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INTRODUCTION

The human operator is a key component of
manned systems, and optimal system performance
is predicated upon unimpaired operator capabili-
ties. Less than optimal operator functional state
(OFS) can reduce the efficiency of the operator
and result in degraded system performance. The
functional state of the human operator, unlike oth-
er system components, is not monitored during job
performance. This can lead to situations in which
unrecognized operator impairment results in low-
ered system performance and errors. Continuous
monitoring of OFS would permit the ongoing as-
sessment of operator cognitive capability. When
evaluated in the context of current and predicted
system demands, OFS assessment may indicate

that the operator is not capable of successfully deal-
ing with the cognitive demands of the task. It may
be possible to adjust the task demands to match
the current OFS (Rouse, 1988).

Adaptive aiding is a method of providing assis-
tance to operators by introducing automation only
when it is required (Parasuraman, Mouloua, &
Molloy, 1996; Scerbo, 1996). Parasuraman et al.
(1996) proposed that there are five strategies used
to implement adaptive aiding. Adaptive aiding
may be provided based upon critical events, oper-
ator performance, operator physiology, models of
operator cognition, and hybrid methods that com-
bine the other four techniques. Each of these stra-
tegies has attributes that support its use and others
that may be problematic in certain situations. It
may be that the hybrid approach will be the most
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useful in many situations. The focus of the current
work is on using psychophysiological measures to
implement adaptive aiding.

Accurate and reliable assessment of OFS is es-
sential for adaptive aiding schemes having the
goal of dynamically matching the momentary cog-
nitive capabilities of the operator with the demands
of the task. In theory, adaptive aiding should be
provided only when it is required (Scerbo, 1996)
and must improve performance when compared
with static and fully automated systems (Hancock
& Verway, 1997; Parasuraman & Riley, 1997). To
reduce performance errors that would be caused by
not providing aiding when required or providing it
when it is not required depends upon accurate and
reliable assessment of the cognitive capabilities of
an operator from moment to moment during task
performance (Parasuraman, 2003).

Several authors have argued that psychophys-
iological measures are worthy candidates for this
role (Byrne & Parasuraman, 1996; Gevins et al.,
1998; Gevins, Smith, McEvoy, & Yu,1997; Scerbo,
Freeman, & Mikulka, 2003; Wilson & Russell,
2003a, 2003b). Unlike performance and subjective
measures, psychophysiological measures are con-
tinually available and can be collected without in-
truding into the operator’s task (Kramer, 1991;
Wilson & Eggemeier,1991). Some tasks are highly
automated and place the operator in a primarily
monitoring role, which greatly reduces overt per-
formance. The collection of subjective measures
can intrude into the operator’s task, and if assess-
ment is delayed to avoid this intrusion, the respons-
es may suffer from memory lapses and operator
bias (Moroney, Biers, & Eggemeier, 1995).

Numerous studies have demonstrated that
psychophysiological measures are sensitive to
changes in OFS, including mental workload and
fatigue (Caldwell, Caldwell, Brown, & Smith,
2004; Gevins et al.,1997; Kramer,1991; Wilson &
Eggemeier, 1991). Further, psychophysiological
data have been recorded in a variety of operational
environments, including flight and driving auto-
mobiles, trucks, and trains (Apparies, Riniolo, &
Porges, 1998; Brookhuis & de Waard, 1993; Wil-
son, 2001, 2002b).

By using multiple psychophysiological mea-
sures it is possible to gain a more complete esti-
mation of OFS in complex, multifaceted tasks such
as air traffic control (Brookings, Wilson, & Swain,
1996) and piloting aircraft (Hankins & Wilson,
1998). For example, using data collected from

general aviation pilots, Wilson (2002a) reported
that eye blink rate decreased when pilots flew
using only the aircraft instruments, heart rate in-
creased during takeoffs and landings, and electro-
encephalographic (EEG) activity was affected by
navigation tasks.

When multiple measures are collected, a meth-
od of data synthesis may be desirable to provide
a single index that characterizes OFS. Several
methods have been used, including multivariate
statistical analysis (Berka et al. 2004; Pleydell-
Pearce, Whitecross, & Dickson, 2003; Smith, Gev-
ins, Brown, Karnik, & Du, 2001; Wilson & Fisher,
1991, 1995), ratio of the power in EEG bands
(Freeman, Mikulka, Prinzel, & Scerbo,1999; Pope,
Bogart, & Bartolome, 1995) and artificial neural
networks (ANNs; Gevins et al., 1998; Wilson &
Russell, 2003a, 2003b).

A further advantage of psychophysiological
measures is that they can provide OFS information
in real time (Berka et al., 2005; Wilson & Russell,
2003b, 2004). These online measures of OFS have
been derived from several EEG channels (Berka
et al., 2005; Freeman et al., 1999) or EEG and pe-
ripheral nervous system measures of heart and eye
activity (Wilson & Russell, 2003b, 2004).

