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Performance enhancement of metal nanowire
transparent conducting electrodes by mesoscale
metal wires
Po-Chun Hsu1,*, Shuang Wang2,*, Hui Wu1,w, Vijay K. Narasimhan1, Desheng Kong1, Hye Ryoung Lee2 & Yi Cui1,3

For transparent conducting electrodes in optoelectronic devices, electrical sheet resistance

and optical transmittance are two of the main criteria. Recently, metal nanowires have been

demonstrated to be a promising type of transparent conducting electrode because of low

sheet resistance and high transmittance. Here we incorporate a mesoscale metal wire

(1–5 mm in diameter) into metal nanowire transparent conducting electrodes and demonstrate

at least a one order of magnitude reduction in sheet resistance at a given transmittance. We

realize experimentally a hybrid of mesoscale and nanoscale metal nanowires with high per-

formance, including a sheet resistance of 0.36O sq� 1 and transmittance of 92%. In addition,

the mesoscale metal wires are applied to a wide range of transparent conducting electrodes

including conducting polymers and oxides with improvement up to several orders of mag-

nitude. The metal mesowires can be synthesized by electrospinning methods and their

general applicability opens up opportunities for many transparent conducting electrode

applications.
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T
ransparent conducting electrodes (TCEs) are essential
components for numerous optoelectronic devices that
require transport of both electrons and photons, including

solar cells, displays, touch screens and smart windows1–5.
Recently, there have been increasing efforts in developing
nanomaterial TCEs including carbon nanotubes (CNTs)1,6–9,
graphene4,10–13, metal nanowires14–21 and nanoparticles22,23 to
replace conventional indium tin oxide (ITO) films, in order to
enable low-cost and mechanical flexibility while maintaining low
sheet resistance (Rs) and high transmittance (T). For the active
layers of many devices, the lateral surface electrical conductance is
sufficient to transport electrons only locally from several 100 nm
to a few mm scale without serious ohmic loss, therefore interfacing
with external connection requires additional TCEs with good Rs–
T performance. Based on the electrode structure, there are two
types of TCEs: Type I is based on continuous films such as ITO,
aluminum-doped zinc oxide (AZO), novel oxide, metal thin films,
large-area graphene and conducting polymers. At T¼ 90%,
Rs values for good ITO are 5–20O sq� 1, for graphene
30–1,000O sq� 1 and for conducting polymers 100–450O sq� 1,
respectively4,10,24–30. Type II is based on networks of one-
dimensional (1D) nanomaterials including CNTs, graphene
nanoribbons, metal nanowires and nanowires of oxides and
other compounds. At T¼ 90%, Rs values for CNTs are
60–400O sq� 1, for metal nanowires 10–30O sq� 1, for TiN
nanofibres 100–200O sq� 1 and for oxide nanowires 2,000–
10,000O sq� 1 (refs 1,15,17,21,31–34). Metal nanowire TCEs
have shown great promise in reaching excellent performance
because of the high conductivity of metals. Various methods have
been used to improve performance, including increasing the
nanowire length to increase transport distance21,32, decreasing the
diameter to reduce the light scattering and annealing of nanowire
junction to reduce resistance by thermo, electrochemical or
nanoplasmonic welding14,31,35. The best performance of metal
nanowire TCEs has reached Rs¼ 10O sq� 1 at T¼ 90% (ref. 32).
A fundamental question is how to improve the Rs–T performance
of metal nanowire TCEs with a large leap. This is important, as it
can reduce the power loss in many optoelectronic devices.

Here we introduce a mesoscale metal-wire concept in
conjunction with metal nanowire networks to realize an order
of magnitude reduction in sheet resistance at a given transmit-
tance. Through computer simulation, we first predict the
extraordinary Rs–T performance enhancement of mesoscale
metal wires. Then, this mesoscale metal-wire concept is realized
by lithography, in which we demonstrate the metal-wire network
TCE having a performance as high as 0.36O sq� 1 of sheet
resistance and 92% of transmittance. Electrochromic devices
exhibit a significantly improved colour-switching time by
applying the mesoscale metal wires. These results prove the
applicability of the mesoscale metal wires and their advantages in
enhancing energy efficiencies of modern optoelectronic devices.

