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Abstract—The relatively high cost of inertial navigation systems
(INSs) has been preventing their integration with global posi-
tioning systems (GPSs) for land-vehicle applications. Inertial sen-
sors based on microelectromechanical system (MEMS) technology
have recently become commercially available at lower costs. These
relatively lower cost inertial sensors have the potential to allow
the development of an affordable GPS-aided INS (INS/GPS) ve-
hicular navigation system. While MEMS-based INS is inherently
immune to signal jamming, spoofing, and blockage vulnerabilities
(as opposed to GPS), the performance of MEMS-based gyroscopes
and accelerometers is significantly affected by complex error char-
acteristics that are stochastic in nature. To improve the overall
performance of MEMS-based INS/GPS, this paper proposes the
following two-tier approach at different levels: 1) improving the
stochastic modeling of MEMS-based inertial sensor errors using
autoregressive processes at the raw measurement level and 2) en-
hancing the positioning accuracy during GPS outages by non-
linear modeling of INS position errors at the information fusion
level using neuro-fuzzy (NF) modules, which are augmented in the
Kalman filtering INS/GPS integration. Experimental road tests
involving a MEMS-based INS were performed, which validated
the efficacy of the proposed methods on several trajectories.

Index Terms—Global positioning system (GPS), inertial navi-
gation system (INS), Kalman filter (KF), microelectromechanical
system (MEMS), neuro-fuzzy (NF) systems, wavelet.

I. INTRODUCTION

G LOBAL positioning systems (GPSs) provide positioning

information with a consistent and acceptable accuracy

when there is a direct line of sight to four or more satellites [1],

[2]. However, it may suffer from outages, jamming, and mul-
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tipath effects in urban canyons. Inertial navigation systems

(INSs), on the other hand, are autonomous systems that are

immune to external interference, but their accuracy deteriorates

in the long term due to sensors’ bias error drift, scale factor

instability, and misalignment [3]–[5]. Some of the INS errors

are random in nature and cannot be removed by calibration.

Integrating both INS and GPS provides superior performance

than any of them operating alone. For instance, GPS-derived

positions have approximately white noise characteristics with

bounded errors and can therefore be used to update INS and

improve its long-term accuracy [3], [4]. On the other hand, INS

provides positioning information during GPS outages, assists

GPS signal reacquisition after an outage, and reduces the search

domain required for detecting and correcting GPS cycle slips

[1], [5]. INS is also capable of providing positioning, velocity,

and attitude information at higher data rates than GPS. Kalman

filtering is traditionally used to optimally fuse the position and

velocity information from both INS and GPS [6]–[12].

A. Research Objectives

The ultimate objective of this paper is to provide a reliable

MEMS-based GPS-aided INS (INS/GPS) positioning module

that enhances the overall system accuracy and enables robust

and accurate positioning information during GPS outages. The

typical applications of our research are low-cost navigation

solutions pertaining mainly to the commercial land vehicles,

unmanned autonomous vehicles, personal location, and nav-

igation. This paper will focus on two major issues, namely

1) improving the stochastic modeling of MEMS inertial mea-

surement unit (IMU) sensor’s bias drift errors using autoregres-

sive (AR) models and 2) augmenting the KF-based integration

algorithm with neuro-fuzzy (NF) modules for nonlinear mod-

eling of INS position errors to achieve a reliable positioning

accuracy.

B. MEMS Inertial Sensors

MEMS accelerometers have been manufactured for many

years, serving the need of consumer applications. The physical

mechanisms underlying MEMS accelerometers include capac-

itive, piezoresistive, electromagnetic, piezoelectric, ferroelec-

tric, optical, and tunneling [13]. The most successful types

are based on capacitive transduction due to the simplicity of

the sensor element, small size, low power consumption, and

stability over a wide temperature range. All MEMS gyroscopes

0018-9545/$25.00 © 2008 IEEE
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take advantage of the Coriolis effect. Most MEMS gyroscopes

fall into the categories of tuning fork gyros, oscillating wheels,

Foucault pendulums, and wine glass resonators [14]. When

rotated, the Coriolis force creates an orthogonal vibration that

can be sensed by a variety of mechanisms.

C. Inertial Sensor Errors

Errors in INS can result from the following two sources:

1) the sensor itself and 2) the numerical integration process

inherent in the INS mechanization [14], [15]. Inertial sensors

have both deterministic and random errors. The deterministic

errors can be obtained using calibration procedures and then

removed from the raw measurements, but the random errors

must be modeled stochastically to extenuate their deleterious

effect on the positioning accuracy. The random inertial sensor

errors are usually modeled as a first-order Gauss–Markov (GM)

process [16], which may not always be suitable for MEMS-

based inertial sensors.

D. INS/GPS Integration

To overcome the disadvantages associated with the stand-

alone operation of GPS and INS, the two systems are often

paired together in a complimentary fashion so that their draw-

backs are minimized or eliminated. The INS/GPS data fusion

is commonly performed using KF [7], [8], [10], [17]. This

method requires a dynamic model of both INS and GPS errors,

a stochastic model of the inertial sensor errors, and a priori

information about the covariances of the data provided by both

systems [8]. Since GPS has a relatively consistent long-term

accuracy, it is used to update both INS position and velocity

components and, thus, prevents the long-term growth of their

errors. On the other hand, the accurate short-term information

provided by the INS is used to overcome GPS cycle slips

and clock biases. Should a GPS outage occur, KF operates

in prediction mode, correcting the INS information based on

the system error model. KF has widely been used for data

fusion and is considered as the benchmark for INS/GPS inte-

gration [5], [18]–[21]. There are, however, some inadequacies,

including the following: 1) the necessity of accurate stochastic

modeling, which may not be accurate enough in case of low-

cost MEMS sensors; 2) the requirement for a priori information

of the system and measurement covariance matrices for each

new sensor; 3) the relatively poor accuracy during long GPS

outages; 4) the weak observability of some of the error states

that may lead to unstable estimates of other error states [22];

5) the necessity to tune the parameters of the stochastic model

and the a priori information for each new sensor system; and

6) the divergence that results from approximations during any

linearization process and system mismodeling.

E. Artificial Intelligence (AI)-Based INS/GPS Integration

The limitations of KF have motivated researchers to in-

vestigate alternative methods of INS/GPS integration, which

are predominantly based on AI. Recently, algorithms based

on multilayer perception (MLP) neural networks have been

suggested and applied to different types and grades of INS [23].

It was shown that a position and velocity update architecture

(PVUA) that utilizes two MLP networks could process the INS

azimuth and velocity to provide the position components along

both the east and north directions [24]. The parameters of the

MLP networks were adapted using GPS position and velocity

updates. However, the PVUA system did not provide an update

scheme for the vehicle altitude. In addition, the neural network

model of PVUA dealt with the INS position components instead

of their errors. Thus, no information about the accuracy of

this system could be delivered during the navigation mission.

Furthermore, in addition to the fact that no sensitivity analysis

was provided for the effect of changing the internal structure

(number of hidden layers and number of neurons in each layer)

of the MLP networks on the system performance, the real-

time implementation and the accuracy of the system during this

mode of operations were not addressed.

In an attempt to design a model-free module that operates

similarly to KF but without the need for dynamic or stochastic

models of the INS, the P–δP model was proposed [24]. It was

initially suggested to use an MLP network for each position

component that processes the INS position (P ) at the input

and provides the corresponding INS position error (δP ) at

the output. The suggested method updated the three P–δP
networks that utilize GPS position information. Although in-

formation about the accuracy achieved during the navigation

mission became available, the internal structure of each of the

MLP networks had to change until the best performance was

realized. In addition, the issue of real-time implementation was

not considered.

The P–δP architecture was improved by using radial basis

function (RBF) neural networks instead of MLP networks [25].

