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As a result of the increasing usage of UAVs (Unmanned Air Vehicles) in urban 
environments for UAM (Urban Air Mobility) applications, the preciseness and reliability of 
PNT (Positioning, Navigation and Timing) systems have critical importance for mission safety 
and success. With its high accuracy and global coverage, GNSS (Global Navigation Satellite 
System) is the primary PNT source for UAM applications. However, GNSS is highly 
vulnerable to Non-Line-of-Sight (NLoS) blockages and multipath (MP) reflections, which are 
quite common, especially in urban areas. This study proposes a machine learning-based 
NLoS/MP detection and exclusion algorithm using GNSS observables to enhance position 
estimations at the receiver level. By using the ensemble machine learning algorithm with the 
proposed method, overall 93.2% NLoS/MP detection accuracy was obtained, and 29.8% 
accuracy enhancement was achieved by excluding these detected signals. 

I.Nomenclature 

UAV = Unmanned Air Vehicle 
UAM = Urban Air Mobility 
PNT = Positioning, Navigation and Timing 
GNSS = Global Navigation Satellite System 
NLoS = Non-line-of-sight 
MP = Multipath 
GPS = Global Positioning System 
DOP = Dilution of precision  
PVT = Position, Velocity, and Timing  
INS = Inertial Navigation System 
LoS = Line-of-sight 
RHCP  = Right-handed Circular Polarization  
LHCP  = Left-handed Circular Polarization  
CNR =   Carrier-to-noise ratio 
mRMR  = Minimum Redundancy — Maximum Relevance 
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II.Introduction 

 It is seen that the applications of UAM, which is a subject that attracts a lot of attention from both industry and 
academia, are increasing rapidly [1]. As a result of the increasing usage of UAVs in urban environments for UAM 
applications, the preciseness and reliability of PNT (Positioning, Navigation and Timing) systems have critical 
importance for mission safety and success. Currently, GNSS (Global Navigation Satellite Systems) is the primary 
PNT source in either civilian or military applications with its high accuracy and global coverage. However, GNSS is 
highly vulnerable to line-of-sight (LoS) blockages and multipath reflections, which are especially common in urban 
areas. 
 Since urban environments contain many flat surfaces that reflect GPS signals, two major signal reception issues 
are experienced: NLoS reception and MP interference. MP and NLoS are the major error sources that have the most 
detrimental effect on urban environment conditions [2], [3]. Although both are frequently grouped as multipath issues, 
they cause very different ranging errors, as illustrated in Figure 1.   
 

 

(a) 

 

    (b) 

Figure 1 (a) NLoS reception (b) Multipath interference 

A signal reception issue is called NLOS, where only a multipath reflection is received while the LoS signal is 
blocked. On the other hand, multipath interference occurs if both direct LoS signal and reflection(s) are received by a 
receiver. GPS data associated with these signals cause severe positional errors in urban environments due to the 
additional delay introduced by the reflected signal [2]. 

INS (Inertial Navigation System)/GPS integration is the most common multi-sensor navigation approach and is 
widely used even in low-cost navigation systems. INS offers highly accurate Position, Velocity, and Timing (PVT) 
measurements which is beneficial for aiding temporary GPS inaccuracies and unavailabilities. However, GPS is still 
the main PNT source, and a consumer-grade INS can only remain reliable for a few seconds in the absence of satellite 
navigation [4].  

In order to mitigate the impact of GPS error sources, satellite-based and ground-based augmentation strategies and 
RAIM (Receiver Autonomous Integrity Monitoring) methods have already been investigated in the literature. The 
classical RAIM fault detection and exclusion (FDE) algorithm work based on monitoring Dilution of Precision (DOP) 
coefficients, representing how good satellite geometry is [5]. Since these methods are designed considering open sky 
error characteristics, they are not convenient to use in urban environments due to the intense LoS (Line of Sight) 
blockages and signal reflections [3]. After applying RAIM FDE procedures in urban environments, an insufficient 
number of satellites remains, or the remaining satellites have a bad satellite geometry to conduct accurate position 
estimations. Therefore, this study proposes a solution where only reflected components of received signals are 
removed rather than completely rejecting a satellite. So that sufficient GPS availability and satellite geometry can be 
maintained after FDE. 

