R
el

at
iv

e
er

ro
r(

%
)

Elapsed time (s)

(b) Relative error of the estimation

Fig. 2. Completion time estimation: Join

0

100

200

300

400

500

0 500 1000 1500 2000 2500 3000 3500 4000

Ta
sk

le
ng

th
(s

)

Elapsed time (s)

(a) Task completion time

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

R
el

at
iv

e
er

ro
r(

%
)

Elapsed time (s)

(b) Relative error of the estimation

Fig. 3. Completion time estimation: Simulator

JobTracker and the NameNode, and the 60 remaining nodes
were used as DataNodes and TaskTrackers. Each TaskTracker
was configured to run a maximum of one task in parallel (one
slot for Map tasks and one for Reduce tasks), so one core was
available for the TaskTracker and the DataNode processes, and
the other was available for actual computation.

A. Applications

To evaluate the job estimation technique we use three
MapReduce applications, one that has regular distributions of
task lengths (each task takes approximately the same amount
of time to execute), and two with an irregular distribution.
Specifically, the applications used are:
• WordCount: The ‘WordCount’ application is one of the

sample applications contained in the Hadoop distribution.
It takes a set of text files as input, and counts the
number of times that each word appears. This is a case
of application that exhibits regular distribution of task
lengths.

• Join: The ‘Join’ application joins two data tables on a
given column. In this implementation, the Map tasks each
process a split of one of the two data tables—for each
record in the split, the mappers emit key,value where the
key is the join key and the value is the record (tagged
to indicate which of the two tables it came from). The
Reduce tasks then separate the input records according
to the tag, and perform a cross-product on the resulting
two sets of records. This application is irregular in its
distribution of task lengths.

• Simulator: The ‘Simulator’ application is an execution
harness for the placement algorithm described in [4]. By
varying the numbers of nodes and applications, in addi-
tion to the memory and CPU capacities of the nodes and
demands of the applications, the algorithm can be made
to execute for different lengths of time. This application
shows irregular distribution of task lengths.

In the four experiments presented in the following sections,
we first study the characteristics of each of the presented in
this section, to later use a synthetic mix of them to compose
a realistic scenario of a MapReduce execution environment.
The application set is composed of 4 different MapReduce
applications that share resources during their execution. We
configure each application with a particular completion time
goal, which is derived from the completion time goal that each
applications exhibits when is run in isolation. The scenario is
realistic in terms of the mix of applications, as well as in terms
of setting realistic completion time goals so that can be met
by all the submitted applications.

The set of applications selected is composed of big Simula-
tor job (J1), which is configured to have a relaxed completion
time goal of 6,000s; a WordCount job (J2) configured with
a completion time goal of 3,000s; and two identical runs of
the Join application (J3 and J4), each with a completion time
goal of 150s. Notice that the completion time goals set for each
application compared to their length observed when running
in isolation represent a factor of 1.69X (3,549s vs 6,000s) for
the Simulator, 2.37X (1,264s vs 3,000s) for WordCount and
1.18X (101s vs 120s) for both Joins.

B. Experiment One: Job completion estimation efficacy

The aim of the first experiment is to evaluate the effec-
tiveness of the job completion time prediction technique, as
well as to study the behaviour of the applications used in our
experiments. We use the three applications presented above:
for each application, we show the task length distribution
during an isolated execution. We also show the relative error of
the prediction technique’s estimate over time compared to the
job’s actual completion time. As has been discussed before,
the goal of the technique is to drive the resource allocation and
not to make accurate predictions, although this is a desirable
property when the behavior of the applications is predictable.
Note that in this case we do not perform any management, we
simply examine the behaviour of the prediction technique.