RBF networks can be utilized without identifying the number of

neurons in its hidden layer, as they are dynamically generated

during the training procedure to achieve the desired perfor-

mance [26]. One major limitation of this method was the use

of all INS and GPS data prior to a GPS outage to train the

RBF network. In addition, the real-time implementation and

the factors that affect the performance of the system during this

mode of operation have not been addressed in the online RBF-

based P–δP module.

Recently, the fuzzy system was employed, utilizing an

adaptive NF inference system (ANFIS) to provide an

ANFIS-based P–δP module for mobile multisensor system

integration [27], [28]. The ANFIS-based module was designed

to work in real time to fuse INS and GPS position data [29].

However, this method showed a very limited success when

applied to a MEMS-based INS/GPS navigation system due

to the high noise level and bias instability of MEMS inertial

sensors. Lately, Semeniuk and Noureldin [30] has suggested the

AI-based segmented forward predictor (ASFP) that processed

segments of INS and GPS position and velocity data using the

RBF neural network to provide prediction of the INS errors.

Although effective for both tactical and navigational grade

INS, one limitation of the ASFP technique was the virtual

extension of GPS outages due to the nature of GPS and INS

data segmentation. In addition, this technique assumes that the

INS error pattern is the same for two consecutive segments.
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Moreover, the ASFP method exhibited inadequate performance

when applied to MEMS-based INS/GPS.

Therefore, in this paper, we propose to augment KF with AI

to develop an INS/GPS integration module that is particularly

suitable for MEMS-based inertial sensors. The suggested sys-

tem operates at two different levels. The first level capitalizes

on improved stochastic modeling of inertial sensor errors at

the raw measurement level in a loosely coupled INS/GPS

integration through KF. At the second level, an AI module is

employed to predict INS position error during GPS outages.

Owing to its effectiveness in dealing with uncertainty, im-

precision, and vagueness in the input data in dynamic environ-

ments, the fuzzy system was used to provide an ANFIS-based

P–δP module for mobile multisensor system integration. The

ANFIS-based module designed in this study works in real time

to fuse MEMS INS (after being processed by KF) and GPS

position data, estimates the residual INS position errors, and

enhances the INS positioning accuracy. Moreover, the same

module predicts the vehicle position during GPS outages based

on processing INS position components.

II. METHODOLOGY

A. Inertial Sensor Prefiltering

Inertial sensors always contain a certain amount of mea-

surement noise. On the sensor level, this noise is usually

separated into long-term (low-frequency) and short-term (high-

frequency) noise [31]. The high-frequency component consists

mainly of white noise and short-term sensor errors, whereas

the low-frequency components consist of correlated long-term

noise, white noise, and vehicle motion dynamics. Wavelet

denoising is frequently used to process inertial sensors mea-

surements to improve the signal-to-noise ratio (SNR) and is

considered to be the common method for denoising MEMS-

based inertial sensors [32].

In this study, wavelet decomposition is performed for a

number of decomposition levels that are chosen based on the

sampling frequency. Since most of the motion dynamics of land

vehicles exist between 0 and 5 Hz [33]–[35], we have chosen

the number of decomposition levels so that the decomposition

process stops when this frequency band is reached. For exam-

ple, when acquiring the inertial sensor measurements at a 20-Hz

data rate, only one level of decomposition was used, whereas at

a 200-Hz data rate, we continued the decomposition process up

to the fourth level. To provide a near-real-time solution, each

of the inertial sensor measurements is divided into windows of

400 samples, and each window is processed by wavelet denois-

ing procedure separately. This denoising process is performed

using the MATLAB Wavelet Toolbox using the “db5” wavelet

function, the “rigrsure” thresholding criterion, and the soft

thresholding method. Details about wavelet denoising, decom-

position, and reconstruction procedures, thresholding criteria,

and wavelet functions can be found in [23] and [36]–[40].

B. Stochastic Modeling of Inertial Sensor Errors

1) GM Model: In most KF implementations for INS/GPS,

the inertial sensor error model is based on a first-order

Fig. 1. Autocorrelation sequence of a first-order GM process.

Fig. 2. Autocorrelation sequence of a Crossbow MEMS accelerometer.

GM model with a decaying exponential autocorrelation se-

quence, as shown in Fig. 1. This model is usually proposed and

adopted successfully for navigational and tactical grade inertial

sensors [7]. For MEMS inertial sensors, the assumption that the

sensor random errors follow the stochastic nature of a first-order

GM model is not always valid. Using a stationary run of more

than 4 h, the autocorrelation sequences of two of the MEMS-

grade Crossbow IMU sensors were calculated as shown in

Figs. 2 and Fig. 3. By comparing these figures, it can be deter-

mined that the random errors associated with these MEMS iner-

tial sensors are different from that of a first-order GM process.

2) GM Model Parameters: First-order GM model for an

inertial sensor error is given as [16], [41]

ẋ(t) = −βx(t) +
√

2βσ2w(t) (1)

where β is the reciprocal of correlation time, and σ2 is the

variance of the system noise w(t). In the discrete-time domain,

(1) is written as follows [7], [41]:

xk = (I − β∆t)xk−1 +
√

2βσ2wk∆t (2)

where ∆t is the sampling interval.
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Fig. 3. Autocorrelation sequence of a Crossbow MEMS-based gyroscope.

3) AR Model: Better stochastic modeling of inertial sensor

errors can be achieved by modeling these errors as higher

order AR processes and obtaining the AR model parameters

adaptively. This requires collecting long-term measurements

from each inertial sensor while it is stationary and its output

contains only its inherent sensor errors (both short term and

long term). These stationary sensor measurements are used for

computing the coefficients of a higher order AR model [42].

Fitting stationary experimental data to an AR model can result

in a better stochastic model than assuming the sensor conforms

to a first-order GM model. The Burg estimation method [43]–

[45] is used in this study to adaptively determine the parameters

of the stochastic AR model for each inertial sensor. The pth-

order AR model for a discrete-time domain sequence can be

described by the following difference equation [43]:

y(n) = −

p
∑

k=1

αky(n − k) + β0w(n). (3)

This can be expanded as

y(n) = −α1y(n − 1) − α2y(n − 2) − · · ·

− αpy(n − p) + β0w(n) (4)

where α1, α2, . . . , αp are the model parameters, and β0 is the

standard deviation of the sensor white noise. This pth-order

difference equation has to be reduced to p first-order difference

equations before they can be implemented using KF.

The Burg method is used to fit a pth-order AR model to the

input signal by minimizing the forward and backward predic-

tion errors while constraining the AR parameters to satisfy the

Levinson–Durbin recursion [43]. The raw sensor measurements

of the stationary experiment are assumed to be the output of

an AR model driven by white noise, and the optimal values

of the coefficients are obtained in a way that minimizes the

mean square error (MSE) [21]. The Burg method was intro-

duced to overcome some of the drawbacks with other methods

(like the Yule–Walker and covariance methods) by providing

Fig. 4. Crossbow MEMS IMU accelerometer prediction RMSE using Burg
AR modeling.

more stable models and improved estimates with shorter data

records [5].

Since the AR model is going to be applied to all six inertial

sensors, each increase in the model order will lead to six more

states added to the KF error state vector. For this reason, the

lowest possible order must be chosen, where the root MSE

(RMSE) of the model converges to avoid the complexity of

the KF algorithm. Fig. 4 shows the RMSE versus different

AR model orders when the Burg method was used to obtain

the AR model parameters for the Crossbow MEMS-based

accelerometers. It can be observed in this figure that the Burg

method converges to approximately the same RMSE for AR

model orders of 2 or above. It is also evident that the first-order

model gives a higher RMSE than the higher order models. This

means that better stochastic modeling of each inertial sensor

error can be achieved by an AR model of order 2 or higher.