The overall aim of this study is to enhance the performance of low-cost INS/GPS navigation systems operating in 
urban environments. In order to achieve this aim, we propose eliminating NLoS and MP signals from position 
estimation calculation. In this study, LoS signals are referred to as direct signals, and NLoS and MP signals are referred 
to as indirect signals. Because of the difficulty of predicting and modelling MP and NLoS errors, utilizing machine 
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learning was considered a suitable approach. After detecting and excluding faulty GPS signals, the enhanced PVT 
estimations are provided to INS/GPS fusion block. GPS and INS position estimates are fused with a loosely coupled 
Extended Kalman Filter (EKF). Finally, enhanced GPS position estimations are obtained.  

In the literature, there is no classification algorithm with the features utilized in our study that has ever been designed 
and collected training data with GPS simulation, which is able to simulate real environments like the GSS7000 GNSS 
Simulator. In addition, although previous studies have investigated the success and suitability of machine learning 
algorithms for classification, the effect of signal elimination based on this classification on the static and dynamic 
positioning performance has not been examined in detail. Our research aims to contribute to the existing literature on 
these topics. 

III.Related Studies 

For urban mobility applications, INS and GPS complement each other as the navigation system. Both systems 
have advantages over each other. While INS is able to provide high-frequency position estimation, the long-term 
content of the information is insufficient since the system drifts slowly due to sensor characteristics. On the other 
hand, GPS requires receiving GPS signals in order to remain accurate over the long term. The master aim of using 
INS/GPS combined navigation systems is to estimate the better position of the system by taking advantage of both 
systems [6].  

It is crucial to keep the cost and weight low for the tools used in urban mobility applications. However, advanced 
sensors used in complex systems can be very expensive and heavy. For this reason, the Micro-Electro-Mechanical 
System IMU is often used in these applications. These systems are also known as low-cost IMU [7]. The critical 
disadvantage of this type of sensor is that the noise in the sensor measurements is high. Therefore, the time to make a 
reliable prediction before the correction data is received is very short. 

In order to have one estimation from two different data, a fusion algorithm is utilized. GPS and INS data are 
utilized by Kalman filters to estimate the system’s position continuously.  

In urban environments, there are significant difficulties with satellite-based navigation. This is due to the 
dependence of GPS location calculation on received signals. Signals coming from satellites could be deflected, 
diffracted, and blocked on the ground by buildings, trees, and other objects. As a result of the limited satellite sight 
and multipath impact, the accuracy of location estimation could be significantly reduced [3], [8].  

In the literature, there are studies to enhance position estimation by mitigating the effect of MP and NLOS signals 
at different levels in urban environments. These studies are listed into three groups according to their levels: antenna-
based techniques, additional sensor-based techniques, and receiver-based techniques. 

A. Antenna-Based Techniques  
Antenna-based techniques propose to mitigate MP and NLoS effects by examining antenna numbers and types. 

Paul [9] has suggested designing a dual-input GPS front end based on direct RF sampling. Because GPS signal coming 
from a direct satellite has right-handed circular polarization (RHCP), commercial GPS antennas are more sensitive to 
RHCP signals. In this study, also left-handed circular polarization (LHCP) is utilized, and carrier power to noise 
density, C/N0, measurements were obtained separately. It has been proposed that the differences between RHCP and 
LHCP can be used to detect MP signals.  

In another study [10], by utilizing differences between RHCP and LHCP, a weighting and exclusion system is 
proposed to mitigate the effects of multipath and enhancement of the system on final PVT calculation. The 
effectiveness of the established technique in the positioning solution was evaluated through real-world testing. 

B. Additional Sensor-Based Techniques 
In literature, there are studies proposing to use of different additional sensors to detect the environmental obstacle 

and obtain which satellite signals should be blocked from these obstacles and which signals should reach the receiver 
directly. Tang [11] used a fisheye camera and projection of the satellite position to obtain visibility of the satellite. 
Using the information on which satellite is blocked could be determined, and a User Equivalent Range Error (UERE) 
calculation was proposed to predict the positioning error with the Horizontal Dilution of Precision (HDOP) estimation 
approach. In another study [12],  carrier-to-noise ratio (CNR) and image-based methods were investigated to detect 
multipath and NLOS signals by Marais. It has been proposed that image processing and CNR-based approaches could 
provide complementary information to use the benefits of the two approaches while trying to minimize the 
disadvantages of each one. 
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C. Receiver-Based Techniques 
Even antenna-based techniques and additional sensor-based techniques are successful to some extent. They offer 

to use more than one antenna or another sensor, which increases the weight and cost of the aircraft. In urban mobility, 
especially for the Low-Cost INS/GPS Navigation System, it is important to keep weight and cost low. That is why, in 
our study, the main focus is on receiver-based techniques, which can improve performance estimation without it 
increases cost and weight. 