Figures 1(a) and 1(b) show the task length distribution and
the relative error of the estimation over time respectively for
the WordCount application. Notice that Figure 1(a) shows
the actual completion time for each task of the job once the
task has been completed. It can be observed that WordCount
demonstrates regular task length, centered in the range of 80s
– 100s. A few outliers are seen, resulting from some issues
related to the runtime, but these do not impact the result of
the experiment. WordCount splits the input into HDFS blocks,
each of which is processed by a single TaskTracker. The input
used here was a 43GB set of text files, composed of several
copies of a collection of plain-text books. This resulted in 738

maps and 1 reduce being executed across the 60 available
slots. Looking at Figure 1(b), it can be observed that the
relative error is below 5% for most of the job execution time.
The prediction is initially quite pessimistic, because the set of
tasks completed in the first 100s of the experiment take longer
(probably due to initialization issues) than the other tasks yet
to be started. Once shorter tasks start completing, the regular
pattern of the task length distribution allows the system to
produce a much more accurate completion time estimate.

Figures 2(a) and 2(b) show the task length distribution and
the relative error of the estimation over time respectively
for the Join application. This application exhibits irregular
task length, with most tasks finishing in less than 25s but
showing a high variability between them. The application
was configured to perform a join operation between two data
tables, and executed 1,000 map and 4 reduce tasks. Looking
at Figure 2(b), it can be observed that the behaviour is similar
to that observed for the WordCount application, but with more
extreme values: there is an initial phase in which the estimation
is extremely inaccurate, but as the execution progresses, the
estimation becomes more accurate, particularly during the
second half of the experiment, once a representative number
of samples of different task lengths has been observed.

Figures 3(a) and 3(b) show the task length distribution
and the relative error of the estimation over time respectively
for the Simulator application. This application also exhibits
a completely irregular task length distribution, as it depends
on the difficulty of the problem posed to the simulation
itself. Each map task, in this case, corresponds to to a single
simulation execution. The experiment resulted in the execution
of 6,400 map tasks, and 1 reduce task. Figure 3(a) shows the
high variability of task length. Further, the four phases that can
be seen demonstrate the order in which the simulation problem
space is explored. The relative error for this application is
high, and it is not until the end of the execution that the error
drops below 10%. This is a clear example of an unpredictable
application (unless information is kept between executions),
and therefore a best-effort approach is followed for such an
scenario.

C. Experiment Two: Jobs with deadlines, min-scheduler

In the second experiment we use the synthetic set of
applications presented in Section V-A to evaluate the behavior
of the min-scheduler under realistic conditions. Figure 4 shows
the number of slots allocated to each application over time.
Jobs J1, J2, J3 and J4 are submitted at times S1, S2, S3 and
S4 respectively, and the completion time goals are D1, D2,
D3 and D4 respectively.

Simulator (J1) is the first job submitted (at S1). As we
are here using the min-scheduler, and the estimation for J1 is
initially optimistic (as discussed previously in Section V-B),
the system only allocates around 20 slots to this job. Notice
also that at time 0, the scheduler has no data about this job
and it is therefore a high priority task. Consequently, an initial
burst of up to 60 slots is allocated. Some time later, WordCount
(J2) is submitted (at S2), and starts sharing resources with

0

20

40

60

R
un

ni
ng

ta
sk

s

S1

D1

0

20

40

60

R
un

ni
ng

ta
sk

s

S2

D2

0

20

40

60

0 1000 2000 3000 4000 5000 6000 7000

R
un

ni
ng

ta
sk

s

Elapsed time (s)

S3 S4

D3 D4

Fig. 4. Experiment Two: Allocated Resources (slots) using the min-scheduler

the Simulator, showing also an initial burst at which all slots
are committed to WordCount. As the prediction for Simulator
starts being more realistic (see Figure 3(b)), the Simulator
starts getting a higher allocation. Later, a short and high
priority Join (J3) is submitted (at S3), and is allocated most
of the resources in order to meet its goal. When the J3 is
finished, the resources it was using are returned to J1 and
J2. A second instance of Join (J4) is submitted (at S4), and
again is assigned most of the resources. J2 completes close
to its goal, and finally J1, which suffers from irregular task
length distribution, misses its goal due to the fact that the final
stage of simulation involves long simulations. Observe that J1
could have met its goal if had made more progress at the
beginning of its execution, exactly what happens when using
max-scheduler, as will be shown in the next experiment.