4) AR Model Parameters: To keep the INS error model

simple and to facilitate the KF implementation, a second-order

AR model was used for each inertial sensor. For a second-order

model, (4) takes the following form:

y(n) = −α1y(n − 1) − α2y(n − 2) + β0w(n). (5)

By defining two state variables, i.e., x1(n) = y(n − 1) and

x2(n) = y(n), (5) can be reduced to a set of first-order differ-

ence equations as follows:

x1(n) = x2(n − 1) (6)

x2(n) = −α1x2(n − 1) − α2x1(n − 1) + β0w(n). (7)

Therefore, in terms of state space phase variables, we have

(

x1

x2

)

n

=

(

0 1
−α2 −α1

)(

x1

x2

)

n−1

+

(

0
β0

)

w(n). (8)

It can be seen in (8) that for each inertial sensor, a second-

order AR model produces two state variables x1 and x2 and

two coefficients α1 and α2 that describe the model. Using this
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Fig. 5. Decentralized closed-loop implementation of INS/GPS integration
using KF.

second-order error model, the KF state space would increase

from 15 (for the GM model) to 21 variables, and the state

transition matrix would include 12 coefficients (instead of six

for the GM model).

C. Extended KF (EKF)

Since we are dealing with nonlinear systems and the low-cost

MEMS inertial sensors used are of relatively poor performance,

it is therefore decided to use EKF, where nonlinear systems

are linearized about the estimated trajectory to get better per-

formance. This is done through the closed-loop (feedback)

implementation of INS/GPS integration, as shown in Fig. 5. The

theory of EKF is well established, and details can be found in

[7]–[11], [46], and [47].

The discrete-time nonlinear dynamic model state equation is

given as follows [9]:

xk = f(xk−1, k − 1) + g(xk−1, k − 1)wk−1wk ∼ N(0, Qk).
(9)

The nonlinear measurement equation is

zk = h(xk, k) + vk vk ∼ N(0, Rk). (10)

Now, based on the measurements z1, z2, . . . , zk−1, if we have

x̂k−1 as optimal state estimate of the state xk−1 at epoch k, we

can linearize (9) around x̂k−1 to obtain the approximate linear

state equation [9], [10] as

xk = Φk−1xk−1 + Gk−1wk−1 (11)

where Φk−1
∆
= (∂f(x̂k−1, k − 1)/∂xk−1), and Gk−1

∆
=

g(x̂k−1, k − 1).
Similarly, based on the above measurements, if we have

x̂−
k as the estimate of the systems state xk, (10) can also

be linearized around x̂−
k to give its linear approximation [9],

[47] as

zk ≈ Hkxk + vk (12)

where Hk
∆
= (∂h(x̂−

k , k)/∂xk).
The well-known KF equations [7]–[11], [46] can now be

applied to these linearized system models to obtain an optimal

filter for state estimation xk based on the measurements up

to zk. We can, therefore, obtain the linear minimum variance

estimate of xk as follows:

x̂k = x̂−
k + Kk(zk − ẑ−k ) (13)

where

x̂−
k = Φk−1x̂k−1 (14)

ẑ−k = Hkx̂−
k−1 (15)

Kk =
(

P−
k

)

HT
k

(

HkP−
k HT

k + Rk

)−1
(16)

P−
k = Φk−1Pk−1Φ

T
k + Gk−1Qk−1G

T
k−1 (17)

Pk = (I − KkHk)P−
k (I − KkHk)T + KkRkKT

k . (18)

1) Divergence Control: Modeling errors and linearization

can result in the divergence of KF, and various methods have

been suggested to avoid it [7]–[9], [48]. It is worth mentioning

that we are using the Joseph’s form of a posteriori error covari-

ance Pk that helps avoid divergence due to assurance of positive

semidefiniteness of Pk. However, there are still other factors

that may lead to divergence problems that have been mitigated

while implementing KF in this study. The mitigation procedure

includes the following: 1) thresholding the covariance matrix of

the estimation error so that it does not go lower than a certain

value and 2) validating the GPS position and velocity data used

by KF in updating INS.

Thresholding the covariance matrix: During the KF oper-

ation, the covariance matrix Pk keeps getting smaller, resulting

in a smaller filter gain Kk. When Pk becomes very small, the

gain Kk approaches zero, and new measurements are not given

enough weight, as can be observed in (16). KF starts relying on

its estimates alone and rejects new measurements. This is called

“KF incest” and can be cured by keeping the covariance above

a minimum threshold [9], [48], [49]. In our implementation, we

also used a limiting technique where a lower bound is placed

on the error covariance matrix P by an appropriate amount ε.

This value is determined empirically, and the modified Kalman

gain equation can be rewritten as

Kk =
(

P−
k + εI

)

HT
K

(

HkP−
k HT

k + Rk

)−1
. (19)

Data validity criteria: Another problem that sometimes

plagues the KF accuracy is related to the integrity of GPS data.

When the GPS data are corrupted, the KF tries to follow them,

and the resulting output either is not smooth or diverges. This

becomes a particularly sensitive issue when the covariance has

already been limited to avoid the “KF incest” problem dis-

cussed above. To contain this situation, a data rejection method

was employed, which compares the innovation sequence with

a predetermined value and, based on the outcome, decides to

accept or reject the data [8]. This technique is used to detect

the anomaly in the absolute amplitude of the data as well as

relative amplitude. The data are rejected if any of the following

two conditions exists:

|(zk − Hkx̂k)i| >Vmax

|(zk − Hkx̂k)i+1 − (zk − Hkx̂k)i| >δVmax. (20)
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When invalid data are encountered, the corresponding mea-

surement state and covariance update is skipped, and repeated

violation of data integrity check should be considered to be

a sensor malfunction. The value of Vmax can be determined

based on the fact that the denominator of the Kalman gain Kk

is the root mean square (rms) value of the innovation sequence

(zk − Hkx̂k). Therefore, a 3σ (or higher) value could be used

to reject the measurement outlier [48].

D. Implementation Details

To compare the two error models for inertial sensors, state

equations for both GM and AR models were implemented in

EKF. The details of various parameters, in relation to (11) and

(12), will be treated in the following sections. The common

elements of both implementations are the first nine elements

of the state vector and the INS dynamic error model that is part

of the state transition matrix Φ. The first nine elements of the

state vector are given as follows:

x = ( δϕ δλ δh δVe δVn δVu δp δr δy) . (21)

where δϕ, δλ, and δh are the latitude, longitude, and altitude

errors, δVe, δVn, and δVu are the east, north, and up velocity

errors, and δp, δr, and δy are the pitch, roll, and yaw errors.

The dynamic error part of state matrix is a 9 × 9 matrix that

contains the linearized INS error model given as

Φ9×9 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 Φ13 0 Φ15 0 0 0 0
Φ23 0 Φ23 Φ24 0 0 0 0 0
0 0 0 0 0 Φ36 0 0 0

Φ41 0 0 Φ44 Φ45 Φ46 0 Φ48 Φ49

Φ51 0 0 Φ54 Φ55 Φ56 Φ57 0 Φ59

Φ61 0 Φ63 Φ64 Φ65 0 Φ67 Φ68 0
0 0 Φ73 0 Φ75 0 0 Φ78 Φ79

Φ81 0 Φ83 Φ84 0 0 Φ87 0 Φ89

Φ91 0 Φ92 Φ94 0 0 Φ97 Φ98 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(22)

The definitions of the individual elements of the state transi-

tion matrix can be found in Appendix A. For the first nine states,

the process noise coupling vector G contains the associated

standard deviation of the noise vector wk. This vector is de-

fined as

G9×1 = (σϕ σλ σh σve σvn σvu σp σr σy )T

(23)

where σ(·) are the standard deviations of associated states.