Results
Mesoscale metal wires. The fundamental concept of using
mesoscale metal wires is illustrated in Fig. 1a, where the mesos-
cale wires have widths from 1 to 5mm. We call these metal-wires
mesoscale, as their widths and spacings are between two types of
electrical connections in nanowire TCE optoelectronic devices:
metal nanowires and macroscopic metal lines. First, mesoscale
wires are one order of magnitude larger than metal nanowires
(50–300 nm), although they are one order of magnitude smaller
than macroscopic metal lines (B50 mm) that are typically made
by screening printing in solar cell devices. Second, the spacing of
mesoscale wires here is around several 100 mm, whereas the
spacing of nanowires is several 100 nm to a few mm and the

spacing of macroscopic wires is several mm. The spacing for
certain width of metal wires is generally kept above certain values
in order to maintain adequate optical transmittance based on
different applications. When combining mesoscale wires with
nanowires and macroscopic wires, we can promote the electron
conduction over multiple length scale with minimum power loss.
Here nanowire networks no longer need to transport electrons to
a several millimetre long distance as in the combination of only
nanowires and macroscopic metal wires. Nanowires here only
need to transport electrons several 100 mm distance, whereas the
transport of electrons across several millimetre distance is carried
out by mesoscale wires with much higher conductance.

Rs–T simulation. The important benefits of introducing mesos-
cale wires into nanowires and macroscopic wires to form multi-
scale networks can be understood from the Rs–T performance
simulation. Figure 1b shows the simulation results when using
only single scale of parallel wire arrays. Here we use square cross-
section wires for simplicity to demonstrate the trend. The dia-
meters are 100 nm for nanowires, 5 mm for mesoscale wires and
50 mm for macroscopic wires, respectively. The data points on
each curve represent different wire spacings, which are 5, 10, 50,
100, 500, 1,000 and 5,000 mm. For 100-nm nanowires, spacing of
1 mm is also included to better manifest the curve trend. For the
optical transmittance, geometrical optics is used for mesoscale
and macroscale wires, as their diameters and spacings are much
larger than the wavelength, and rigorous coupled-wave analysis is
used for nanowires. For sheet resistance simulation, a typical bulk
resistivity of metal is used (see Methods). There is interesting
observation from this simulation. When the spacings between
wires are large enough, all three scales of wires alone can have
high T495%. The spacings need to be 41,000 mm for macro-
scale, 4100mm for mesoscale and 45 mm for nanoscale wires,
respectively. However, Rs at T495% falls in completely different
regimes for these three scales of wires: 10� 3–10� 1O sq� 1 for
macroscale, 10� 2–101O sq� 1 for mesoscale, 101–104O sq� 1 for
nanoscale, respectively. From only the Rs–T performance stand-
point, the macroscale wires are better than the smaller ones, as Rs
has quadratic dependence on diameter, whereas T only has linear
dependence in the regime of diameter and spacing much larger
than wavelength of the light. However, transporting electrons to
or from local areas in optoelectronic devices needs small diameter
wires (nanowires), as the spacings in macroscale wires are too
large to carry out this function and will cause huge ohmic loss.
On the other hand, from the spacing and sheet resistance shown
above, nanoscale wires alone have inferior Rs–T performance and
thus are not efficient enough to transport electrons to or from
macroscale wires. The integration of mesoscale wires and nano-
wires combines both advantages: great Rs–T performance and
local conductance. This will effectively reduce the power loss even
at high transmittance regime.

Figure 1c shows such a large improvement of nanowire arrays
by incorporating mesoscale wires. Here we choose the dimension
of parallel nanowire array transparent electrode to be 50 nm in
wire diameter and 5 mm in wire spacing and calculated its (Rs,
T)¼ (34O sq� 1, 98%) and applied the parallel mesoscale metal-
wire arrays with different diameters (1, 2, 3, 4 and 5mm) to form
a two-scale hybrid metal-wire transparent electrode. The spacings
of mesoscale wires are varied from 100 to 500 mm (see Figure
caption). The result proves the effectiveness of the mesoscale
metal-wire network. For instance, when the mesoscale wire array
with 5mm in diameter is 500 and 100 mm in spacing, the Rs–T
performance is enhanced from (34O sq� 1, 98%) for nanowire
alone to (0.34O sq� 1, 97%) and (0.07O sq� 1, 93%) for hybrid
wires, respectively, which is 100–1,000 times more conducting but
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only has little drop in T. This high level of Rs–T performance has
not been seen in any previous studies.

