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Abstract

Sliding mode control is a simple and powerful technique for the robust control of un-
certain systems. However, despite theoretical promise, real systems using sliding mode
controllers have a tendency to chatter at high frequencies. Second order, or 2-Sliding
mode controllers, can be used to suppress chatter while retaining the desirable proper-
ties of a classical sliding mode controller. These more complex controllers increase the
number of parameters in the system. The affect of these new parameters on system
performance is unclear, and this can make it difficult to tune the controllers to meet
a desired performance criteria. This paper addresses the problem of estimating the
performance of a system controlled by 2-sliding mode controllers. Describing functions
are proposed to estimate chattering amplitude and settling time, and a new method
is presented, based on invariant ellipsoid sets, to predict the maximum output bound
of the system. The aim is assist in producing a systematic approach for practitioners
wishing to directly apply sliding mode controllers with chatter suppressing properties
to real applications.

1 Introduction

Sliding mode control is a simple control technique that has proven a valuable
tool for the control of systems with uncertainty. It is invariant to matched un-
certainty and disturbances provided that the system has relative degree one with
respect to the output sliding variable [9, 16]. In any real system however, un-
certain and un-modelled fast-acting parasitic dynamics will affect this structure
by raising the relative degree. This change causes the system to exhibit high
frequency, self-sustaining oscillations or limit cycles about the sliding surface.
This effect is referred to as chattering.
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1 Introduction 2

Chattering is a well-known phenomenon in sliding mode control. The dam-
age, inefficiency, and wear that chattering can cause is a severe hindrance to
the use of this control technique in real-world applications. The need to resolve
chatter in practical systems has directed research into controllers that embody
the qualities of sliding mode control (robustness, etc.), but which can also sup-
press chatter. These controllers are invariably more complex than the classical
sliding mode controller, and introduce new parameters, or degrees-of-freedom,
to the system structure. The designer must know how the choice of these pa-
rameters will change the system behaviour, and how to tune the controller to
meet a desired performance specification.

Higher order sliding mode controllers are a class of controllers that preserve
the properties of classical sliding mode control, while reducing chattering. In
this paper, we will consider second order sliding mode controllers, called 2-
Sliding mode controllers, which are a sub-class of this group. Classical sliding
mode control drives and maintains the output sliding variable at zero. In this
state, the system is said to be in a sliding mode or motion, and the dynamics
become invariant to uncertainty and disturbances under certain conditions [9].
In contrast, 2-Sliding mode controllers drive the output sliding variable and its
first derivative with respect to time to zero, and maintains them at zero there-
after. This allows for an increased relative degree in the system, and mitigates
the effects of chattering.

2-Sliding mode controllers are more complex algorithms than classical sliding
mode controllers, and introduce new design parameters that must be chosen or
tuned. The method of tuning these parameters becomes vital in delivering
potential performance improvements. A methodology is presented in [8] to
design higher order sliding mode controllers based on an analogous optimal
control problem for a chain of perturbed integrators. The authors through
their analysis are able to create relatively straightforward rules to select design
parameters to optimally enter sliding motion (output sliding variable equal to
zero) and guarantee stability. A self-tuning approach is proposed in [18] for
finite time stabilisation of systems with unknown but bounded uncertainty. The
hard non-linearities in the 2-sliding mode controller are smoothed by a ‘soft’
bipolar sigmoid function. The parameters of the new controller are tuned on-
line to vary the smoothing of the function, in order to reduce the chattering
and steady-state error. Similarly, an adaptive 2-sliding mode control scheme is
presented in [13]. The scheme consists of an adaptive component to optimally
enter sliding motion for the nominal system (i.e. without uncertainties), and
adaptive relay gain, i.e. gain of the non-linearity, to accommodate unknown
but bounded uncertainty, and reduce the control effort and resultant chattering.
However, the above works do not consider explicitly the effect of the 2-sliding
mode controller on the resultant chatter. Nor do they provide tuning methods
for the different types of 2-sliding mode algorithms. It is important to be able
to transparently approximate performance for a range of possible specification
metrics and provide knowledge of whether they will be met or not.