Vector z is a measurement vector that contains the difference

of GPS and INS for position and velocity components, as given

in (24), shown at the bottom of the page.

H is a measurement design matrix, which is basically a 6 × 6

identity matrix for six measurable states and contains zeros for

the rest of the states as follows:

H6×15 = ( I6×6 06×9 ), for GM model (25)

H6×21 = ( I6×6 06×15 ), for AR model. (26)

1) KF for the GM Model: For the GM model, our KF

consists of the 15 error states given in (27), shown at the bottom

of the page.

The additional states, namely, δωx, δωy , and δωz and δfx,

δfy , and δfz are gyroscope and accelerometer bias errors,

respectively. From the definition of the GM process in (2), we

have the state space form of the six sensor errors as given in

(28), shown at the bottom of the page, where β is the reciprocal

of correlation time, and σ2 is the variance of sensors white

noise wk.

In this case, the state transition matrix Φ is a 15 × 15 matrix

that contains the abovementioned Φ9×9 matrix, and the sensor

error model equation is given in the following form:

Φ15×15 =

⎛

⎜

⎝

1Φ3×9 03×3 03×3
2Φ3×9 03×3 Rbl

3×3
3Φ3×9 Rbl

3×3 03×3

06×9
1M6×3

2M6×3

⎞

⎟

⎠
(29)

zk = [ (ϕINS − ϕGPS) (λINS − λGPS) (hINS − hGPS) (VeINS
− VeGPS

) (VnINS
− VnGPS

) (VuINS
− VuGPS

) ]T (24)

x = (δϕ δλ δh δVe δVn δVu δp δr δy δωx δωy δωz δfx δfy δfz) (27)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δω̇x

δω̇y

δω̇z

δḟx

δḟy

δḟz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

k

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1−βωx∆t 0 0 0 0 0
0 1−βωy∆t 0 0 0 0
0 0 1−βωz∆t 0 0 0
0 0 0 1−βfx∆t 0 0
0 0 0 0 1−βfy∆t 0
0 0 0 0 0 1−βfz∆t

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

δωx

δωy

δωz

δfx

δfy

δfz

⎞

⎟

⎟

⎟

⎟

⎟

⎠

k−1

+

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2βωxσ2
ωx

√

2βωyσ2
ωy

√

2βωzσ2
ωz

√

2βfxσ2
fx

√

2βfyσ2
fy

√

2βfzσ2
fz

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

wk∆t (28)
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where Rbl (which is defined as Rl
b in Appendix B) is the

rotation matrix to transform the states from body frame to local

level frame, and 1Φ3×9, 2Φ3×9, and 3Φ3×9 are subdivisions

(which are defined in Appendix B) of matrix Φ9×9. 1M6×3 and
2M6×3 are matrices that contain the state transition part of the

GM model and are defined as follows:

1M6×3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − βωx∆t 0 0
0 1 − βωy∆t 0
0 0 1 − βωz∆t
0 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(30)

2M6×3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
0 0 0
0 0 0

1 − βfx∆t 0 0
0 1 − βfy∆t 0
0 0 1 − βfz∆t

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (31)

Six additional bias error states, shown in (32) at the bottom

of the page, are also appended to vector G.

2) KF for the AR Model: For AR modeling of inertial sensor

errors, the first nine states of the KF are the same; however,

there are two more states for each sensor that represent its bias

error. The complete error state vector, therefore, is given in (33),

shown at the bottom of the page.

From the definition of (8), the additional six states for gyro-

scopes can be written in state space form as in (34), shown at

the bottom of the page.

Similarly, the six states for accelerometers are modeled as in

(35), shown at the bottom of the page.

In this case, the state transition matrix Φ is a 21 × 21 matrix

that contains the subdivisions of the abovementioned Φ9×9

matrix, and the equations for the AR sensor error models are

arranged in a state transition matrix as follows:

Φ21×21 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1Φ3×9 03×6 03×3 03×3
2Φ3×9 03×6 03×3 Rbl

3×3
3Φ3×9 03×6 Rbl

3×3 03×3

03×9 03×6 I3×3 03×3

03×9 03×6 03×3 I3×3

06×9
1A6×6

2A6×3
3A6×3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(36)

where 1A6×6, 2A6×3 and 3A6×3 are the matrices consisting of

AR parameters and are given as follows:

1A6×6 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−αωx
2 0 0 0 0 0

0 −αωy
2 0 0 0 0

0 0 −αωz
2 0 0 0

0 0 0 −αfx
2 0 0

0 0 0 0 −αfy
2 0

0 0 0 0 0 −αfz
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(37)

G =
(

√

2βωxσ2
ωx

√

2βωyσ2
ωy

√

2βωzσ2
ωz

√

2βfxσ2
fx

√

2βfyσ2
fy

√

2βfxσ2
fz

)T

(32)

x=(δϕ δλ δh δVe δVn δVu δr δp δy δωx1 δωy1 δωz1 δfx1 δfy1 δfz1 δωx2 δωy2 δωz2 δfx2 δfy2 δfz2)
T

(33)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

δωx1

δωy1

δωz1

δωx2

δωy2

δωz2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

k

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−αωx
2 0 0 −αωx

1 0 0
0 −αωy

2 0 0 −αωy
1 0

0 0 −αωz
2 0 0 −αωz

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

δωx1

δωy1

δωz1

δωx2

δωy2

δωz2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

k−1

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

σωx

σωy

σωz

⎞

⎟

⎟

⎟

⎟

⎟

⎠

w(k) (34)

⎛

⎜

⎜

⎜

⎜

⎜

⎝

δfx1

δfy1

δfz1

δfx2

δfy2

δfz2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

k

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−αfx
2 0 0 −αfx

1 0 0

0 −αfy
2 0 0 −αfy

1 0

0 0 −αfz
2 0 0 −αfz

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

δfx1

δfy1

δfz1

δfx2

δfy2

δfz2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

k−1

+

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0
0
0

σfx

σfy

σfz

⎞

⎟

⎟

⎟

⎟

⎟

⎠

w(k) (35)
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2A6×3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−αωx
1 0 0

0 −αωy
1 0

0 0 −αωz
1

0 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(38)

3A6×3 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0
0 0 0
0 0 0

−αfx
1 0 0

0 −αfy
1 0

0 0 −αfz
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (39)

In the above matrices, α
ω(·)
1 and α

f(·)
2 are the AR parameters

for three gyroscopes and three accelerometers, respectively.

For the AR model, the additional 12 states of noise coupling

matrix are given as

G = ( 0 0 0 0 0 0 σωx σωy σωz σfx σfy σfz )T

(40)

where σ is the standard deviation of the sensors noise.

E. Nonlinear Position Error Modeling Using the

NF Technique

Since KF cannot totally remove the nonlinear and stochastic

parts of the INS errors, it is beneficial to augment KF with

a system that can provide nonlinear modeling of these errors

such as a NF module. This further decreases the position error

when using MEMS-based inertial sensors. In this study, the NF

module is used to provide a reliable prediction of the vehicle

position by using ANFIS to accurately predict the vehicle

position during GPS outages. In the early stages of this paper, it

was determined that AI techniques like ANFIS cannot be used

alone for MEMS-based INS/GPS integration. The main reason

is the fast growth and accumulation of INS errors over time due

to serious random bias and drift errors that exist at the output of

MEMS-based inertial sensors. Therefore, adequate modeling of

these errors (using AR stochastic modeling techniques) and op-

timal estimation procedures like KF are essential for the proper

integration between INS and GPS. Some AI-based techniques

developed for integrating navigational grade or tactical grade

INS with GPS can be adopted for MEMS-based inertial systems

but only when they are augmented to KF to limit the growth of

INS errors.