Metal mesowires incorporated with nanowire TCEs. To
experimentally demonstrate the importance of mesoscale wire
concept, e-beam lithography was employed to fabricate the gold
nanowire (AuNW) array on quartz wafers, followed by copper
mesoscale wire (CuMW) array made by photolithography with
the direction perpendicular to the nanowire, as shown in Fig. 2a.
The fabricated wires have rectangular shapes. The dimensions of
AuNWs are 270 nm in width (Supplementary Fig. S1), 120 nm in
height and 5mm in spacing, and those of CuMWs are 5 mm in
width, 2.8 mm in thickness with spacing ranging from 200 to
500mm. (details in Figure caption). As shown in Fig. 2b, the Rs–T
performance of AuNWs array alone was measured to be
Rs¼ 7.2O sq� 1 and T¼ 95%, consistent with optical simulation,
whereas the hybrid of AuNWs and CuMWs can achieve
0.36O sq� 1 at T¼ 92%, showing an order of magnitude
improvement in Rs with little change in T. This result shows that
the mesoscale design can greatly exceed the traditional limit of
single-layer transparent electrodes.

We note that microscale metal wire array transparent
electrodes have been reported previously36,37. However, the
Rs–T enhancement was not as prominent as our work. The key
difference lies in the thickness of the mesowires. As increasing
thickness does not significantly affect the transmittance, for
highly conducting mesowire, the thickness must be comparable to
the width; therefore, the sheet resistance can be reduced without
sacrificing transmittance.

Electrospun metal mesowires. For a more facile, lithography-free
demonstration of our mesoscale metal network design, we
developed the electrospinning process to produce ultra-long
copper mesoscale wires with B1 mm in diameter, which were
used in conjunction with Ag nanowire networks developed pre-
viously by our group and others2,14,31,32,38. Electrospinning is a
powerful technique to produce polymer wires with diameters
ranging from sub-100 nm to few micrometres. In the past decade,
it has been also used to produce wires of a variety of inorganic
materials39. Our group has previously used electrospinning for
making Cu nanowires for transparent electrodes15,16. Here we
extend this method for making larger diameter mesoscale wires.
The process flow is illustrated in Fig. 3. First, a grounded metal
piece was used as a wire collector, and the electrical field formed
by the two edges in the middle can align the electrospun polymer
nanowires across the 1-inch wide gap40. Then, 1 mm of copper
was deposited on the nanowires using thermal evaporation to
form the free-standing and aligned CuMWs. The wire density
and thus the spacing can be easily controlled by electrospinning
time period. This is particularly advantageous comparing with
expensive photolithography process. In the transfer step, alcohol
was applied to the silver nanowire (AgNW) substrate to dissolve
the polymer core away and also generate capillary force to pull
the CuMWs towards the substrate during solvent evaporation.
The transfer step is followed by a roll-pressing process to further
ensure the contact between intersecting wires. The subsequent
annealing fuses both AgNW–AgNW junctions and AgNW–
CuMW junctions, thereby creating a continuous conducting
pathway. The aligned configuration of AgNW–CuMW trans-
parent electrodes is characterized using a scanning electron
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Figure 1 | Mesoscale metal-wire network TCE concept. (a) Schematic of mesoscale design (not drawn to scale). The mesoscale metal-wire network

between the nanowire transparent electrode and macroscale wires (metal fingers) can shorten the carrier transport distance and enhance the Rs–T

performance. (b) Simulated Rs–T curves of metal wires with various diameters. The wire spacings are 5, 10, 50, 100, 500, 1,000 and 5,000mm. For

100-nm nanowires, spacing of 1 mm is also included. (c) Simulated Rs–T performance of metal-wire transparent electrode with the mesoscale metal

microwire layer. The diameter and spacing of metal nanowires are 50 nm and 5 mm, respectively. The spacings of metal mesoscale wires are 100, 150, 200,