In this paper, we propose procedures for estimating the performance of sys-
tems controlled by 2-sliding mode controllers with chatter suppressing proper-
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2 2-Sliding Mode Controllers 3

ties. The aim is to create tools to assist in the design and tuning of 2-sliding
mode controllers for chatter suppression in real-systems. Three performance
metrics are considered; they are chattering amplitude, settling time, and max-
imum output bound (overshoot). These performance metrics are well known
to classical control systems design, and are integral to many control system
specifications.

The paper has the following structure: In section two, three commonly used
2-sliding mode controllers are surveyed. They are the twisting controller [10],
the generalized sub-optimal controller [2], and the homogeneous controller [11,
12]. In section three, a method for obtaining settling time using describing
functions is briefly reviewed, and new functions are introduced for two of the
controllers. When a damping term in each function is set to zero, the describing
functions become those published in [5, 4]. In section four, a new procedure
for estimating the maximum output of switching systems is proposed. The
method uses successive invariant ellipsoid sets to enclose the state trajectory
of the system. The application of this procedure to all three 2-sliding mode
controllers is discussed. In section five, an example system is presented, and
simulated results obtained to illustrate the concepts in this paper.

2 2-Sliding Mode Controllers

The standard sliding mode controller assumes the system with respect to the
output sliding variable has relative degree one. Higher order sliding modes allow
this condition to be relaxed. For simplicity, we reserve our discussion to higher
order sliding mode controllers designed for systems with relative degree two -
referred to as 2-sliding mode controllers. One of the most useful features of 2-
sliding mode controllers is their chatter suppression properties. When properly
tuned, they can be used to suppress chatter in a closed-loop system without
compromising tracking accuracy or robustness. We review three of the most
commonly used 2-sliding mode controllers, in addition to their stability condi-
tions, in this section.

We first define some preliminary notation. Introducing an nth-order single-
input-single-output smooth dynamical system with a control input u(t),

ż = Az + Bu(t), σ = Sz, (1)

where A ∈ Rn×n, B ∈ Rn, and z ∈ Rn is the state vector. The term σ is the
output sliding variable. The sliding surface is defined by the vector S ∈ Rn and
is determined by the designer (see [9]). The system in equation (1) is extended
to include first-order parasitic dynamics on the actuator (input) and sensor
(output) side, ż

µsẋ

µa ˙̃u

 =

 A 0n×n B
In In 0n

01×n 01×n −1

 z
x
ũ

+

 0
0
1

u(t), σ = Sx, (2)

where ũ is the actuator state-variable, x ∈ Rn the sensor state-variable, and
µa, µs their respective time-constants. It is assumed that all fast-acting parasitic
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2 2-Sliding Mode Controllers 4

dynamics present in any real-system can be adequately approximated by the
extended system. The open-loop system in equation (2) can redefined as the
second derivative of the output switching function, i.e.,

σ̈ = h(z, x, ũ) + g(z, x, ũ)u(t) (3)

where h(z, x, ũ) and g(z, x, ũ) are smooth functions that can be determined from
input-output relations, i.e. h(z, x, ũ) = |σ̈|u=0, and g(z, x, ũ) = (∂/∂u)σ̈. Both
functions are assumed to be bounded by the constants KM , km, C > 0 such
that,

0 < Km <
∂σ̈

∂u
≤ KM , |σ̈|u=0 ≤ C.

From these bounds, a differential inclusion is derived,

σ̈ ∈ [−C,C] + [KM ,Km]u(t). (4)

The differential inclusion is used in the stability conditions for the sliding mode
controllers.

The 2-sliding mode controllers are as follows:
1) The twisting controller [10]:

u(σ) = − (r1sgn(σ) + r2sgn(σ̇)) , (5)

where r1 and r2 are design parameters. The controlled system is stable if 0 <
r2 < r1 and

(r1 + r2)Km − C > KM (r1 − r2) + C,

(r1 − r2)Km > C.