In this study, both INS and GPS are integrated together in

such a way that 1) the INS position errors are prevented from

growing in the long term using GPS position updates, and

2) the corrected INS position is used during GPS outages. The

ANFIS-based module was designed to be augmented to KF

to mimic the INS position errors, to create the corresponding

nonlinear error model, and to predict these errors during a GPS

outage, thus enhancing the overall system accuracy.

1) ANFIS-Based System Architecture: In this paper, we uti-

lize the P–δP INS/GPS integration scheme, which is based

on the estimation of INS position error δPINS, by processing

the INS position PINS. The ANFIS is employed to provide an

Fig. 6. Proposed P –δP system architecture.

optimal temporal estimation of the INS errors (δPINS). The

proposed system architecture compromises the following three

modes of operation: 1) the initialization mode; 2) the update

mode [Fig. 6(a)]; and 3) the prediction mode [Fig. 6(b)].

The initialization and update modes are used, as long as the

GPS signal is available, to initialize the first learning rule-base

and to limit INS error growth. The INS position input shown in

Fig. 6 is the output of a suboptimal KF module. The prediction

mode is used to correct the INS position when the GPS signal is

lost. Thus, the P–δP module is trained during the availability

of the GPS signal to recognize patterns of the position error

embedded in the input position components. In case of satellite

signal blockage, the P–δP module mimics the latest vehicle

dynamics and delivers a prediction of the vehicle position error.

The INS position (PINS) and time (T ) are the inputs to

the module, while the error in the INS position (δPINS) is

the module output. A schematic representation of the P–δP
module for establishing the rule-base, relating the INS position

(PINS) and time (T ) to the error in the INS position (δPINS), is

shown in Fig. 7.

The estimated INS position error provided by the P–δP
module is then compared with the error between the INS origi-

nal position and the corresponding GPS position (δPINS|GPS).
The number and shape of membership functions shall be pre-

defined (Gaussian shape membership functions were used here;

however, other shapes proved possible). The original mean and

spread of the membership functions are computed using fuzzy

clustering techniques [50], [51]. The membership values are

evaluated at the first layer and the fuzzy t-norm operator (
∏

) is

implemented at the second layer. A normalized firing strength

(W̄i) is computed at the third layer. The INS position error is

computed as

if PINS ∈ P1 and T ∈ T1, then f1 =p1PINS+q1T +r1

(41)

if PINS ∈ P∼2 and T ∈ T∼2, then f2 =p2PINS+q2T + r2

(42)
...
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Fig. 7. ANFIS architecture for INS/GPS integration.

if PINS ∈ P∼n and T ∈ T∼n, then fn =pnPINS+qnT +rn

(43)

δPINS =

n
∑

i=1

W̄ifi (44)

where pi, qi, and ri are the consequent linear parameters origi-

nally determined using a least squares approach. P∼n represents

a fuzzy set defined over the PINS domain, T∼n represents a

fuzzy set defined over the T domain, and W̄i represents the

mean normalized weight of the ith rule as shown in Fig. 7.

The difference between δPINS and δPINS|GPS is the training

error (∆(δp)) of the ANFIS module. To minimize the training

error, the ANFIS module updates the learning rule-base (mem-

bership function parameters and consequent parameters) using

a hybrid learning approach that combines the least squares and

back propagation techniques until a certain minimal RMSE is

reached [50], [51].

When the satellite signal is blocked, the system is switched

to the prediction mode, where the P–δP module is used to

predict the INS position error using the latest learning rule-base

obtained before losing the satellite signals. The error is then

removed from the corresponding INS position component to

obtain the corrected INS position (PINSC). In this study, three

P–δP modules are developed to provide complete navigation

solution in the three axes for a moving vehicle represented by

the three position components.

It should also be highlighted that there are several sources of

errors that contribute to the overall position error of the vehicle

in different ways. These sources include the inertial sensors bias

drift and scale factor instability, the initial misalignment error

during INS initialization, and the error in the heading angle of

the vehicle (i.e., the azimuth error). The azimuth error, for ex-

ample, can have a significant contribution to the position error

along both the east and north position components, particularly

at high speeds since it is modulated by the vehicle velocity.

Although all these error sources are not explicitly represented

in the architecture shown in Fig. 6, it is evident that the P–δP
module incorporates the effects of such errors in two ways.

First, it establishes the learning rule-base to pattern vehicular

navigation performance using exemplar navigation scenarios

that have been affected by the same set of sources of errors.

Second, it considers the input parameters as interval data with

membership values rather than crisp values that provide room

for uncertainty in the input parameters due to these sources

of errors.

To use the P–δP module in a temporal INS/GPS integration,

a sliding window with a certain window size ω is considered.

For each of the ANFIS modules, the number of samples (equal

to ω) of INS position component PINS and the correspond-

ing GPS position PGPS are acquired from both systems. The

INS position is considered as the input to the P–δP module,

and the error between PINS and PGPS is considered to be

the corresponding desired response (δPINS|GPS). The update

procedure of the P–δP learning rule-base starts after collecting

the ωth sample of both INS and GPS position components.

Before considering the next INS and GPS samples, the ANFIS

module is trained until a certain minimum RMSE is reached

or after a certain number of training epochs is completed. To

guarantee timely operation of the system, the update procedure

is terminated at the end of these training epochs, even if the

desired RMSE is not achieved.

While the GPS signal is available, the data window continues

to slide collecting new samples from INS and GPS position

components. Since the GPS signal is available during the update

mode, both PINSC and the position error between PINSC and

PGPS are used to train ANFIS to mimic the dynamics present

within the last data window. This results in a new ANFIS rule-

base, which is used to provide an estimate for the INS position

error at time i + 1(δPINS(i + 1)). Therefore, the INS position

is continuously updated, and the INS position errors (estimated

by the ANFIS module) are removed, thus keeping accurate INS

position components available in case of any GPS outages.

2) Cross Validation: To optimize the operation of the

ANFIS-based module, a cross validation algorithm has been

adopted. Cross validation is a data-partitioning technique that

allows iterative partitioning of samples into two sets of data:

the first set can be used in building the simulation model

(training), while the second set is used for testing the model

[28]. Among different cross validation techniques, the hold-out

method is utilized in this study due to its suitability for real-

time implementation. As shown in Fig. 8, the hold-out method

splits the data into two sets, namely 1) the training set and

2) the validation set. The function “approximator” is trained to

fit a function using the training set only [28]. Then, the function

approximator is used to predict the output values for the data in

the validation set. While this method has the advantage of being

less computationally expensive, it might yield a high variance.

However, it is the most suitable for real-time implementation.
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Fig. 8. Cross validation procedure during the training of an ANFIS module.

Fig. 9. Timeline index for the model stages sequences.

For real-time INS/GPS integration, a nonoverlapping and

moving window with a certain window size ω is considered.

The P–δP ANFIS module consists of three main stages.

The first stage considers initializing the ANFIS module by

acquiring both the INS and GPS original position components

(PINS and PGPS) up to the window size ω (from time t = 0 to

ω − 1). At time t equal to ω, the second stage is started, namely,

the update stage. While the GPS signal is still available, the

data window collects new samples from INS and GPS position

components (from t = ω to 2ω − 1). The updating stage is

divided into two consequent parts, namely 1) the training

session and 2) the cross validation session. In case of GPS

outages, the latest updated ANFIS module (after training and

cross validation) is utilized in the prediction mode to predict

the INS position error. Fig. 9 shows the time line index for the

sequences of both the update and prediction stages.