Real-time analysis of EEG activity has been
used to modify task characteristics online to better
match OFS in a limited number of reports. Reports
from the National Aeronautics and Space Admini-
stration (NASA) and Old Dominion University
used various ratios of theta, alpha, and beta EEG
bands to develop an engagement index (EI; Free-
man et al., 1999; Pope et al., 1995; Prinzel, Free-
man, Scerbo, Mikulka, & Pope, 2000). This work
was based on the assumption that the EI was relat-
ed to arousal or task engagement. Unfortunately,
this critical assumption was never tested using
their task or operators (Scerbo et al., 2003).

If the EI indicated a low level of task engage-
ment, a tracking task would be switched from au-
tomatic to manual mode, which required operator
control. High levels of engagement would result
in converting the tracking task to automatic mode,
which required no operator input. Better perfor-
mance was reported under negative versus positive
feedback conditions. Unfortunately, it is difficult
to interpret these data because the tracking task
that was producing the dependent variable, track-
ing error, was the task that was turned off and on.
This occurred rapidly, with a reported mean of
switching modes every 14 to 19 s for the duration
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of the 16-min trials (Prinzel, Freeman, Scerbo,
Mikulka, & Pope, 2003). Further, because the
tracking task reset to the zero or home position
during automatic mode, the error score would be
reduced for the following manual mode periods
while the cursor moved from the home position.
The effect of this error reduction was not reported.

The utility of the EEG ratio measures for high
cognitive workload in complex tasks is uncertain.
The EI is designed to monitor arousal based on
changes in theta, alpha, and beta power. The as-
sumption was that theta and alpha activity increase
with low arousal or low engagement states and
decrease with arousal, whereas beta band activity
does the opposite. However, other reports show
that high cognitive workload levels increase theta
and reduce alpha over the parietal scalp areas
where the EEG activity for the EI was recorded
(Brookings et al., 1996; Fairclough, Venables, &
Tattersall, 2005; Fournier, Wilson, & Swain, 1999;
Gevins & Smith, 2003; Hankins & Wilson, 1998).

Additionally, Prinzel et al. (2000) reported no
differences in the EI between their easy single task
condition and their difficult multiple task condi-
tion. They reported better tracking performance
between an experimental and a control group. Be-
cause only the experimental group experienced the
single-task tracking condition, it was not possible
to make comparisons that would have indicated
whether the two groups possessed equivalent per-
formance on the tracking task in the single-task
condition. In a later report (Prinzel et al., 2003), no
differences were found among the EI values when
three experimental conditions were used.

Wilson and Russell (2004) employed an unin-
habited air vehicle (UAV) task with two levels of
difficulty. In this complex task, operators moni-
tored the progress of four UAVs and were required
to download radar images and to locate and des-
ignate targets under two levels of visual complex-
ity and time pressure. The operators were also
required to simultaneously perform a running
memory task. Using an ANN that was trained to
recognize low and high mental workload based
upon psychophysiological data, the authors report-
ed high levels of ANN correct discrimination be-
tween low and high task performance.

Further, when the ANN detected levels of high
workload, adaptive aiding was provided to assist
the operators, which resulted in increased number
of targets hit, targets designated, and weapon re-
lease points achieved when compared with the

nonaiding condition. By closing the loop between
operator and the UAV using psychophysiological
measures, they were able to dynamically match
the task demands to the operator’s momentary
cognitive state and produce significant improve-
ments in complex task performance.

Similar results were described by Parasuraman,
Mouloua, and Hilburn (1999), who reported that
adaptive aiding enhanced performance in a flight
simulation task when the aiding was provided dur-
ing high workload, but not during low-workload
flight segments. Although they did not use real-
time psychophysiological data to assess OFS, the
adaptive aiding did enhance performance.

Because individual operators possess different
cognitive abilities and skill levels, optimal adap-
tive aiding should occur when the aiding is imple-
mented based upon the momentary capabilities of
each operator (Hedge & Borman, 2006). Differ-
ences in cognitive ability have been found to have
correlates in brain activity (Gevins & Smith, 2000).
Although group-determined criteria for imple-
menting adaptive aiding have been shown to im-
prove performance, it would seem propitious if
the decision to provide aiding were tailored to the
capabilities of the individual operator (Wilson &
Russell, 2004). In many situations it is easier to use
the same task difficulty levels for all operators.
However, we have observed that this produces sub-
optimal results because the difficult level of task
demand may be too challenging for some opera-
tors and too easy for others.