2) The generalized sub-optimal controller [2]:

u(σ) = −r1sgn (σ − r2σM ) , (6)

where σM is the previous extremal value of the output sliding variable. The
advantage of this controller is that no intermediate differentiator is required to
calculate σ̇, and so the algorithm is simpler and less susceptible to noise than
the other 2-sliding mode controllers. The stability conditions are,

r1 > C/Km, r2 >
2C + (1− β)KMr1

(1 + β)Kmr2
. (7)

3) The homogeneous controller [11, 12]:

u(σ) = −r1sgn
(
σ̇ + r2 |σ|1/2 sgn(σ)

)
. (8)

The stability condition is r1Km − C > r22/2.
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3 Chattering Amplitude and Settling Time 5

3 Chattering Amplitude and Settling Time

This section first reviews a method to approximate settling time and chatter-
ing amplitude using describing functions (sometimes referred to as harmonic
linearisation) [17, 1, 14]. The method is well suited to controllers that are dis-
continuous, and systems with a chattering steady-state response. We then derive
new describing functions for two of the 2-sliding mode controllers. These func-
tions can be used to compute an instantaneous damping and frequency term,
which in turn, can be used to calculate settling time and chattering amplitude.

A describing function is a complex first order Fourier-series approximation of
the controller, that assumes a diminishing oscillatory feedback. As the function
is a first order approximation, the following assumptions must be valid:
Assumption 1 : An open-loop system with sliding variable as output, has a
frequency response equivalent to a low-pass filter. if the system does not behave
as a low-pass filter, then the higher-order terms in the Fourier approximation
will diminish the accuracy of the method.
Assumption 2 : The behaviour of the sliding variable about the sliding surface
can be approximated by the function σ(t) = a(t) sin (θ(t)).

Neither need be precisely true, however, the closer the system is to meeting
these assumptions, the more accurate the resulting analysis. In practice, these
assumptions can apply to many useful linear models and common real-world
systems. The assumptions are thus not overly restrictive. However, it is worth a
note of caution when applying the describing function method, that the validity
of the results depends on the extent the assumptions are met.

Denote the characteristic equation of a system with output σ as

A(p)σ(t) +B(p)F (σ, pσ) = 0, (9)

where p is the Laplace variable, A(p), B(p) are the linear components of the
system and F (σ, pσ) the non-linear controller. We assumed that the behaviour
of the output sliding variable can be approximated by the function σ(t) =
a(t) sin (θ(t)). Then, a suitable first order approximation of the time-varying
amplitude and time-varying phase can be obtained by,

a(t) = a(0)eζt ⇒ da

dt
= ζ(t)a(t) and

dθ(t)

dt
= ω(t), (10)

where ζ and ω are pseudo-static terms that vary slowly with time (ζ̇ ≈ 0, ω̇ ≈ 0).
It follows that

σ(t) ≈ σ̃(t) = a(t) sin (θ(t)) ,

σ̇(t) ≈ pσ̃(t) = a(t) (ζ(t) sin (θ(t)) + ω(t) cos (θ(t))) .

Thus, the first-order Fourier series of the non-linear function is

F (σ, pσ) = N(a, ζ, ω)σ(t) =
1

a
[P (a, ζ, ω) + jQ(a, ζ, ω)]σ(t),
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P =
1

π

∫ 2π

0

F [σ̃, pσ̃] sin (θ(t)) dθ,

Q =
1

π

∫ 2π

0

F [σ̃, pσ̃] cos (θ(t)) dθ. (11)

An expression for the damping ζ and frequency ω, in terms of amplitude a,
is obtained by substituting the describing function into (9) and by setting the
Laplace variable to p = ζ + jω. Choosing ζ = 0 and solving for ω and a gives
the chattering frequency and chattering amplitude respectively. The time for
the system to settle from initial oscillation a0 amplitude to some amplitude ak
is given by

ts = −
∫ ak

a0

1

aζ(a)
da, (12)

which is derived from (10). The describing functions for the twisting controller
and generalized sub-optimal controller are as follows:

1. Twisting controller:

N(a, ζ, ω) =
4

πa

r1 − r2√
1 + (ω/ζ)

2
− j r2ω

ζ

√
1 + (ω/ζ)

2

 . (13)

When ζ = 0 we obtain the result presented in [5].

2. Generalized sub-optimal controller:

N(a, ζ, ω) =
4r1
πa

(√
1− Σ2 + jΣ

)
, (14)

where Σ =
r2 (1− ζ/ω)

eζπ/(4ω) −
√

2r2ζ/ω
.

When ζ = 0 we obtain the result presented in [6].