Mubarak [13]proposed using the combination of L1 and L2C signals. Even though this method helps to detect 
multipath signals more correctly than one single frequency, it is observed that it could cause to increase in false 
detection.  

In another study [14], a convolutional neural network-based method has been proposed for detecting multipath 
using information obtained from the correlator output of a GPS receiver’s tracking loops. The author suggests 
verifying the proposed algorithm with ground truth information. Another study by Ozeki [15] offers NLOS and MP 
detection approach which utilizes machine learning techniques, namely, one using a support vector machine (SVM) 
and the other using a neural network (NN). Signal strength against elevation angle outputs distribution of the delay of 
the maximum correlation, and the number of local maxima of the correlation was utilized as features for the machine 
learning model. These models were trained, and their performance levels were compared. NN had slightly better 
classification accuracy compared to SVM, and the system is able to classify 97.7% of NLOS MP signals. 

Also, there are studies utilizing GPS observable data to classify signals. Gong [16] utilized carrier-to-noise ratio 
(CNR) and pseudorange to distinguish between direct and MP signals by training K-means Clustering Algorithm, and 
their classification accuracy reached 90.5%. In another study [17], C/No, elevation and pseudorange residuals are used 
to train with a binary decision tree. And this algorithm slightly gives better results than the standard C/No and 
Gaussian-based approach. Hsu [17] trained and tested support vector machine models with different observable 
features and found C/No, the difference between delta pseudorange and pseudorange rate, as optimum features. Sun 
[18] proposes a gradient-boosting decision tree method to classify signals using the satellite elevation angle, signal 
strength and pseudorange residual features. Outcomes indicate that MP/NLOS signal elimination, although enhancing 
performance, is vulnerable to both the receiver’s proximity to signal reflector blocks and geometrical configuration. 

Jiang [19] proposes an unsupervised algorithm that detects indirect signals by utilizing a clustering method. GPS 
data in an offline system are categorized as normal or abnormal when an indirect signal reaches the receiver. Satellite 
elevation angle, C/No, pseudorange residual and pseudorange rate consistency are considered features for this model. 
It is observed that while systems that detect and eliminate indirect signals can improve positioning estimation, 
removing indirect signals can also reduce the number of available GPS satellites and degrades their geometric 
distribution, which impacts positioning performance. 

After analyzing the studies, it was determined that multipath detection at the observation deck level, which does 
not require an additional cost or sensor, is appropriate for low-cost navigation solutions.  

When reviewing previous studies conducted at the observables level, it has been noticed that C/No and satellite 
elevation have a direct relationship with the signal type, and the methodology section in our study examined the effect 
of other observable features to determine the features of the system. 

IV.Methodology 

This section provides a detailed analysis of the technique used to meet the objectives of the study. In the subsequent 
sections, every aspect of this research will be presented. 

In this study, LoS signals are referred to as direct signals, and NLoS and MP signals are referred to as indirect 
signals. The main aim of this study is to enhance position estimation in urban environments. First of all, for this 
purpose, the signal classifier system was developed to classify the received GPS signals as direct and indirect signals. 
Because of the difficulty of predicting and modelling undirect signals, utilizing machine learning was considered a 
suitable approach. The proposed method’s main concept is to evaluate received signals with GPS receiver observables 
values to determine signal types. Spirent GSS7000 simulator is utilized with SimSENSOR to obtain realistic training 
and test scenarios. GPS observables values are collected from a U-Blox receiver by connecting the output of this 
simulation with the real receiver. Collected GPS observables values are labelled with the developed algorithm using 
simulator output, and machine learning models are trained with these data sets. Also, the simulation provided ground 
truth information and signal type information. Figure 2 shows the high-level structure of the proposed enhancement 
system. 
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Figure 2 High-level architecture of the proposed system 

EKF is the non-linear version of Kalman Filter, which linearize a continuously updated trajectory based on 
measurement state estimation[20]. The most popular INS/GPS integration technique is loosely coupled integration, 
and the primary benefit of loosely connected integration is its simplicity of setup and operation. In loosely coupled 
integration, the sensors are fully independent of one another [21]. In our study, a loosely coupled EKF integration 
method is preferred in order to fuse INS and GPS positions since it is commonly used for low-cost navigation 
applications due to its simplicity and compatibility. 