In our laboratory, when a fixed level was used
as the difficult task condition, the accuracy of our
psychophysiologically driven classifier varied
among the operators and the accuracy was corre-
lated with proficiency. This suggests that optimal
adaptive aiding will be achieved if the capabilities
of each operator are determined and used to pro-
vide adaptive aiding (Gevins & Smith, 2003;
Parasuraman, 2003). Recent data from Gonzalez
(2005) showed that high task demands had a more
detrimental effect on the performance of operators
with lower cognitive ability when compared with
operators with higher abilities.

An additional consideration is the method used
to implement the adaptive aiding. Psychophysio-
logical measures are subject to rapid fluctuations,
which may produce the presentation and with-
drawal of adaptive aiding at a too-rapid rate. One
strategy that is used to smooth the transitions is
to apply a data window with an overlap of tens of
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seconds (Freeman et al., 1999; Gevins et al., 1998;
Wilson & Russell, 2003a). Also, if successful, the
adaptive aiding will provide task demands that
match the current capabilities of the operator,
which will change the operator’s physiology and
result in the removal of the aiding. If this occurs
quickly, turning the aiding on and off could actu-
ally interfere with the operator’s performance in
complex tasks.

An alternative would be to couple the OFS with
task information when determining the duration
of each aiding episode. For example, if the OFS
classifier determines that the operator requires
assistance, the adaptive aiding system could inter-
rogate the system and provide the aiding until the
demands of the task diminish (Bonner, Taylor, &
Miller, 2000). This would avoid multiple occur-
rences of aiding onset and offset while the task
demands remain high. The dynamic nature of the
adapting system must not interfere with the oper-
ator’s task performance.

This paper describes a project in which the OFS
of UAV operators was assessed using psycho-
physiological measures, online, while they per-
formed tasks having different levels of cognitive
difficulty. This information was used to modify
task demands to determine if operator performance
would improve. Acomplex, simulated, UAV attack
scenario was used in which each operator was si-
multaneously responsible for four vehicles and was
required to locate and designate targets using pre-
established rules. The most difficult level of the
task was individually determined for each opera-
tor. This level and a task difficulty level represent-
ing the group’s mean were used to determine the
importance of individual thresholds to determine
adaptive aiding implementation.

The goals of this project were to demonstrate
that psychophysiologically driven adaptive aiding
would improve performance and that randomly
presented aiding would not show the same level of
performance improvement. Further, the impor-
tance of using individual operator capabilities to
determine the threshold for implementing the aid-
ing would show greater performance improve-
ment than when a group-determined performance
threshold was used. The method of terminating the
aiding was also explored to determine if ending
the aiding when the psychophysiological OFS as-
sessment indicated that it was no longer needed
was superior to ending the aiding when the current
subtask ended.

METHODS

Ten volunteers with a mean age of 24.9 years,
who had given informed consent, were practiced
until they showed stable performance on a simu-
lated UAV task. The practice took a mean of 10.6
hr over 3 to 4 days. The operators monitored the
progress of four autonomous vehicles, on two abut-
ted 20-inch (~51-cm) diagonal computer screens
separated by 4 inches (~10.2 cm) of bezel, as they
flew a preplanned bombing mission. When the ve-
hicles reached designated way points, radar images
of the target area were available to the operators.
The operators gave commands to download and
view the images and then performed a visual search
of the images. They marked six targets for bomb-
ing before the vehicle reached the weapons release
way point. If the targets were not selected and/or
the weapons release command was not given in
time, the weapons from that vehicle could not be
released, thereby reducing the effectiveness of the
entire mission.

Three categories of targets were used, and the
operators were required to employ a predetermined
set of priorities when selecting targets. Because
the entire radar image could not be viewed at one
time, the operators had to pan around the image
and remember the types and locations of the tar-
gets that they found. Then they would designate
the targets based upon the preestablished set of pri-
orities (see Figure 1).

Figure 1. Radar image showing an entire difficult-level
image with six targets designated.
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The complexity of the images was presented at
two levels. The more difficult level contained a
larger number of distractors in the form of nontar-
get vehicles and buildings and also required more
complex decisions concerning target priority. Four
easy and four difficult images were presented in a
balanced order for each condition. Simultaneous-
ly, the operators monitored the well-being of each
vehicle (vehicle health task, VHT) by observing
messages showing potential vehicle problems,
such as loss of communication. These messages
appeared in the upper left of the display screen and
occurred throughout the easy and difficult condi-
tions. One distractor message was also presented,
and all status messages appeared for 10 s, although
the command that identified the problem that had
reached a critical level appeared for 15 s.

Memory was manipulated by having the oper-
ators keep two aircraft-problem combinations (ex-
cluding the distractor message) in memory until
the command was given that identified the aircraft
in which the problem had reached a critical level
and required attention. The operators then select-
ed the appropriate vehicle designation from a pull-
down menu and, using other pull-down menus,
found and selected the appropriate fix for that
vehicle’s problem.