D. Experiment Three: Jobs with deadlines, max-scheduler

In the third experiment, the same jobs, submission times,
and deadlines are used, but we use max-scheduler allocating
resources. The first obvious difference with the second exper-
iment is the amount of slots that are allocated to J1 at the
beginning of the test–every slot is allocated to it, as there is
nothing else in the system. When J2 is submitted (at S2), it
shares resources with J1, and together they use every slot in
the system. The behavior of the system when the two instances
of the Join application are submitted does not differ from
what was observed for the min-scheduler: they get most of
the resources until they complete. When J2 finishes, close to
its goal again, J1 is once again allocated the entire system,
and in this case it meets its goal.

E. Experiment Four: Comparison with the FairScheduler

In the fourth experiment, we use the well-known FairSched-
uler [7], which uses job priorities to make scheduling deci-
sions, in place of our completion time goal oriented scheduler.
We perform two tests: in the first, presented in Figure 6 all
the jobs are configured with the same weight; in the second,

0

20

40

60

R
un

ni
ng

ta
sk

s

S1

D1

0

20

40

60

R
un

ni
ng

ta
sk

s

S2

D2

0

20

40

60

0 1000 2000 3000 4000 5000 6000 7000

R
un

ni
ng

ta
sk

s

Elapsed time (s)

S3 S4

D3 D4

Fig. 5. Experiment Three: Allocated Resources (slots) using max-scheduler

presented in Figure 7, we estimate a weight for each job based
on its deadline and minimum completion time when run in
isolation so that the behavior of the FairScheduler is as close
as possible to the behavior of our proposed scheduler. Notice
that the only possible comparison is with max-scheduler, since
the FairScheduler does not consider the possibility of not
allocating all the slots while jobs remain unfinished.

Looking at the results, it can be seen that when no weights
are set for the jobs, high-priority Join jobs miss their goal (as
expected). Notice also that the way in which slots are allocated
to the different jobs follows a Round Robin approach when
resource sharing between jobs occurs. When different weights
are set to different jobs, the FairScheduler is able to mimic the
behavior of max-scheduler. In order to achieve this behavior,
the jobs were organized in three different applications pools,
with the Simulator (J1) pool having a weight of 1, the
WordCount (J2) pool 1.4, and the Join (J3 and J4) pool
122. These weights were derived from the difference between
the time required to complete each job in isolation and its
established completion time goal.

This experiment shows that while the behavior of the max-
scheduler can be obtained when using FairScheduler, the
mapping between completion time goals and job weights is not
obvious, and the system cannot be configured directly based
on high-level performance objectives. Also, it is not possible to
achieve the behavior of the min-scheduler, which is especially
well-suited for emerging MapReduce on demand clusters.

VI. RELATED WORK

Process scheduling is a deeply explored topic for parallel
applications, considering different type of applications, dif-
ferent scheduling goals and different platforms architecture
([8], [9], [10]). However, there is little work on scheduling
for MapReduce applications. The initial scheduler presented
in the Hadoop distribution uses a very simple FIFO policy,
considering five different application priorities. In addition, in
order to isolate the performance of different jobs, the Hadoop

0

20

40

60

R
un

ni
ng

ta
sk

s

S1

D1

0

20

40

60

R
un

ni
ng

ta
sk

s

S2

D2

0

20

40

60

0 1000 2000 3000 4000 5000 6000 7000

R
un

ni
ng

ta
sk

s

Elapsed time (s)

S3 S4

D3 D4

Fig. 6. Experiment Four: Allocated Resources (slots) – Fair Scheduler
without weights

0

20

40

60

R
un

ni
ng

ta
sk

s

S1

D1

0

20

40

60

R
un

ni
ng

ta
sk

s

S2

D2

0

20

40

60

0 1000 2000 3000 4000 5000 6000 7000

R
un

ni
ng

ta
sk

s

Elapsed time (s)