A. Simulation Setup and Data Collection 
The data collection stage is critically important for the success of the proposed solution in this study. The type of 

the received signals (LoS, NLoS or MP) should be known for training a signal classifier with supervised learning 
algorithms. Even though the most realistic data would be acquired by conducting an actual flight, it is difficult to 
distinguish actual signal classes at the receiver level. Since errors in the labelling process would impair the classifier’s 
performance, Spirent’s GSS7000 GNSS Simulator [22] which is able to simulate GPS signals and IMU data 
realistically in varied environmental conditions, was utilized to generate training and testing data. Figure 3 illustrates 
urban environment types defined in the simulator while generating the data set.     

 
Figure 3 Simulation environments: (a) Suburban (b) Urban (c) Urban Canyon 
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In order to generate our training data set, the synthetic data is received by a U-Blox ZED-F9P [23] GNSS receiver, 
which is capable of providing GPS observables in addition to PVT information, and estimated positions and GPS 
observables are recorded at the receiver’s output in NMEA format by using U-Centre [24] GPS evaluation software. 
The simulation architecture set up for data collection can be seen in Figure 4. 

 

 
Figure 4 The simulation architecture 

Thanks to the simulator, the ground truth labels are available for all data and set as NLoS, LoS or multipath. 
Different environmental conditions, urban canyon, urban and suburban, were created for data collection. In these 
environments, 6 pieces of 12-hour data, static and dynamic, were collected. After data collection with U-blox receiver 
and u-centre software, it is necessary to label which signals are clean and which signals are multipath. A labelling 
script was developed in the MATLAB environment to complete this task. With this script, signals extracted from 
NMEA messages were labelled as direct or indirect signals based on satellite data at the same UTC from the 
simulation. Table 1 shows how many signals are collected in static and dynamic scenarios and how many are labelled 
as direct signals and indirect signals as a result of the labelling process. 

In order to increase the indirect signal detection success of the system, it was decided to train and test different 
models as stationary and dynamic. Therefore, the test data were also collected differently. 

Table 1 The number of signals collected for training data 

 Total Number 
of Signals 

Total Number of 
Direct Signals 

Total Number of 
Indirect Signals 

Stationary 763650 577781 185869 

Dynamic 736532 623388 113144 
 
For testing the performance of the proposed system, additional 12-hour test data was generated. These test data 

were collected statically and dynamically by simulating a different day from the day the training data was collected. 
Training data was labelled using the developed labelling script based on NMEA messages and satellite data at the 
same UTC from the simulation, whether they were direct or indirect signals. Table 2 summarizes the number of signals 
collected in stationary and dynamic situations, as well as the number of direct and indirect signals labelled as a result 
of the labelling procedure. 

Table 2 The number of signals collected for testing data 

 Total Number 
of Signals 

Total Number of 
Direct Signals 

Total Number of 
Indirect Signals 

Stationary 304836 236503 68333 

Dynamic 304366 236524 67842 
 
After extracting the NMEA data, pseudorange, carrier phase, doppler shift, carrier-to-noise ratio and elevation 

values were obtained for each signal value. The minimum redundancy — maximum relevance (mRMR) algorithm 
was used to see the effect of these values on the output. The reason for using the mRMR approach is that it 
efficiently reduces redundant features while holding the relevant features for the model [25]. By using mRMR 
algorithm, every feature’s importance score was plotted [26]. 
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                  (a) 

 

                  (b) 

Figure 5 Bar plot of features importance scores: (a) Stationary (b) Dynamic 

Figure 5 indicates that pseudorange/elevation and CNR features are the most remarkable indicators for the signal type. 
In addition, as seen in Figure 5, it has been observed that the pseudorange feature has low relation with the signal type, 
and the importance is low because of the pseudoranges in different bands for different elevation degrees. Therefore, 
the pseudorange value of the relevant signal was divided by the elevation value, and the mRMR algorithm was used 
again with the obtained data set. 

In order to evaluate the performance of the trained model, there are different approaches. Our study uses accuracy, 
precision, recall and F-score as performance indicators. Following the classification, the confusion matrix was used 
to evaluate the classifier’s performance [27]. 
 