The number of targets selected, the number of
nontargets selected, the number of targets hit, and
whether or not the command to release the weap-
ons was executed in time (successful weapons re-
lease) were recorded. The VHT was scored by the
number of correct solutions, the number of time-
outs, and the reaction times for responding to a
critical malfunction. Following each mission the
operators gave estimates of their mental workload
using the NASA Task Load Index (NASA-TLX)
for the easy and difficult radar images. Each data
collection run took approximately 14 min.

The difficult task level for testing was deter-
mined for each operator, after he or she had reached
stable performance, by using a titration procedure.
This was accomplished by increasing the speed
of the UAVs during the difficult radar image con-
ditions until the operator successfully completed
only 25% to 30% of the weapon release points.
This vehicle speed was then designated as that
operator’s individual level for the difficult radar
image processing. The group mean of these titra-
tion runs was determined and used as a second ve-
hicle speed for all of the operators as the group level
of the difficult radar image processing. The perfor-

mance of 5 of the operators (the low-performance
group) fell below or at the mean level, whereas the
other 5 operator’s titration speeds were above the
mean level (the high-performance group).

Five channels of EEG, electrocardiograph
(ECG), and vertical and horizontal electro-
oculograph (EOG) activity were collected. The
EEG data were recorded from scalp sites F7, Fz,
Pz, T5, and O2 of the 10/20 electrode system using
an Electrocap (Electrocap International, Eaton,
OH). These sites have previously been shown in
our laboratory to provide good discrimination be-
tween task levels in complex cognitive tasks (Rus-
sell & Wilson, 2005). Electrodes attached to the
mastoid processes were used as reference and
ground. Eye and cardiac activity were recorded
using disposable Ag/AgCl electrodes. The EOG
electrodes were placed above and below the mid-
line of the right eye to record vertical movement
and blink activity. Electrodes placed next to the
outer canthus of each eye recorded horizontal
ocular activity.

The ECG electrodes were placed on the sternum
and the left clavicle. These data were amplified and
filtered by a small, operator-worn telemetry device
(BioRadio 110, Cleveland Biomedical Inc.). The
sampling rate was 200 Hz with a bandpass from
0.5 to 52.4 Hz. The digitized data were reduced
online and simultaneously stored on a computer
disk by a laboratory-developed software program,
NuWAM (Krizo, Wilson, & Russell, 2005). Eye
artifacts in the EEG data were corrected using an
adaptive filter with inputs from the vertical and
horizontal EOG channels (He, Wilson, & Russell,
2004). The corrected EEG and the EOG data
were submitted to a fast Fourier transformation
every second. These data were separated into five
bands for further statistical analysis: delta 2.0 to
4.0 Hz, theta 5.0 to 8.0 Hz, alpha 9.0 to 13.0 Hz,
beta 14.0 to 32.0 Hz, and gamma 33.0 to 43.0 Hz.
Interbeat intervals were calculated online from the
ECG data.

These reduced data were then provided to an
ANN every second. A10-s window with a 9-s over-
lap was used as input to the ANN. The ANN had
a total of 37 input features with a hidden layer with
37 nodes and 2 output nodes, easy and difficult.
Because there were more data in the easy condi-
tion, training examples for ANN were randomly
selected so that the number of examples were the
same for the easy and difficult ANN training data
sets. Of the 10-s segments from each of the two
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ANN training conditions, 75% were randomly
selected and used as training data, whereas 25%
were used as validation data to determine the point
at which the ANNs were trained but not over-
trained. The validation data were also used to test
the accuracy of the trained ANN (Wilson & Rus-
sell, 2003b).

After the operators had been practiced to stable
performance and their titration levels established,
they returned on a separate day for test data col-
lection, which began with collecting data that were
used for training the ANN. The ANN training data
represented periods of easy and difficult task lev-
els recorded while each operator performed the
UAV task at his or her titrated vehicle speed and
also at the easy condition vehicle speed. The data
from two separate ANN training runs were com-
bined. Separate ANNs were trained for each oper-
ator. During subsequent task performance the
ANN provided estimates of the operator’s state
every second.

Four conditions were used; each comprised a
single data collection run (see Table 1): 

No adaptive aiding. During this condition, only
operator performance and ANN accuracy were re-
corded. This was done for the individually deter-
mined (no aiding-individual) and the group (no
aiding-group) vehicle speeds.

Adaptive aiding. When the ANN estimates in-
dicated that the operator was in a state of high cog-
nitive workload, the UAV task was modified to
reduce the cognitive demands on the operator.