The describing function for the twisting controller is derived directly from the
Fourier series. The describing function for the generalized suboptimal controller
is similarly derived from the Fourier series and an approximation of the phase
angle at switching. Switching of the controller occurs when σ = r2σM . Recalling
that σ ≈ a(t) sin (θ(t)) and a(t) = a(0)eζt and assuming the angle at switching
is θs ≈ ωt, i.e. ω(t) changes slowly over the period, then (10) can be rearranged
such that the phase angle at switching is the solution to the equality,

sin θs = r2e
ζ(π/2−θS)/ω ≈ r2 (1− ζ/ω)

eζπ/(4ω) −
√

2r2ζ/ω
, (15)

where the right-hand term is derived using the Taylor expansion. Any function
for the homogeneous controller requires a solution to,

(ζ/ω) sin θs + cos θs +
r2
ω
√
a

√
sin θs = 0.
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4 Maximum Output Bound 7

Local linearisation and approximations can be used to obtain a closed-form
solution of this equation. However, producing adequate approximations, i.e.
within 5% of the actual solution, results in large and unwieldy functions. Thus,
we do not advocate the this method for the homogeneous controller.

4 Maximum Output Bound

In this section, a unified approach to establishing maximum output bound is
proposed for systems controlled by the 2-sliding mode controllers in section
2. The approach computes a sequential series of invariant ellipsoid sets [3, 7,
15] which enclose the trajectory of the state-variable in the state-space. The
geometric properties of the ellipsoids are then used to obtain the maximum
output bound. We first introduce a new theorem that determines a set of linear
matrix inequalities that must be satisfied for the ellipsoid sets to be invariant
and to contain the state trajectory. The theorem is then used to construct a
procedure for each of the 2-sliding mode controllers to find maximum output
bound for some choice of tuning parameters.

Theorem 1. Suppose a system with state variable y ∈ Rn is governed by a
sequential series of dynamic equations of the form

ẏ = Aiy − Biρi,
ẏ = Ai+1y − Bi+1ρi+1,

where A ∈ Rn×n, B ∈ Rn, and ρ ∈ R1. Switching from the ith to the (i + 1)th

dynamic equation occurs when the trajectory of y crosses the manifold Ciy = βi,
where Ci ∈ R1×n. If the trajectory, while governed by the ith dynamic equation,
starts within or enters a set bounded by an ellipsoid(

y −A−1
i Biρi

)T
Pi
(
y −A−1

i Biρi
)
≤ 1,

then after crossing the manifold Cy = βi, the trajectory, while governed by the
(i+ 1)th dynamic equation, will be enclosed by an ellipsoid(

y −A−1
i+1Bi+1ρi+1

)T
Pi+1

(
y −A−1

i+1Bi+1ρi+1

)
≤ 1,

provided the following conditions are satisfied:

(1) ATi P̄i + P̄iAi < 0,

(2) ATi+1Pi+1 + Pi+1Ai+1 < 0,

(3)

[
P̄i + λ̄CTC − Pi+1 Q12

QT12 Q22

]
> 0

Q12 = −P̄i
(
A−1
i Biρi

)
− CTβiλ̄+ Pi+1

(
A−1
i+1Bi+1ρi+1

)
Q22 = 1− τ̄ + λ̄

(
β2
i − γ2

)
+
(
A−1
i Biρi

)T
P̄i
(
A−1
i Biρi

)
−
(
A−1
i+1Bi+1ρi+1

)T
Pi+1

(
A−1
i+1Bi+1ρi+1

)
,
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4 Maximum Output Bound 8

∃τ̄ > 0, λ̄ > 0, and P̄i = τ̄iPi and Pi+1 are real symmetric positive definite
matrices.

Proof. Introducing a new state variable ȳi = y − A−1
i Biρi, so that the ith dy-

namic equation becomes ˙̄yi = Aiȳi. Define a set enclosed by an ellipsoid as
Ωi ∈

{
ȳi : ȳTi Piȳi ≤ 1

}
where Pi is some real symmetric positive-definite matrix.