250, 300, 350, 400, 450 and 500mm.
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microscope (SEM), as shown in Fig. 4a. For the demonstration of
the fused junction between CuMW and AgNWs, a sacrificial
polymer film was used for the subsequent lift-off the AgNW–
CuMW network; therefore, we could characterize the morphol-
ogy from the back side. As shown in Fig. 4b, the CuMW and the
intersecting AgNW are fused into each other, guaranteeing low
contact resistance between the nanoscale layer and the mesoscale
layer. Additional SEM images are included in Supplementary Fig.
S2. The electrospun free-standing CuMWs can also be applied to
other types of transparent electrodes. This great versatility makes
our mesoscale concept applicable to various kinds of optoelec-
tronic devices with special requirement for transparent
electrode—for example, conduction/valence band position, buffer
layer and so on. Here we transferred the CuMWs on not only
AgNW network but also ITO, AZO, poly(3,4-ethylenediox-
ythiophene):poly(styrenesulfonate) (PEDOT:PSS), and bare glass

substrates and compared their Rs–T performances (Fig. 4c). The
result shows great effectiveness of CuMWs in improving the Rs–T
performances of various transparent electrodes. The (Rs, T) of
only CuMW lie in the range of 0.15O sq� 1, 85% to 0.64O sq� 1,
97%, depending on the wire density controlled by electrospinning
time. After incorporating conventional TCEs with CuMWs, all
sheet resistances of the sample were improved to below
0.4O sq� 1, with o3% change in transmittance. Based on the
shift of (Rs, T) value, the average (Rs, T) of electrospun CuMWs
can be calculated to be (0.40±0.05O sq� 1, 97.1±0.6%), which
again demonstrates the outstanding Rs–T performance of
mesoscale metal-wire networks. Cross-array of CuMWs can also
be made by performing the transfer process twice in orthogonal
directions, as shown in Supplementary Fig. S3. As the underlying
TCE and CuMWs are in parallel configuration, the resulting sheet
resistance is shifted closer to the values of CuMWs, and the
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Figure 3 | Incorporation of metal mesowires using electrospinning. First, the polymer nanowires are electrospun and aligned on the grounded
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thickness. These free-standing CuMWs were then transferred onto an as-made AgNW transparent electrode, followed by roll pressing and Ar annealing for

junction fusion.
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transmittance is the product of TCE and CuMWs. These pro-
mising results prove that our mesoscale metal-wire network
concept is compatible with traditional TCEs. Using electrospun

free-standing CuMWs as a facile yet effective approach, the power
loss of TCEs can be significantly decreased.

Electrochromic device demonstration. PEDOT-based electro-
chromic devices were assembled to demonstrate the effectiveness
of our mesowires in terms of coloration response time. For
PEDOT, the colour is light blue when at þ 0.2V and dark blue
when at � 0.4 V. The cyclic voltammetry diagram and the redox
peak positions can be found in other literature41. Here the
potential of the PEDOT electrochromic device is switched
between þ 0.2 and � 0.4V. The potential switches
instantaneously; however, it takes time to complete the colour-
state transition because of the kinetics of doping and undoping
process inside the electrochromic material. In Fig. 5, we measure
the transmittance response to the potential cycles. The result
clearly shows a much shorter colour-switching time using
CuMW/ITO as the transparent electrode comparing to only ITO.
Take bleaching for example; the switching time (Dtbleach) to reach
90% of colour-state change for ITO is 12.2 s; however, CuMW/
ITO only takes 3.1 s, which is four times faster. Although the
potential steps are the same, lower ohmic resistance of the
transparent conducting substrate results in higher current, and
thus the colouration and bleaching processes proceed faster with
the CuMW/ITO transparent electrode. Moreover, lower sheet
resistance means less power dissipation and higher energy effi-
ciency. As electrochromic devices are generally used as large-area
smart windows, the change of colour-switching time and power
dissipation because of different Rs–T performance will be even
more significant. A side-by-side comparison video can be found
in Supplementary Movie S1. This electrochromic device
demonstration again serves as a strong evidence of the advantage
of metal mesowires.

Discussion
Through simulation and experiments, we have shown the
powerful concept of mesoscale metal wire to decrease the sheet
resistance of nanowire TCE by orders of magnitude with only
little compromise on optical transmittance. The mesoscale metal
wires that are several micrometres in diameter provide large
cross-section area for electron transport, thereby enhancing the
Rs–T performance. By the incorporation of mesoscale metal
wires, various types of TCEs show great improvement in the
performance, such as AgNWs, ITO and PEDOT:PSS. The carriers
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first transport within the underlying TCE only for several 100 mm
and then they are collected and transported into the highly
conducting mesowires; therefore, the ohmic loss can be greatly
mitigated. In electrochromic devices, lower ohmic loss leads to
higher current and faster colour-switching speed, which are
desirable in practical application. This mesoscale metal-wire
design can be also materialized by the electrospinning technique
without using shadow masks or lithography. We believe the
outstanding performance and the wide applicability of our
mesoscale metal-wire concept can provide great opportunities
for the optoelectronic devices to become more energy efficient.