Adaptive aiding was accomplished with two
manipulations: (a) decreasing the velocity of the
vehicle whose targets were being evaluated by
50% and (b) displaying the current VHT status
messages in a dropped tab at the VHT display area.
This provided more time to complete target selec-
tion before the weapons release point was reached
and provided a visual list of currently unresolved
VHT messages to ease the memory load for the
VHT task. This was accomplished for both the
individually determined vehicle speed (aiding-
individual) and the group determined vehicle speed
(aiding-group). The same group mean speed was
used for all operators. When the ANN indicated
the easy operator state, the vehicle speed was re-
turned to the faster level.

Random aiding. In this condition aiding was
provided at randomly determined intervals for
each operator. The total amount of aiding and the
number of times aiding was provided were the
same as for the aiding condition. The length of each
aiding period was the mean for that condition (to-
tal time/number of times aided for that operator).
This was accomplished for the individual (random
aiding-individual) and group (random aiding-
group) vehicle speeds.

Leave on aiding. Using the individually deter-
mined vehicle speed, the aiding was turned on at
the first instance of ANN-determined high work-
load level and left on until the weapons release
command was given or the release way point was
crossed.

TABLE 1: List of Experimental Conditions With Brief Descriptions

Condition Description

Training ANN training only; individual and group speeds used separately.

No aiding-individual Performance only, no aiding, used to test ANN accuracy and provide
baseline performance. Individually determined speeds used.

No aiding-group Performance only, no aiding, used to test ANN accuracy and provide
baseline performance. Group speed used.

Aiding-individual Aiding presented using ANN trained with individual speeds.

Aiding-group Aiding presented using ANN trained with group speeds.

Random aiding-individual Aiding presented randomly; total aiding time was the same as each
operator’s aiding-individual total times.

Random aiding-group Aiding presented randomly; total aiding time was the same as each
operator’s aiding-group total times.

Leave on aiding Aiding presented using ANN trained with individual speeds. Aiding left
on until weapons were released or weapons release point met.

Note. ANN = artificial neural network.
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On the day of data collection the operators prac-
ticed the tasks by completing a warm-up scenario
prior to data collection. The order of presentation
was blocked with the constraints that the two ANN
training runs had to occur first and the aiding-
individual aiding-group aiding had to occur prior
to their respective random aiding conditions.

The performance, psychophysiological, and
subjective data were statistically evaluated using
a within-operator ANOVA. Significant ANOVAs
were followed with paired comparisons, t tests, to
determine significant differences using p ≤ .05.

RESULTS

The ANN classification accuracies – that is,
correctly determined easy and difficult task levels
based upon task condition, for the training and the
two nonaided conditions – are presented in Fig-
ure 2. The easy versus difficult workload compar-
ison was significant, F(1, 9) = 15.94, p < .0002,
with a mean correct classification for the easy
condition of 89.7% and the difficult condition of
80.1% correct. There was a significant effect

among the training, no aiding-individual, and no
aiding-group conditions, F(2, 18) = 23.95, p <
.0001. The correct classification means for the
training, no aiding-individual, and no aiding-group
conditions were 95.7%, 83.6% and 75.5%, respec-
tively. Paired comparisons showed that the ANN
did significantly better discriminating between the
easy and difficult task levels for the training con-
dition than for both the individual and group con-
ditions.

The classification accuracies were significantly
higher for the individual than the group condi-
tions. The comparison between the high- and low-
performance groups was significant, F(1, 4) =
5.24, p = .027, with the mean correct percentage
for the high performers of 87.7% and 82.2% for
the low performers. The interaction of task diffi-
culty and the type of aiding was significant, F(2,
8) = 17.57, p < .0001. The test data for the train-
ing run are those data that were withheld from the
ANN training and belonged to the same overall
data set resulting in the very high classification
accuracies. For the low- and high-performance
groups in the training condition the ANNs did very

Figure 2. Mean artificial neural network (ANN) classifier accuracies for the training, no aiding-individual, and no
aiding-group conditions for the high- and low-performance groups. Standard error bars are shown.
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well, with a range of correct classification of the
easy and difficult conditions from 89% to 100%.

For the two nonaiding runs the data were not
part of the original training data set and the accu-
racies were lower, ranging from 54% to 93% cor-
rect. The nonaiding runs using the individually
determined task difficulty resulted in a mean cor-
rect classification of 83.6% with a range from 79%
to 91.8%. The ANN accuracies when the opera-
tors performed the group mean task difficulty level
was 75.5%, with a range from 54.3% to 93% cor-
rect. Although the accuracy of correctly determin-
ing the easy task demand level was essentially the
same as for the no aiding-individual condition, the
accuracy of correctly determining the difficult task
level dropped to a mean of 61.7% for the group
difficulty level, compared with 79.5% for the indi-
vidually determined difficult task level condition.