3) Performance and Limitations: The limitation of ANFIS

modules is that they cannot be used with MEMS-based sensors

as standalone without the aid of KF. This is because the output

of the low-cost sensors degrades quickly over time and must

be corrected at regular intervals. The growing positional error

affects the performance of the ANFIS module since, after only

a short period, the mechanized IMU output is no longer reliable

[29]. KF has traditionally been used to predict the error of

the IMU and to update the output using GPS. However, since

the optimal KF output is nearly exact to the GPS values when

GPS signals are present, there is no error available with which

Fig. 10. Flowchart of an augmented ANFIS and a suboptimal KF.

the NF module can train. To overcome this limitation, the KF

output can be detuned by increasing the GPS position mea-

surement covariance values to provide suboptimal performance

that artificially creates a small error between the KF output

and the GPS. This suboptimal KF solution can now be used

to train the NF module so that it can outperform the optimal KF

in periods where GPS outages occur. Fig. 10 shows the flow

diagram of the augmented KF–ANFIS INS/GPS integration.

The suboptimal or detuned KF provides corrected velocity and

attitude information and suboptimal position. The suboptimal

position information is sent to the ANFIS module, where it

is used with the GPS position for training. While training the

ANFIS module, the cross validation procedure operates on 20%

of the INS/GPS window of position data to improve the training

performance and to avoid overfitting problems. When a GPS

outage is detected, the ANFIS module uses its latest parameters

to predict the INS position error and to correct the KF position.

One other important limitation for ANFIS is that it is not a

recursive algorithm. The windowing criterion described earlier

will enable near-real-time operation. Thus, there will be a delay

at the beginning before providing its output and correcting for

the INS errors. Moreover, the ANFIS training and cross valida-

tion procedures are relatively more computationally expensive

compared to KF. The ANFIS module, however, is similar to KF

in requiring a relatively longer design time and tuning of its

parameters to achieve the desired performance during both the

update and prediction stages and also in delivering the desired

accuracy.

It should be noted that the proper choice of the window

size is vital to guarantee the desired accuracy while ensuring

system robustness in real time. The complexity of choosing

the window size is related to its dependence on the level of

vehicle dynamics, the length of the GPS outages, and its signif-

icance on the update procedure. Therefore, there is a tradeoff

in choosing a small or a large window size. Large window

sizes enable mimicking significant details of the latest vehicle

dynamics, and thus, the module becomes reliable during long
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Fig. 11. Data-collection equipment mounted inside the road test vehicle.

GPS outages. However, large window sizes may complicate

the update procedure and result in a long processing time.

On the other hand, a fast and robust update procedure can be

achieved by using a small window size due to the reduced level

of the dynamic nature of INS and GPS data. Moreover, using

relatively small window sizes prevents considering inaccurate

position information provided by the ANFIS module during the

first outage for the prediction of the INS position components.

However, relatively small window sizes may cause the system

to lose reliability in case of relatively long GPS outages. In this

study, we determined that a 45-s window size provides adequate

performance and positioning accuracy.

III. EXPERIMENTAL WORK

A. Equipment

For this paper, two IMUs were used. The first was the

Crossbow IMU300CC-100 MEMS-grade IMU, which was in-

tegrated with the low-cost Trimble Lassen SQ GPS receiver

that utilizes the methods suggested in this paper. The second

IMU was the Honeywell HG1700 tactical grade IMU, which

was integrated with the Novatel OEM4 GPS receiver. The

Honeywell IMU and the Novatel GPS were integrated using

an off-the-shelf assembly, i.e., the G2 Pro-Pack SPAN unit,

which was also developed by Novatel. The Novatel unit pro-

vides a tightly coupled INS/GPS navigation solution, which

is used as a reference to compare the performance and the

effectiveness of the proposed methods when applied to MEMS-

based sensors. The specifications of the two IMUs can be

found in Table I. The experimental test setup, which is shown

in Fig. 11, was built as a platform around the rear bench

seat mounts for any full-size General Motors van. The power

requirements were delivered by the vehicle’s 12-V dc source

and a 1800-W ac power supply to run the computer and

configurable dc power supply for voltages other than 12 V.

Fig. 11 shows all of the equipment installed inside the van,

ready for a road test.

B. Data Acquisition

Data acquisition was carried out using two software pro-

grams. The Novatel GPS system and Honeywell HG1700

(high-end tactical grade IMU) used proprietary off-the-shelf

software from Novatel that communicates with the sensors and

logs both INS and GPS data.

A communication and data logging system was developed for

the Crossbow IMU so that it could be integrated and synchro-

nized with the Trimble GPS receiver. Both the Trimble GPS

receiver and the Crossbow IMU use the RS-232 communication

protocol. A new Labview (National Instruments Corporation,

TX)-based module was developed to communicate and log the

Crossbow IMU data and synchronize them with GPS position

and velocity data. In the module interface, the communication

settings such as the “port identification,” “read delay,” and

“string to write” can be changed. The Labview module sends

a command to the Crossbow IMU, requesting a reading at a

predefined data rate, and acquires the response. The module

reads and writes to the RS-232 serial port of the Crossbow

IMU and converts the 18-B message into rotation rates and

acceleration in the x, y, and z directions. Moreover, it time

stamps each record with GPS time from the Trimble GPS before

saving the IMU data to a file.

C. Road Test Trajectories

Several road trajectory tests were carried out using the

above-described setup. As shown in Fig. 12, a trajectory from

Smith Falls, ON, to Kingston, ON (trajectory 1), was chosen

for analysis in this paper since it contained many of the features

typical to real-world trajectories. It has urban roadways in

Smith Falls, in Perth, and in highway sections in-between. In

addition, the terrain varies with many hills, trees, winding turns,

and section of straight roads. The ultimate check for the pro-

posed system’s accuracy is during GPS signal degradation and

blockage, which was simulated and intentionally introduced

during postprocessing, in which 45-s simulated GPS outages

(shown as blue/gray circles overlaid on the map in Fig. 12)

were introduced into the trajectory to assess the performance of

sensor error models and the ANFIS module. The intentionally

introduced GPS outages are given such that they encompass

all conditions of a typical trip, including straight portions,

turns, slopes, high speeds, slow speeds, and stops. The second

trajectory consisted of only urban roadways inside the city of

Kingston (trajectory 2), as shown in Fig. 13.

IV. RESULTS AND DISCUSSION

A. Impact of the Second-Order AR Model Over the

First-Order GM Model

1) Trajectory 1 Results—KF: The impact of the second-

order AR model for each inertial sensor error on the overall

positioning accuracy will be examined and compared to the

conventional method using a first-order GM model during

nine GPS outages intentionally introduced into the trajectory.

Figs. 14 and 15 compare, respectively, the maximum and rms

values of the position errors of the second-order AR model to

the conventional first-order GM error model during the nine

GPS outages. It can be determined from this figure that, overall,

the second-order AR model provided a 20% higher positioning

accuracy over the first-order GM model for 45-s GPS outages.

We observed that during periods of longer GPS outages, a
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TABLE I
IMU SPECIFICATIONS

Fig. 12. Trajectory 1 from Smith Falls, ON, to Kingston, ON.

significant improvement in the positioning accuracy can be

obtained when using the second-order AR model for the inertial

sensor errors. In relatively shorter GPS outages of 30 s or less,

the performance of the first-order GM model becomes quite

comparable with that of the second-order AR model. As appar-

ent in Figs. 14 and 15, for relatively long GPS outages (like 45 s,

as assumed in this study), the second-order AR model showed

superior performance during all GPS outages, except for out-

ages 5 and 9, where the performance of the first-order GM

model was slightly better. Fig. 16 and Fig. 17(a) and (b) show

the sections of the trajectory during GPS outages 4, 5, and 9, re-

spectively. Fig. 16 shows the performance during GPS outage 4,

Fig. 13. Trajectory 2 in Kingston, ON.

which was on a relatively straight portion of a highway. The

GM model influenced the KF so that it overestimated both the

east and north velocities, while the second-order AR model

contained the KF estimation to well within limits and provided

a 56% higher accuracy. The two cases where GM model per-

formed better are depicted in Fig. 17 for GPS outages 5 and 9.