Methods
Rs–T simulation. For simplicity, we let the cross-section of metal wires to be
square-shaped with side length a. For 100-nm wire arrays, the optical transmit-
tance simulation was performed using rigorous coupled-wave analysis. The
transmittance spectra (400–1,100 nm) were then weighed for AM1.5 solar spec-
trum to derive the average transmittance, TAM1.5. For wire arrays larger than 1 mm,
the optical transmittance was calculated by geometrical shadow loss—that is,
T¼ S/(Sþ a)� 100%, where S is the wire spacing. For sheet resistance simulation,
with the assumption of constant electrical conductivity, we can derive Rs¼
r(Sþ a)/a2, where r¼ 16.8O nm.

Lithographically fabricated metal-wire network. The nanowire arrays were
fabricated on quartz wafers by standard e-beam lithography using MMA/PMMA
(MicroChem) as e-beam resist, followed by thermal evaporation of chromium/gold
(7 nm/120 nm) and lift-off process in acetone. The size of array is 5� 5mm2. The
mesoscale wire arrays were fabricated on the same sample by photolithography
using 7-mm SPR220 photoresist. The orientation was orthogonal to the gold
nanowire arrays previously made by e-beam lithography. Chromium/copper
(7 nm/2.8 mm) was then thermally evaporated, followed by lift-off process in
acetone.

Electrospun-evaporated metal mesowires. Fourteen wt % of poly-
vinylpyrrolidone (PVP, MW¼ 1.3� 106gmol� 1, Acros) and anhydrous ethanol
(Sigma-Aldrich, 99.5%) solutions were made for electrospinning. The solution was
loaded in a syringe with a needle tip, which is connected to a voltage supply
(ES30P-5W, Gamma High Voltage Research). The applied potential on the needle
was þ 4 kV. The distance between the syringe needle tip and the grounded col-
lector was 15 cm, and the pump rate was 0.15ml h� 1. High electrical potential and
surface charges pulled polymer nanowires out of the droplet in front of the needle,
and the nanowires were attracted towards the collector, forming free-standing
nanowires lying across two edges of the collector. Different electrospinning time
can be chosen for desired nanowire densities. Thermal evaporator (M. Braun) was
then used for Cu deposition on electrospun nanowires. Seven nanometre of Cr
(Kurt J. Lesker) was deposited on electrospun nanowires first for better adhesion
and then 1 mm of Cu (99.99%, Kurt J. Lesker) was deposited. Several drops of
ethanol were put on the surface of as-made transparent electrodes before the
CuMWs were transferred to them. A calender machine (MTI Corp.) was used to
ensure better physical contacts between CuMWs and the transparent electrode.
Post annealing at 200 �C for 40min in Ar atmosphere was employed for junction
fusion.

AgNW transparent electrodes. The synthesis method of AgNWs can be found in
other papers42. A mixture of 0.334 g PVP and 20ml ethylene glycol (Sigma-
Aldrich) was heated at 170 �C in a three-neck glass flask, and then 0.025 g of silver
chloride (Sigma-Aldrich) was finely ground and added to the flask for initial
nucleation of the silver seeds. After 3min, 0.110 g of silver nitrate (Sigma-Aldrich),
the actual silver source, was titrated for 10min, followed by an additional 30min of
heating for completing the reaction. The solution was then cooled down and
centrifuged three times at 6,000 r.p.m. for 30min to remove ethylene glycol, PVP
and other impurities in the supernatant. After the final centrifugation, the
precipitates of AgNWs were redispersed in 30ml of methanol. The transparent
electrodes were made by spin coating (WS-400-6NPP, Laurell) the AgNW
dispersion, and their transmittance and sheet resistance were tuned by
concentrations, rotational speed and spin-coating times.