Table 3 Validation results of optimized classifiers with different features 

Features Accuracy (%) Precision Recall F1 Score 

CNR and Pseudorange/Elevation 84.7 0.8541 0.4120 0.5558 

CNR, Pseudorange Rate, Pseudorange/ 
Elevation, Carrier Phase, Doppler Shift 

91.5 0.8841 0.7301 0.8001 

CNR, Pseudorange Rate, Pseudorange/ 
Elevation, Carrier Phase, Elevation 

95.9 0.9286 0.8937 0.9108 

CNR, Pseudorange Rate, Pseudorange/ 
Elevation, Carrier Phase, Elevation, Doppler 
Shift 

99.2 0.9871 0.9789 0.9830 

CNR, Pseudorange Rate, Pseudorange/ 
Elevation, Carrier Phase, Elevation, Doppler 
Shift, Pseudorange 

99.5 0.9934 0.9845 0.9890 

 
Even though the correlation of features such as carrier phase and doppler shift in the mRMR algorithm seems low, 

when the optimized classifiers are compared, it is observed that all features are beneficial for obtaining more accurate 
classification. For this reason, all features, CNR, pseudorange rate, pseudorange/elevation, carrier phase, elevation, 
doppler shift and pseudorange were used as features for training the classifier. 
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B. Model Optimization and Training 
After extracting the NMEA data, randomly separated 10% of the data is used to optimize all algorithms because 

training with the full data set took a very long time. After the optimization process with the limited parameter, the 
algorithm showing the best performance was optimized with the full data set. In all optimization and training 
processes, 80% of the data is randomly selected for training the signal classifier, and the remaining 20% is allocated 
for validation. It has been seen that the training data is highly variable when used for testing [28], [29]. Therefore, 
these data sets were collected separately. 

Machine learning algorithms help us with classification problems as an effective and efficient method. Machine 
learning algorithms can generally model complicated class signatures, accept a range of predictor data as input, and 
make no assumptions about the data distribution. Numerous studies have usually demonstrated that these algorithms 
provide greater accuracy than classic parametric classifiers, particularly for complex data with a high-dimensional 
feature space [30]. 

The optimization and training procedure was carried out by utilizing the Classification Learner in the MATLAB 
environment [31]. For stationary and dynamic data, optimization progress was performed with different algorithms, 
namely, decision trees, discriminant analysis, support vector machines, nearest neighbours, naive Bayes, ensemble, 
and neural network classification. In the sub-headings, the results obtained from these optimization processes are 
presented and compared. 

Classifier options were tuned before starting the optimization. The random search method was selected as the 
optimizer option, and the iteration number was set as 30. After these settings, the optimization process is carried out 
with the specified features.   

The previous section explains how the data was collected and labelled to train the classifier in stationary and 
dynamic scenarios. This section presents the validation results of the optimized classifiers evaluated with accuracy, 
precision, recall, and F1-score evaluation metrics. 
1. Classifier Optimization and Training for Stationary Scenarios 

The results of the evaluation for optimized classifiers in the stationary scenarios are presented in Table 3.  

Table 4 Validation results of optimized classifiers in the stationary scenarios 

Algorithm Accuracy (%) Precision Recall F1 Score 

Decision Trees 98.57 0.9763 0.9620 0.9698 

Discriminant Analysis 81.83 0.6140 0.5937 0.6037 

Naive Bayes 81.97 0.5998 0.6161 0.6078 

Support Vector Machines 97.66 0.9581 0.94067 0.9493 

Nearest Neighbors 99.44 0.9892 0.9867 0.9880 

Ensemble 99.77 0.9968 0.9933 0.9950 

Neural Network 99.49 0.9934 0.9845 0.9889 

 
As can be seen in Table 3, according to the validation results with 10% stationary data, it was observed that the 

best performance values were achieved with the ensemble algorithm. The ensemble algorithm was optimized with a 
full dataset for the system to be trained to perform the highest classification performance. Table 4 shows the best point 
hyperparameters of the optimized ensemble classifier with full parameters. 

Table 5 The best point hyperparameters of the optimized classifier in the stationary scenarios 

Algorithm The Best Point Hyperparameters Observed Minimum 
Classification Error 

Ensemble 

Ensemble Method: GentleBoost 
Number of Learners: 121 
Learning Rate: 0.020235 

Maximum Number of Splits: 122 

0.0023048 



9 
 

 
The validation result of that classifier can be seen in Table 5. As expected, the system optimized with full 

parameters showed a better result. 
 

Table 6 Validation result of the optimized classifier in the stationary scenarios 

Algorithm Accuracy (%) Precision Recall F1 Score 

Ensemble 99.96 0.9993 0.9992 0.9992 

 
Later in the study, the classifier obtained from this optimization is used to enhance stationary position estimation. 

 
2. Classifier Optimization and Training for Dynamic Scenarios 

The results of the evaluation for optimized classifiers in the dynamic scenarios are presented in Table 6. 