As can be observed in Fig. 17, there was only a slight difference

in the performance between the two methods, particularly for

GPS outage 9. We believe that higher order AR models for

some of the inertial sensors may lead to a superior accuracy

over the traditional first-order GM models; however, it may

complicate the error model used by KF.

We determined that in most cases, both the second-order AR

and first-order GM models provided comparable levels of ac-

curacy for a straight-line section of a trajectory, particularly for

short outages. However, if a GPS outage took place in turns or

in winding sections, or when the outages were longer, second-

order AR model helped KF in producing better positioning

accuracies, as depicted in Figs. 14 and 15 for GPS outages 4, 6,

7, and 8.

In general, the second-order AR stochastic error models of

MEMS-based inertial sensors benefit the positioning accuracy

in cases where the overall system tends to provide large position

errors during GPS longer outages. The high position errors

(over the 100-m level) that occurred during some of the above

45-s GPS outages were noticed to transpire when a GPS outage

began immediately prior to a change in vehicle dynamics, such

as a sharp turn or a stop-and-go traffic. These high errors
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Fig. 14. Maximum position error during 45-s GPS outages while using first-order GM and second-order AR error models.

Fig. 15. RMS position error during 45-s GPS outages while using first-order GM and second-order AR error models.

Fig. 16. Performance during GPS outage 4.

are likely caused by the nonlinear and stochastic parts of the

INS errors, and they cannot be mitigated appreciably using the

second-order AR model of inertial sensor errors. Another rea-

son for the relatively large position errors during the 45-s GPS
Fig. 17. (a) Performance during GPS outage 5. (b) Performance during
outage 9.
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Fig. 18. Maximum position errors during 45-s GPS outages while using first-order GM and second-order AR error models.

Fig. 19. RMS errors during nine 45-s simulated GPS outages.

outages is the nonstationary part of the INS position errors,

which is due to the azimuth misalignment modulated by the

vehicle velocity. In this trajectory, the vehicle was moving in

highway regions at relatively higher speeds (close to 100 km/h).

Such high speeds modulated azimuth errors and resulted in

large position errors along the east and north directions in

different sections of the trajectory. These kinds of nonstationary

position errors cannot be extenuated by either the second-order

AR or first-order GM model.

2) Trajectory 2 Results—KF: To further validate the use-

fulness of the second-order AR model for inertial sensors,

trajectory 2 within the city of Kingston was used for this pur-

pose. The maximum and rms position errors during nine 45-s

GPS outages of the Kingston trajectory are plotted in Figs. 18

and 19. It is worth mentioning here that the relatively small

position errors are encountered while driving at lower speeds

typical of in-city driving than higher speeds used on highways.

During the Kingston trajectory, except for GPS outages 3

and 6, all other outages show a relatively small error when

compared to the Smith Falls trajectory, which mostly includes

high-speed driving. During the Kingston trajectory, the overall

accuracy when using the AR model was 22% higher than the

GM model and provided less position errors for all nine GPS

outages, except for outage 8, where errors were almost the

same. Fig. 20 shows the superior performance of the AR model

over the GM model while the vehicle was going into a turn

during GPS outage 1. During this GPS outage, the second-

order AR model assisted KF to perform well, showing a 68%

accuracy improvement. During GPS outage 8 (Fig. 21), KF

provided approximately the same positioning accuracy (errors

of 71 m) when using both the models. GPS outage 9 (Fig. 22)

turned out to be really challenging, as it consisted of a turn

on a steep downslope. The KF module using the GM model

produced an error of 152 m, while using second-order AR

model, KF produced an error of only 92 m, which is about a

40% improvement in accuracy during this GPS outage.
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Fig. 20. Performance during GPS outage 1.

Fig. 21. Performance during GPS outage 8.

Fig. 22. Performance during GPS outage 9.

B. Impact of the Augmented KF–ANFIS Module

Using suboptimal KF with an ANFIS module for each

position component in a cascaded scheme (discussed above)

proved to be very advantageous not only in reducing the INS

nonstationary and nonlinear position errors but also in showing

a very consistent level of performance for relatively long GPS

outages—a normal occurrence in urban canyons. The optimum

ANFIS performance was achieved using a 45-s window size,

six two-sided Gaussian membership functions for the position

information, and one for the time input. The RMSE threshold

of 10−4 was used during the training procedure.

1) Trajectory 1 Results—KF–ANFIS: Figs. 23 and 24 show

a comparison of maximum and rms position errors between

the KF (utilizing the second-order AR model for each in-

ertial sensor) and the ANFIS module that used a subopti-

mal KF solution for the same nine 45-s GPS outages in

the first trajectory. The augmented ANFIS module was able

to reduce the position error for all GPS outages, except

for outage 8, with an overall improvement of 60% for this

trajectory. From Figs. 23 and 24, it can be noticed that

both the KF and augmented KF–ANFIS methods provided

comparable accuracies during GPS outage 8. The rms value

of the position error for the augmented KF–ANFIS solution

during the same GPS outage was slightly better than the KF so-

lution. Over the nine GPS outages, the augmented KF–ANFIS

module provided an average maximum error of only 32 m

and an rms of 13 m compared with an average maximum

error of 101 m and an rms of 46 m for the standalone KF.

It can be determined from Figs. 23 and 24 that the nonlinear

modeling of an INS position error was able to maintain the

maximum position errors within the range of 10–50 m (with

an rms of 5–25 m), as opposed to the range of 20–140 m (with

an rms of 9–60 m) achieved by KF (with the second-order AR

model).

To further demonstrate the improvements of the augmented

KF–ANFIS module over the standalone KF, three of the GPS

outages were chosen, and the trajectories were plotted in

Figs. 25(a) and (b) and 26. Fig. 25(a) shows a typical ap-

plicability of KF–ANFIS, where GPS outage 1 was introduced

in a turn and KF–ANFIS adapted to the turn fairy well, as

opposed to KF alone, which digressed by a large amount.

Fig. 25(b) shows GPS outage 6, where the KF–ANFIS posi-

tion error was the highest among all the other GPS outages but

was still much better than the second lowest error of standalone

KF solution. During this GPS outage, the KF–ANFIS solution

was able to provide an approximately 60% better positioning

accuracy than the standalone KF. In Fig. 26, an interesting sce-

nario can be noticed where both the KF and KF–ANFIS meth-

ods tried to obtain the vehicle position during GPS outage 3

while it was going through a curve. The KF–ANFIS solution

followed the true trajectory more closely, providing an approx-

imately 80 m better positioning accuracy than KF.

2) Trajectory 2 Results—KF–ANFIS: The augmented

KF–ANFIS method was further validated using the Kingston

trajectory shown in Fig. 13. As demonstrated in Fig. 27 (for

the maximum position error) and Fig. 28 (for the rms position

error), similar performance was obtained for this trajectory as

well, with an overall accuracy improvement of about 70% over

the standalone KF. This validates that the performance of the

KF and the augmented KF–ANFIS modules were repeatable.

Fig. 29(a) shows a flawless performance of the KF–ANFIS

module during GPS outage 8, where the KF–ANFIS solution

stayed within the road boundaries (which are depicted by a

red/dark reference trajectory as a road map was not available

for this part) for the whole 45-s outage. As shown earlier, the

performance during GPS outage 9 for the Kingston trajectory

was always challenging for KF while utilizing the second-order

AR model. However, the augmented KF–ANFIS module

outperformed the standalone KF by about 60%, with less

than 40 m maximum and 16 m rms position errors during this

outage as well.
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Fig. 23. Maximum position errors during 45-s GPS outages, comparing KF-ANFIS with KF using the second-order AR error model.