AZO transparent electrodes. The AZO layers were deposited by atomic layer
deposition16 (Savannah, Cambridge NanoTech) with trimethylaluminium (97%,
Sigma-Aldrich) and diethylzinc (DEZ, Zn 52.0 wt %, Sigma-Aldrich) as precursors.
The deposition temperature was 150 �C, and the idle pressure was 0.5 Torr. One
cycle of ZnO or Al2O3 was made by 15ms pulse of water followed by 15ms pulse of
DEZ or trimethylaluminium, and the chamber was allowed to pump for 20 s to
remove excess precursors. One supercycle of AZO is achieved by 25 ZnO cycles
and one Al2O3 cycle. The transmittance and sheet resistance were controlled by
different numbers of supercycle.

ITO transparent electrodes. The ITO thin film was coated by sputtering tech-
nique (ATC Orion, AJA International Inc.). The commercial ITO target was
sputtered using 125watts of RF power under 2.5m Torr of Ar/O2 environment for
different periods of time to synthesize ITO thin film with different sheet resistance.
The flow rates of Ar and O2 were 19 and 1 sccm, respectively.

PEDOT:PSS transparent electrodes. The PEDOT:PSS (1.3 wt % aqueous solu-
tion, Sigma-Aldrich) was bought from Sigma-Aldrich. The transparent electrodes
were made by spin coating PEDOT:PSS solution on glass slides at 4,000 r.p.m. for
30 s. The transmittance and sheet resistance were controlled by different times of
spin coating.

Electrical and optical property measurement. The transmittance measurement
used a quartz tungsten halogen lamp as the light source, coupled with a mono-
chromator (Newport 70528) to control the wavelength. An iris and a convex lens
were used to focus the beam size to about 1mm� 2mm, and a beam splitter split
the light beam into an integrating sphere (Newport) for transmittance measure-
ment and a photodiode (Newport, 818-UV-L). The photodiode is connected to an
electrometer (Keithley 6517A) for light intensity calibration. The samples were
placed in front of the integrating sphere; therefore, both specular transmittance and
diffuse transmittance were included. An identical glass slide was used for reference.
A source-measure unit (Keithley 236) was used to measure the photocurrent from
the integrating sphere, and the transmittance spectrum was thus calculated based
on the reference plain glass slide. The transmittance spectrum was then weighed by
solar spectrum from 400 to 800 nm to obtain the average transmittance TAM1.5. For
the sheet resistance measurement, two contacts were drawn by a silver pen
(CircuitWorks, ITW Chemtronics), separated by a square area of transparent
electrode, and then the resistance was measure by a zero-calibrated multimeter. A
comparison between two-probe- and four-probe resistance measurements can be
found in Supplementary Table S1. The differences of the resistance values mea-
sured by these two methods are very small. The Rs–T curves in Fig. 2b (blue dash
curve) and Fig. 4c (purple dash curve) are fitted based on percolation theory. The
fitting parameters and method are detailed in Supplementary Fig. S4.

Characterization. All the SEM images were taken by an FEI Nova NanoSEM. For
the observation of CuMW–AgNW junction, PMMA sacrificial layer was first spin-
coated on a glass slide, followed by the normal CuMW–AgNW fabrication process
mentioned previously. The sample was then immersed in acetone to dissolve the
PMMA sacrificial layer and transferred on a silicon wafer with AgNW side on top.

Electrochromic device demonstration. The electrochromic samples were made
by drop casting 0.13% of PEDOT:PSS aqueous solution (Sigma-Aldrich) on
transparent electrodes with the size of 1� 2.54 cm2. The CuMWs were transferred
on glass slides and sputtered with 100 nm of ITO, followed by 20 nm of atomic-
layer-deposited AZO for passivating CuMWs. Bared glasses coated with the same
thickness of ITO and AZO were also coated with PEDOT for comparison.
A standard three-electrode setup (BioLogic) was employed on the electrochromic
sample to manipulate the potential, with a graphite rod as the counter electrode
and Ag/AgCl as the reference electrode (Accumet). The electrolyte was 1M LiClO4

(Alfa Aesar) in acetonitrile (EMD Chemicals). The electrochromic electrode was
applied with the potential steps of þ 0.2 and � 0.4 V for colour changing for 30 s.
In the meantime, the transmittance at 590 nm was measured and recorded using a
spectrophotometer (Shimadzu, UV-1700).
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