Table 7 Validation results of optimized classifiers in the dynamic scenarios 

Algorithm Accuracy (%) Precision Recall F1 Score 

Decision Trees 99.48 0.9850 0.9813 0.9831 

Discriminant Analysis 88.42 0.8019 0.3271 0.4646 

Naive Bayes 87.95 0.6916 0.3887 0.4977 

Support Vector Machines 95.37 0.9652 0.8100 0.8809 

Nearest Neighbors 99.37 0.9813 0.9777 0.9795 

Ensemble 99.73 0.9911 0.9916 0.9913 

Neural Network 94.47 0.8463 0.7824 0.8131 
 
As can be seen in Table 6, according to the validation results with 10% stationary data, it is observed that the best 

performance is achieved with the ensemble algorithm. The algorithms were optimized with the entire dataset for the 
system to be trained to perform the highest classification performance. Table 7 shows the best point hyperparameters 
of the optimized ensemble classifier with full parameters. 

Table 8 Validation result of the optimized classifier in the dynamic scenarios 

Algorithm The Best Point Hyperparameters Observed Minimum 
Classification Error 

Ensemble 

Ensemble Method: GentleBoost 
Number of Learners: 79 

Learning Rate: 0.0055994 
Maximum Number of Splits: 10572 

0.0018193 

 
The validation result of that classifier can be seen in Table 8. As expected, the system optimized with full 

parameters showed a better result. 

Table 9 Validation result of the optimized classifiers in the dynamic scenarios 

Algorithm Accuracy (%) Precision Recall F1 Score 

Ensemble 99.82 0.9943 0.9938 0.9941 

Later in this study, the classifier obtained from this optimization is used to enhance dynamic position estimations. 
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C. INS/GPS position estimation 
In this section, our propsed method to estimate position is explained. Figure 6, the blue blocks illustrate the 

functional diagram of a standard GPS user equipment to perform PNT estimation [32]  and the green blocks illustrate 
the proposed system architecture added to enhance GPS performance. Signal classification and navigation processor 
blocks coded in MATLAB environment. 

 

 
Figure 6 Standard GPS user equipment functional diagram [32] and our proposed method 

Our classification system extracts the recognized signals according to the fault detection results and uses only the 
clean signals for the GPS calculation to enable the system to estimate position with less error. For position calculation 
after extracting faulty signals, the data free from multipath is processed with a GPS receiver model coded in the 
MATLAB environment since we are not allowed to modify the U-blox receiver according to our needs. In order to 
test the performance of our proposed solution, first, the position estimations are carried out without any signal 
elimination. Afterwards, the signals determined to be indirect according to the signal classifier results are excluded 
from the NMEA message and positions are estimated again. These position estimations were made with a receiver 
model provided by MATLAB Navigation Toolbox [33]. 

After estimating GPS positions, the INS and fusion steps were performed to see the effect of the classification 
system on the resulting position estimation. GSSS 7000 could also provide accelerometer and gyroscope data. To 
make this data realistic, noise has been added in accordance with a low-cost IMU characteristic. 

In order to estimate the INS position and fuse this position with the GPS position, a loosely coupled EKF was 
utilized. As mentioned in the previous section, The Global Positioning System and Inertial Navigation Systems are 
technologies that complement one another. INS provides high-frequency data. However, due to sensor features, the 
system drifts, which will cause big errors in the long term. Also, GPS is long-term accurate but requires access to GPS 
signals [6]. 
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V. RESULTS & DISCUSSION  

In this section, the classification system performance and its effect on enhancing position estimation are presented. 
After that, the system performance of the classification process, enhancing accuracy at various levels, its limitations, 
and what should be done to improve this system were discussed. 

A. Classification Process 
In order to test the performance of the classifier, test data is generated in the simulation that is not used for training. 

When simulating test data, another day was simulated from the day the training data were collected. Two different 12-
hour test data, stationary and dynamic, were collected. In these data, as in the previous sections, the necessary labelling 
was done with the help of simulation data. The performance of the classification algorithm developed with these 
labelled data has been tested in this section, and the results are presented. 

In order to test the performance of the system, the system was tested with 12-hour-long test data that is not used 
in training and was collected as described in the data collection section. The performance of the classifier can be seen 
in Table 10. 

Table 10 Test result of the ensemble classifiers 

Model Algorithm Accuracy (%) Precision Recall F1 Score 

Stationary Ensemble 94.56 0.8266 0.9593 0.8881 

Dynamic Ensemble 91.75 0.8428 0.7741 0.8070 

Looking at the results, as expected, it has been observed that the classifier in the dynamic scenario performs less 
effectively than the stationary one. However, we obtained an efficient overall accuracy of  94.57% for stationary and 
91.75% for dynamic. The following sections will further discuss how classification performance affects the proposed 
GPS performance enhancement method. 