The number of successful weapons releases
(SWRs) was greatly affected by the task difficul-
ty, F(1, 9) = 203.51, p < .0001. The percentage of
SWRs during the easy level was almost perfect,
mean of 97.7%, whereas the overall difficult task
performance was 51.3%. Because only the diffi-
cult task condition was affected by experimental
conditions, the statistical tests on only those data
will be reported.

For the difficult condition there was a significant
effect of aiding type, F(7, 63) = 4.90, p < .0002. As

shown in Figure 3, there were dramatic differences
for the SWRs during the difficult task levels asso-
ciated with the various aiding conditions for the
combined low- and high-performance groups.
The goal of only 25% to 30% completed SWRs in
the nonaided difficult task level during the training
and no aiding-individual titrated conditions was
achieved, 27.5% and 30% respectively. The no
aiding-group was slightly higher, 35%, because
the mean difficulty level of the high and low per-
formers was used.

The largest improvement in performance was
during the aiding-individual condition, which was
significantly greater than the three nonaiding con-
ditions and the random aiding-individual condi-
tion. It was not significantly different from the
aiding-group, random aiding-group, and the leave
on aiding condition. The aiding-group percentage
SWRs was significantly larger than all three of
the nonaiding conditions. The leave on aiding con-
dition also demonstrated significantly improved
percentage SWRs as compared with the three non-
aiding conditions and the random aiding-individual
conditions.

Examination of the low- and high-performance
groups’ data separately showed that the various
aiding conditions had differential effects. The low-
performance group’s data from the difficult task
level is shown in Figure 4. The best performance
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Figure 3. Mean percentage successful weapons releases (SWRs) completed for the difficult task level for each of
the conditions for the 10 operators. Bars are standard errors.
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was during the aiding-individual condition, which
was significantly larger than the three nonaiding
conditions and the aiding-group, random aiding-
individual, and random aiding-group conditions.
Only the leave on aiding condition was statisti-
cally equivalent. The percentage SWR during the
random aiding-individual condition was signifi-
cantly larger than all three of the nonaiding con-
ditions. The leave on aiding condition produced
better performance than the three nonaiding con-
ditions and the aiding-group conditions.

The high performers’data showed a more com-
plex picture of the effects of the various aiding
conditions (see Figure 5). The titrated vehicle
speeds were higher for this group than for the low-
performance group. The highest percentage SWRs
was during the aiding-group condition, which was
as high as the easy task difficulty condition results,
mean of 95%. This was significantly larger than
the three nonaiding conditions and the aiding-
individual and random aiding-individual condi-
tions.

The next-highest percentage SWR was the same
for the aiding-individual and leave on aiding con-
ditions. They were both significantly larger that the
training, no aiding-individual, and random aiding-
individual conditions. The random aiding-group
results were significantly larger than the training, all
no-aiding, and random aiding-individual condi-

tions. The no aiding-group results were signifi-
cantly larger than the training and random aiding-
individual conditions results. The vehicle speed
during the group condition was below the titrated
speed for the entire high-performance group.

The number of targets selected was significant-
ly affected only by task difficulty, F(1, 9) = 64.7,
p < .0001. The mean percentage targets selected
was very high for both the easy and difficult tasks,
99.5% and 92.8% respectively. This almost-
perfect selection of targets during the easy task
level and lower performance during the difficult
task level was uniform across the various aiding
conditions. Aiding and the type of aiding had no
significant effect on target selection. Taken togeth-
er with the SWR data, it appears that the operators
chose accuracy (target selection) over speed (SWR
completion) during the difficult task level.

The number of false alarms (incorrectly chosen
distractors) was also significantly affected only by
task difficulty, F(1, 9) = 257.9, p < .0001. The mean
percentage of false alarms was 6.2% for the high-
difficulty condition; there were no false alarms dur-
ing the low-difficulty level tasks. Given the very
low number of false alarms, the number of targets
hit was determined by the SWRs, and the statisti-
cal results were identical to those of the SWRs and
will not be discussed. None of the VHT measures
were significantly affected by aiding type.
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Figure 4. Mean percentage successful weapons releases (SWRs) by aiding condition for the low-performance group
during the difficult task level. Error bars are standard errors.
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The subjective measure of mental workload,
NASA-TLX composite, was significantly influ-
enced by task difficulty, F(1, 9) = 68.52, p < .0001
(see Figure 6). The overall mean NASA-TLX
composite score for the low-difficulty conditions
was 15.3, whereas the mean for the difficult con-
dition was 60.2. The interaction of task difficulty
and performance group was also significant, F(1,
4) = 5.90, p = .017. Paired comparisons showed
that the subjective workload composite score for
the low-performance group during the difficult task
was significantly higher than their scores during
the easy condition and both the easy and difficult
conditions for the high-performance group. Fur-
ther, the difficult level subjective scores for the high-
performance group were significantly higher than
the easy task scores for both performance groups.