Fig. 24. RMS position errors during 45-s GPS outages, comparing ANFIS with KF using the second-order AR error model.

Fig. 25. (a) Performance during GPS outage 1. (b) Performance during GPS
outage 6.

Fig. 26. Performance during GPS outage 3.

C. Comparison With Contemporary Research

Owing to different hardware, trajectory scenarios, duration

of the GPS outages, and the variations in implementations, an
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Fig. 27. Maximum position errors during 45-s GPS outages, comparing ANFIS with KF using the second-order AR error model.

Fig. 28. RMS position errors during 45-s GPS outages, comparing ANFIS with KF using the second-order AR error model.

Fig. 29. (a) Performance during GPS outage 8. (b) Performance during GPS
outage 9.

accurate and fair comparison is usually difficult. In this part of

this paper, we compare the overall performance of our method

to a couple of recently published methods in the field of MEMS-

based INS/GPS.

Abdel-Hamid et al. [52] used ANFIS to improve the posi-

tioning accuracy during GPS outages while using MEMS IMU

but employing a different architecture than the one utilized in

this paper. The GPS update performed by Abdel-Hamid et al.

[52] was based on the more accurate differential GPS instead

of the single-point positioning adopted in this study. Moreover,

their road test was based on only one trajectory, which was

mostly straight road portions with 90◦ turns, as opposed to two

trajectories used in this study, encompassing all the real-life

scenarios. The reported accuracy improvement of their method

was around 75%–80% over 30-s GPS outages, whereas our

method showed a 70% accuracy improvement over 45-s GPS

outages. In addition to giving a similar level of accuracy over

longer GPS outages, and for more realistic trajectories, the

architecture of our augmented KF–ANFIS module is simpler
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and can be adopted in real time. The method published

by Abdel-Hamid et al. [52] considers too many input parame-

ters to the ANFIS module and, thus, requires a longer training

time. Thus, it may not be suitable for real-time operation.

Goodall et al. [53] also employed neural networks for

MEMS-based INS/GPS integration and reported an overall

accuracy improvement of 25% over the standard KF approach

for 60-s GPS outages. It was noted that their trajectories

were relatively easy with straight-line movements and

90◦ turns. Moreover, they did not show consistent levels

of accuracy and improvement over the conventional tech-

niques for all GPS outages. On the other hand, the method

proposed in this paper showed accuracy improvements on

almost all the GPS outages introduced in both trajectories.

V. CONCLUSION

This paper has suggested two methods of performance en-

hancement of MEMS-based multisensor systems for low-cost

navigation applications at two different levels. The first was

at the inertial sensor level by stochastically modeling their

bias errors. The second was at the information fusion level

by augmenting the conventional KF module with AI for the

nonlinear modeling of INS position errors.

The second-order stochastic error model adopted for each

inertial sensor, coupled with gain limiting and invalid data re-

jection schemes, provided, in general, a 20% accuracy improve-

ment over the conventional first-order GM modeling during

several 45-s GPS outages for two different trajectories. It was

also observed that the second-order AR model showed superior

performance over the first-order GM model for relatively long

GPS outages, which may happen in urban canyons. For short

GPS outages, both models may provide a comparable level of

accuracy.

Although, in the enhancement obtained after utilizing the

second-order AR model, there are still significant effects of

nonlinear and nonstationary INS errors that influence the over-

all system accuracy in the long term, particularly when driving

at relatively high speeds. Additional accuracy improvements

were achieved by augmenting the KF with an ANFIS mod-

ule for the nonlinear modeling of INS position errors. This

resulted in an approximately 64% accuracy improvement over

KF that utilizes the second-order AR model for the same

GPS outages. The level of accuracy obtained using the aug-

mented KF–ANFIS module was consistent over the entire

trajectory. Despite being promising, the flip side of ANFIS is its

long design time and high computational burden for real-time

implementation.

Future research work related to this study may focus on new

architectures that can enable updating both the INS position and

velocity instead of the position only. Optimizing the operation

of the ANFIS module by reliable tuning of its parameters

using some automated techniques, like genetic algorithms, may

significantly improve the overall performance. Finally, the real-

time implementation is a major challenge and requires dedi-

cated research toward the development of an embedded module

for an augmented KF–ANFIS INS/GPS information fusion of

low-cost systems.

APPENDIX A

Φ13 = −
ϕ̇

M + h

Φ15 =
1

M + h

Φ21 = λ̇ tan ϕ

Φ23 = −
λ̇

N + h

Φ24 =
1

(N + h) cos ϕ

Φ36 = 1

Φ41 = 2ωe(Vu sin ϕ + Vn cos ϕ) + Vnλ̇/ cos ϕ

Φ44 =
−ḣ

N + h
+ ϕ̇ tan ϕ

(M + h)

N + h

Φ45 = (2ωe + λ̇) sin ϕ

Φ46 = −(2ωe + λ̇) cos ϕ

Φ48 = fu

Φ49 = −fn

Φ51 = −Ve2ωe cos ϕ − λ̇/ cos ϕ

Φ54 = −2(ωe + λ̇) sin ϕ

Φ55 =
−ḣ

M + h
Φ56 = −ϕ̇

Φ57 = −fu

Φ59 = fe

Φ61 = −2ωeVe sin ϕ

Φ63 = 2g/R

Φ64 = 2(ωe + λ̇) cos ϕ

Φ65 = 2ϕ̇

Φ67 = fn

Φ68 = −fe

Φ73 =
−ϕ̇

M + h

Φ75 =
1

M + h

Φ78 = (ωe + λ̇) sin ϕ

Φ79 = −(ωe + λ̇) cos ϕ

Φ83 =
λ̇ cos ϕ

N + h

Φ84 = −
1

N + h

Φ87 = −(ωe + λ̇) sin ϕ

Φ89 = −ϕ̇

Φ91 = −ωe cos ϕ −
λ̇

cos ϕ

Φ93 =
λ̇ sin ϕ

N + h

Φ94 = −
tan ϕ

N + h

Φ97 = (ωe + λ̇) cos ϕ

Φ98 = ϕ̇
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Rl
b =

⎛

⎝

cos(y) cos(r) − sin(y) sin(p) sin(r) − sin(y) cos(p) cos(y) sin(r) + sin(y) sin(p) cos(r)
sin(y) cos(r) + cos(y) sin(p) sin(r) cos(y) cos(p) sin(y) sin(r) − cos(y) sin(p) cos(r)

− cos(p) sin(r) sin(p) cos(p) cos(r)

⎞

⎠

where

ϕ latitude;

V(·) east, north, and up velocities;

λ longitude;

f(·) acceleration from x, y, and z accelerometers;

h altitude;

M meridian radius.

APPENDIX B
1Φ3×9

=

⎛

⎝

0 0 Φ13 0 Φ15 0 0 0 0
Φ23 0 Φ23 Φ24 0 0 0 0 0
0 0 0 0 0 Φ36 0 0 0

⎞

⎠

2Φ3×9

=

⎛

⎝

Φ41 0 0 Φ44 Φ45 Φ46 0 Φ48 Φ49

Φ51 0 0 Φ54 Φ55 Φ56 Φ57 0 Φ59

Φ61 0 Φ63 Φ64 Φ65 0 Φ67 Φ68 0

⎞

⎠

3Φ3×9

=

⎛

⎝

0 0 Φ73 0 Φ75 0 0 Φ78 Φ79

Φ81 0 Φ83 Φ84 0 0 Φ87 0 Φ89

Φ91 0 Φ93 Φ94 0 0 Φ97 Φ98 0

⎞

⎠

Rl
b is shown at the top of the page, where

p pitch;

r roll;

y yaw.
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