B. GPS Performance Enhancement 
95th percentile errors are investigated in this section for six scenarios (3 dynamic and 3 stationary scenarios) to 

assess the performance of the proposed enhancement method. These test scenarios were designed as 15-minute 
scenarios at different times of the day where data was collected for testing. For a more effective performance 
evaluation, the position accuracy is calculated by considering three cases. In the first case, the accuracy was calculated 
without applying signal exclusion. The outputs provided by the proposed classification algorithm were used in the 
second one. And in the last case, the ideal condition is taken into account, assuming that all indirect signals are 
classified correctly. The results from these three cases are presented and discussed for each scenario in the following 
sections. 

 
1. Stationary Scenario Horizontal Error 

In this section, the horizontal position enhancement obtained with the proposed system for the static scenario is  
presented. 

 

 
Figure 7 Horizontal error values for stationary scenarios 

In Figure 7, horizontal error values can be seen for all static scenarios. While the system developed in the third 
scenario succeeded in reducing the error significantly, the situation was not the same in other scenarios. The positional 
error was slightly improved in the first scenario, while in the second scenario, a slight increase in the error was 
observed. Overall, the proposed method is able to reduce 10.7% of error I horizontal axis for stationary scenarios. In 
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order to understand whether the error increases are due to misclassification, the results were compared with the 
absolute accuracy of signal elimination, and it was seen that the results were similar to the developed system. HDOP 
values can be seen in Figure 8 to examine this situation in more detail. 
 

 
Figure 8 Mean HDOP values for stationary scenarios 

 
As it can be understood from the HDOP values in figure 8, when the signal is eliminated, the satellite constellation 

deteriorates as the number of satellites from which the signal is received decreases. Especially in the second case, the 
HDOP value increased significantly, so the error increased instead of decreasing with the developed system. 

 
2. Stationary Scenario Vertical Error 

 

 
Figure 9 Vertical error values for stationary scenarios 

 
Considering the error values on the vertical axis, the proposed system significantly reduced the error in the position 

estimation in the first and third scenarios, but in the second scenario, the error value increased. On the vertical axis, 
the proposed method was reduced by 16.4% error based on the average of these scenarios. In addition, it was 
determined that the developed system had a higher absolute accuracy than the elimination system due to some 
misclassification operations. It has been observed that this misclassification is more specific on the vertical axis than 
on the horizontal axis. When examining the cause of the increase in the second scenario, it is observed that the VDOP 
value rises 269% after signal elimination. 
 

 
Figure 10 Mean VDOP values for stationary scenarios 

When examining the cause of the increase in the second scenario, the increase in the VDOP value once again 
stands out.  
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3. Dynamic Scenario Horizontal Error 
 

 

Figure 11 Horizontal error values for dynamics scenarios 

When examining the results on the horizontal axis in the dynamic scenario, the proposed system revealed no 
noticeable change in the first scenario, whereas it slightly increased the error in the second scenario. In scenario 2, 
when we examine the increase in HDOP values, the HDOP value before elimination is very close to 1. Overall, the 
proposed system is able to reduce by 10 % error. In this instance, good satellite consolation was not significantly 
impaired by signal loss, but it did increase the system position estimation error. In scenario 1, the HDOP values for 
all compared systems are nearly the same. In scenario 3, although DOP values increased as a result of signal 
elimination, the system significantly improved position estimation. 

 

 
Figure 12 Mean HDOP values for dynamics scenarios 

Although satellite correlation observed in DOP values in system position improvement is an important parameter, 
it is insufficient to explain the entire system’s performance. 
 
4. Dynamic Scenario Vertical Error 
 

 
Figure 13 Vertical error values for dynamics scenarios 

The system developed in scenario 1 was able to achieve a very low error reduction. In dynamic scenarios, the 
system is able to reduce 43% error for position estimation. In addition, it is seen that the error of position estimation 
made by signal elimination using absolute correct data is higher. The underlying reason is that some indirect signals 
are misclassified as direct signals and included in position estimation. Also, it has been observed that when these 
signals are eliminated, the DOP value deteriorates, and the error increases instead of decreasing. 
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Figure 14 Mean VDOP values for dynamics scenarios 

C. INS/GPS Integration 
The system, which was developed to enhance position estimation in the urban environment, first classifies signals 

with GPS observables values. That is why the entire system’s success is dependent on the classifier’s accuracy. It was 
observed that the classifier provided accurate results in the tests. In addition, the performance of the proposed solution 
was similar to ideal cases in many scenarios.  