Separate ANOVAs were performed on the data
of the high- and low-performance groups. For the
low-performance group the effects only of task dif-
ficulty were significant, F(1, 4) = 61.37, p = .0014.
However, for the high-performance group task
difficulty, F(1, 4) = 21.39, p = .0098, and task diffi-
culty by aiding condition, F(7, 28) = 2.44, p = .044,
were significantly different. Paired comparisons
showed that the aiding-individual condition scores
were significantly lower than those from the no
aiding-training, no aiding-individual, and random
aiding-individual conditions. The subjective work-

load estimates for the random aiding-group were
significantly lower than those from the no aiding-
training condition. Conversely, the no aiding-
individual scores were significantly higher than
those from the aiding-group, random aiding-
group, and leave on aiding conditions.

DISCUSSION

Adaptive aiding based upon psychophysio-
logical measures using an ANN classifier pro-
duced a 50% improvement in performance on the
UAV task. Eighty percent of the weapons release
way points were completed during the aiding-
individual condition, as compared with only 30%
completed without the aiding during the no aid-
ing-individual condition. The task difficulty that
was used to elicit the aiding was based upon each
operator’s capability as determined by the titra-
tion procedure. When the adaptive aiding was
accomplished using the group-determined mean
vehicle speed, the overall improvement in per-
formance was only 35%.

This difference between the aiding-individual
and aiding-group conditions represents 38.4 tar-
gets that were destroyed rather than 16.8. In op-
erational terms this is a substantial difference.
Basing the implementation of the adaptive aiding
upon the capabilities of each operator would
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Figure 5. Mean percentage successful weapons releases (SWRs) by condition for the high-performance group dur-
ing the difficult task level. Standard error bars are shown.
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greatly improve performance and would have a
tremendous impact upon operational outcome.
Further, when the same amount of aiding was pre-
sented at randomly chosen times, the improve-
ment in performance was 12.5% and 17.5% for
the random aiding-individual and random aiding-
group conditions, respectively. This shows that
aiding has a much greater impact when it is pre-
sented based upon the psychophysiologically
determined OFS rather than randomly presented
during task performance.

The basis of the psychophysiologically deter-
mined adaptive aiding was dependent upon the
success of the ANN classifier. The mean correct
classification percentage was 83.5% for the no
aiding-individual and 75.5% for the no aiding-
group conditions. This was accomplished online
in essentially real time and far above the 50% ex-
pected by chance. If the classifier was not able to
accurately determine the functional state of the
operators, then the adaptive aiding would not have
been provided or would have been given at inap-
propriate times, when it was not needed. In either
case, less performance improvement would be
expected.

Even providing the same amount of aiding but
at random times did not produce the high levels

of performance improvement found when the aid-
ing was given based upon the psychophysiolog-
ically determined need. Further, the ANNs were
trained specifically for each operator. Using the
same pool of psychophysiological features, the
ANNs derived solutions that were optimized for
each operator. Although not addressed in the cur-
rent study, an earlier report found that the ANN
classifier did not generalize very well to different
manipulations of task difficulty in an air traffic
control task (Wilson & Russell, 2003a). This sug-
gests that ANN classifiers may have to be trained
on the specific tasks being performed by opera-
tors in operational environments.

Examination of the high- and low-performance
groups’ SWRs showed differential effects of the
aiding. The greatest improvement for the low-
performance group was during the aiding-
individual condition, when the task difficulty level
was based upon their predetermined capabilities.
On the other hand, the best performance for the
high-performance group was during the aiding-
group condition, when the group-determined dif-
ficulty level was used. This difficulty level was
below the group’s capability, and they were able
to produce almost-perfect SWR scores matching
those of the easy task level. The low-performance
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group’s scores during the aiding-group condition
were low because the group-determined task diffi-
culty level was above their individual capabilities.

Examination of the performance of the two
groups during the random aiding conditions is
very interesting. The low-performance group’s
scores were enhanced during the random aiding-
individual condition and were only 15% below
their aiding-individual scores. However, during
the more difficult group difficulty task level, the
randomly presented aiding resulted in only 40%
SWRs. The effects of randomly providing the aid-
ing for the high-performance group are very in-
triguing. The random aiding-individual condition
produced the lowest percentage of way points met,
15%. This occurred even though the task difficul-
ty was at their titrated speed. Debriefing comments
by this group revealed that they all felt that the
randomly presented aiding greatly interfered with
their performance.

One of the differences between the high- and
low-performance groups could be that the high-
performance group developed strategies that they
depended upon and the randomly presented aid-
ing interfered with these strategies. The low-
performance group did not depend upon well-
developed strategies, and the randomly presented
aircraft slowing helped them because the group
condition task difficulty level was beyond their
capabilities. This may add to Gonzalez’s (2005)
finding that high workload is more detrimental to
low-ability operators in that high-ability operators
may develop more successful strategies but inter-
ference with these strategies is more detrimental
to their performance.