S3 S4

D3 D4

Fig. 7. Experiment Four: Allocated Resources (slots) – Fair Scheduler with
weights

project is working on a system for provisioning dedicated
Hadoop clusters to applications [11]. However this approach
can result in resource underutilization. In [12] the authors
propose a fair scheduling implementation to manage data-
intensive and interactive MapReduce applications executed on
very large clusters. The main concern of this scheduling policy
is to give equal shares to each user. In addition, as exploiting
data locality is a must, it tries to execute each task near the
data it uses. However, this approach is not appropriate for
long-running applications with different performance goals.
In addition, scheduling decisions are not dynamically adapted
based on job progress.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a prototype of a task sched-
uler for MapReduce applications. It has been implemented on
top of Hadoop, the Apache’s open-source implementation of a

MapReduce framework. The scheduler dynamically estimates
the completion time for each MapReduce job in the system,
taking advantage of the fact that each MapReduce job is
composed of a large number of tasks (maps and reduces)
known in advance during the job initialization phase (when
the input data is split), and that the progress of the job can
be observed at runtime. The scheduler takes each submitted
and not yet completed Hadoop job and monitors the average
task length for already completed tasks. This information
is used to predict the job completion time. Based on these
estimates, the scheduler is able to dynamically adapt the
number of task slots that each job is allocated. In this way,
we introduce runtime performance management in the Hadoop
MapReduce framework. To our knowledge, this is the first
scheduler for a MapReduce runtime that is able to manage
the performance of the MapReduce applications based on
high-level policies. The scheduler can use two strategies to
allocate resources: the max-scheduler approach, in which all
the resources of the MapReduce cluster are allocated when
there are enough tasks; and the min-scheduler approach, in
which although the completion time goal for each job is
carefully observed, resources are freed if possible, which is
an interesting approach when the new generation of dynamic
MapReduce clusters are used. We plan to add consideration of
other high-level objectives as well as to integrate the scheduler
in the the EmotiveCloud [13] middleware.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters,” in OSDI ’04: Sixth Symposium
on Operating System Design and Implementation, San Francisco,
CA, December 2004, pp. 137–150. [Online]. Available:
http://labs.google.com/papers/mapreduce.html

[2] Apache Software Foundation. Hadoop map/reduce tutorial. [Online].
Available: http://hadoop.apache.org

[3] ——. Hdfs architecture. [Online]. Available:
http://hadoop.apache.org/core/docs/current/hdfs design.html

[4] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Enabling
resource sharing between transactional and batch workloads using dy-
namic application placement,” in Middleware ’08: Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware, 2008,
pp. 203–222.

[5] C. K. Jacob Leverich, “On the energy (in)efficiency of hadoop clusters,”
in HotPower’09, 2009.

[6] J. Polo, “Deadline scheduler for hadoop,” 2009. [Online]. Available:
http://www.bsc.es/autonomic

[7] M. Zaharia, “Hadoop Fair Scheduler Design Document,” 2009. [Online].
Available: http://developer.yahoo.net/blogs/hadoop/FairSharePres.ppt

[8] D. G. Feitelson and L. Rudolph, “Parallel job scheduling: Issues and
approaches,” in JSSPP, 1995, pp. 1–18.

[9] D. G. Feitelson, “Job scheduling in multiprogrammed parallel systems,”
Tech. Rep. RC 19790 (87657), August 1997.

[10] C. E. Volker, V. Hamscher, and R. Yahyapour, “Economic scheduling
in grid computing,” in Scheduling Strategies for Parallel Processing.
Springer, 2002, pp. 128–152.

[11] Apache Software Foundation. Hadoop on demand. [Online]. Available:
http://hadoop.apache.org/core/docs/r0.20.0/hod user guide.html

[12] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica, “Job scheduling for multi-user mapreduce
clusters,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-55, Apr 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-55.html

[13] Autonomic Systems and eBusiness Platforms research line. Barcelona
Supercomputing Center (BSC). Emotive cloud. [Online]. Available:
http://www.emotivecloud.net