The performance of the system as a result of the classification, detection, and elimination of indirect signals, as 
well as the utilization of direct signals and GPS location, was presented and discussed. However, since the system will 
use the position information obtained after INS/GPS integration, the performance of the system as a result of this 
integration is crucial. In this section, the effect of the proposed system on the estimation of the final position in various 
scenarios is discussed. 

Figure 15 contrasts the GPS performance of the developed system with that of the standard system. In two of the 
six scenarios, it significantly improved the system’s position estimation. In the two scenarios, the system’s 
performance is slightly lower than its overall performance, and there is no noticeable difference between the two 
scenarios. 

 
Figure 15 INS/GPS horizontal errors 

 
 

The performance of the system decreased in two of the six scenarios on the horizontal axis, whereas the position 
estimation performance of the system increased in three scenarios. In addition, there was no significant change in the 
first scenario. It has been determined that the performance of the horizontal system as a result of INS/GPS fusion is 
related to the GPS performance and HDOP. However, as seen in static scenario 1, even though the GPS error is 
comparable, the performance of the system developed after INS/GPS fusion has improved. It was hypothesized that 
the developed system’s error value was less than the standard deviation and that this could have been the cause. 

Regarding error values along the vertical axis, the proposed system is more effective by reducing %13.9 errors 
along this axis than along the horizontal axis. 
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Figure 16 INS/GPS vertical errors 

When examining the INS/GPS fusion results for the vertical axis, similar results to the GPS only are observed. 
The proposed system was able to enhance position estimation resulting in an error reduction of 29.8%. In situations 
where the system cannot improve or where the error value increases, it is believed that the observed increase in VDOP 
values is due to visible satellite configuration. 

VI. Conclusion 

This paper proposes classifying and eliminating indirect signals from position estimation to enhance INS/GPS 
performance in urban environments. In order to see the effect of direct and indirect signals on final position estimation, 
position estimation was made without signal elimination and with signal elimination, using the receiver model in 
MATLAB environment, and error values were compared at different levels such as GPS position and INS/GPS 
position. 

After the data collection and labelling process, different machine learning algorithms were optimized and trained 
to determine which algorithm shows the best performance. It was observed that the ensemble classification algorithm 
showed the best performance among compared algorithms, with 94.57% accuracy for the stationary scenarios and 
91.75% accuracy for the dynamic scenarios.  

Before investigating the horizontal and vertical results, the reasons why vertical accuracy is better than horizontal 
ones in some scenarios need to be addressed for a better discussion. Ideally, the horizontal accuracy of the GPS is 
expected to be more reliable than the vertical accuracy. However, in this study, some vertical accuracy results are 
better than horizontal ones. It can be caused for two reasons. The first one is insufficient data scattering in the vertical 
axis. Since the selected flight trajectories have a fixed altitude, the vertical position of the UAV remains constant 
without error in the simulation environment, while the horizontal position changes according to the flight trajectory 
during the simulation. Consequently, the training and test data consist of repeated values at the same altitude, which 
is why GPS estimation showed better performance in the vertical axis. The second reason might be that the receiver 
model, which is coded in MATLAB, does not reflect GPS error model realistically in position estimations. Under 
normal circumstances, position estimation should not be relied on in such cases, but in this study, it was thought that 
this would have a similar effect on the comparison results since the scope of the study was not integrity but indirect 
signal detection and elimination of them from position estimation. 

Using the proposed solution, received signals were classified with the developed ensemble algorithm, and the 
system success was evaluated by estimating the position with and without signal elimination. Overall, the proposed 
system is able to reduce position error by 25.68% for stationary scenarios and 17.71% for dynamic scenarios for low-
cost INS/GPS navigation systems without increasing the weight and cost of the aircraft. 

Despite the successful performance of the classification algorithm, it was observed that the error of the system 
increased in some scenarios tested. Even if signals are eliminated using labelled true data, it is observed that in these 
cases, the error is still higher than the system without signal elimination. When the DOP values are considered as the 
error increases, it is observed that these values increase significantly as a consequence of signal elimination. Therefore, 
it has been decided that the increase in error is related to the geometry of the satellite. That is why it has been observed 
that performing an elimination without taking satellite constellations into account will have limited success in 
enhancing system accuracy. 
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