Examination of the percentage time that the
aiding was on during the difficult task condition
revealed that there was no significant difference
between the low- and high-performance groups.
The high-performance group showed higher scores
during the random aiding-group condition because
the task difficulty level was below their capabili-
ties and they did not have to depend upon perfor-
mance strategies. An examination of the time it
took them to give permission for weapons release
revealed that the times were longer in this condi-
tion than the aiding-individual condition, which
suggests a strategy shift.

The subjective results support this contention
because the random aiding-individual condition
was rated as significantly more difficult than the
aiding-individual condition. This was not the case

for the low-performance group, who showed sig-
nificant differences only between the easy and
difficult tasks, not between the various difficult
conditions. Apparently, for the low-performance
group all of the difficult task conditions were per-
ceived as equally difficult, and the various manip-
ulations did not affect their perceptions. This
suggests not only that operators have different
abilities but that the manner in which aiding is
presented affects them differently.

Providing the aiding only when the classifier de-
termined it was required (aiding-individual) pro-
vided slightly better performance versus leaving it
on until the task demands changed. The difference,
7.5%, was not statistically significant. However,
because 7.5% represents 2.4 more targets destroyed,
this is an operationally relevant increase in targets
destroyed. These results suggest that a mitigation
manager based upon task context coupled with
psychophysiologically driven OFS assessment
may produce significant enhancements in more
complex tasks.

Tasks having a richer set of cognitive demands
may benefit by exactly matching specific miti-
gations with the current task situation. If the 
psychophysiological OFS assessor is capable of
determining only global mental workload, a miti-
gation manager could provide the most appropri-
ate mitigation in the current situation. This would
represent the hybrid model of adaptive aiding sug-
gested by Parasuraman et al. (1996), which would
combine the psychophysiological and critical
events techniques.

These results confirm that psychophysiologi-
cally determined OFS assessment can be used to
provide adaptive aiding and result in overall sys-
tem performance enhancement (Byrne & Parasur-
aman, 1996; Scerbo, 1996). These results show
that psychophysiologically determined adaptive
aiding significantly enhanced the performance of
the operators and that tailoring the onset of the aid-
ing based on the capabilities of each operator pro-
vided the most improvement.

Unlike data from earlier studies that were based
upon assumptions concerning the relationship
between EEG and OFS and the assumed outcome
of higher rates of switching between task modes,
these data provide direct evidence that psycho-
physiologically driven aiding produces dramatic
improvement in operator performance (Freeman
et al., 1999; Prinzel et al., 2000). These results also
support the report by Wilson and Russell (2004),
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which demonstrated performance improvement in
complex task performance using psychophysio-
logically determined OFS to provide mitigations.
Whereas Veltman and Jansen (2003) argued that
adaptive aiding should be based upon both physi-
ological and subjective effort measures, the current
results demonstrate that in some circumstances
adaptive aiding driven by only physiological fea-
tures can provide performance enhancement.

In contemporary systems the task demands on
the operator and OFS are not dynamically matched.
System demands are driven by the task, and it is
typically assumed that with a well-designed sys-
tem the operator has sufficient cognitive capacity
to perform the required tasks. However, OFS can
vary from moment to moment in response to chang-
ing task demands in the context of the internal
milieu of the operator. Therefore, the operator’s
current cognitive capabilities may not meet the
momentary requirements of system operation.
This leads to reduced operator effectiveness and
errors.

The strong coupling between the cognitive
demands placed on an operator and psychophys-
iological measures of OFS permits the rapid eval-
uation that is necessary for online assessment and
adaptive aiding. These results suggest that psycho-
physiologically driven adaptive aiding will have
application in operational environments. The task
used here was complex, requiring visual search
and decision making using specified rules of en-
gagement, much like tasks in actual operational
settings.

The inclusion of performance measures and
task variables into the mitigation decision loop
should improve the accuracy and utility of online
operator functional state assessment and provide
further enhancement of complex task performance
(Bonner et al., 2000; Wilson & Russell, 1999).
Actual operational settings will no doubt provide
for several mitigations rather than only one, as
used here.

Choosing the appropriate mitigation will re-
quire a much more complex mitigation manager
that will be required to consider the many critical
performance and scenario variables. It will also
need to consider the individual needs of each
operator based upon his or her unique skills and
capabilities. Operators’ preferences for which as-
pects of the task that they prefer to have mitigated
will also be considered. It may be possible to use
OFS and projected task demands to predict peri-

ods of future overload. This would permit the im-
plementation of mitigations or changes to task re-
quirements prior to the period of high task demand
to ensure that the operator is capable of meeting
these future challenges.
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