Suppose the ellipsoid set Ωi encloses either the starting point of the trajectory
or the point where the trajectory crosses some previous manifold Ci−1y = βi−1.
If the ellipsoid set Ωi is invariant, then by definition, the trajectory will remain
within Ωi for the duration that it is governed by the ith dynamic equation, that
is, until the trajectory crosses the manifold Ciy = βi. After crossing the mani-
fold, the system is governed by a different dynamic equation, and the invariance
no longer applies. The ellipsoid set Ωi is invariant for the ith dynamic equation
if the inequality,

ATi Pi + PiAi < 0, (16)

is satisfied. The inequality is the derivative of the Lyapunov function V =
ȳTi Piȳi. Introducing a positive scalar variable τ̄ and defining P̄i = τ̄Pi. The
significance of τ̄ will be addressed later. Condition 1 is obtained by multiplying
boths sides of (16) by τ̄ and substituting P̄i.

Let us define a sub-set Ώi ∈ Ωi as,

Ώi ∈

{
y :

(
y −A−1

i Biρi
)T
Pi
(
y −A−1

i Biρi
)
≤ 1(

−βi + yTCTi
)

(Ciy − βi) < γ2

}
,

where γ > 0 is some small parameter that defines a neighbourhood about the
manifold Ciy = βi. Using the S-procedure, a new inequality is defined for all
y /∈ Ώi,

yT
(
Pi + λCTi Ci

)
y − 2

(
λβiCi +

(
A−1
i Biρi

)
Pi
)
y

+
(
A−1
i Biρi

)T
Pi
(
A−1
i Biρi

)
− 1− λ

(
γ2 − β2

i

)
> 0, (17)

∃λ > 0. We now introduce a new state variable ȳi+1 = y −A−1
i+1Bi+1ρi+1 such

that the (i + 1)th dynamic equation becomes ˙̄yi+1 = Ai+1ȳi+1. As before, we
define an ellipsoid set Ωi+1 ∈

{
ȳi+1 : ȳTi+1Pi+1ȳi+1 ≤ 1

}
where Pi+1 is a real

symmetric positive definite matrix. The ellipsoid set Ωi+1 is invariant if Pi+1

satisfies,
ATi+1Pi+1 + Pi+1Ai+1 < 0. (18)

If a trajectory, governed by the (i + 1)th dynamic equation, starts within or
enters the ellipsoidal set Ωi+1, and that set is invariant, then the trajectory will
be enclosed by the ellipsoidal set Ωi+1 for the duration that it is governed by
the (i+ 1)th dynamic equation, that is, until the next manifold is crossed. Thus
condition 2 is derived.

If the Ώi ⊂ Ωi+1, it follows that any trajectory governed by the ith dynamic
equation, that starts within an invariant ellipsoid set ȳTi Piȳi ≤ 1, will enter the
ellipsoid set ȳTi+1Pi+1ȳi+1 ≤ 1 as it crosses the manifold. If the second ellipsoid
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4 Maximum Output Bound 9

set is invariant, then the trajectory will be enclosed by that set until it reaches
the next manifold. Thus, the trajectory is enclosed to one of a succession of
invariant ellipsoids that change as the trajectory crosses each manifold.

The union of all the sets bounded between the manifolds and the edge of
the ellipsoid sets, form a limit on the trajectory of the switching system, as
shown in figure 1. Using the S-procedure, equation (17) and the inequality
ȳTi+1Pi+1ȳi+1 ≤ 1, a new condition for Ώi ⊂ Ωi+1 is derived,

yT
(
Pi + λCTi Ci

)
y − 2

(
λβiCi +

(
A−1
i Biρi

)T
Pi

)
y,

+
(
A−1
i Biρi

)T
Pi
(
A−1
i Biρi

)
+ τ − 1 + λ

(
β2
i − γ2

)
,

−τ
(
y −A−1

i+1Bi+1ρi+1

)T
Pi+1

(
y −A−1

i+1Bi+1ρi+1

)
> 0.

(19)

∃τ > 0, λ > 0. Denote τ̄ = 1/τ , P̄1 = P1/τ , and λ̄ = λ/τ , then, the inequality
can be expressed as the linear matrix inequality (LMI) in condition 3.

Ωi

Ω’i

Ωi+1 Bound on the 

trajectory

Fig. 1: Trajectory bounded by succession of invariant ellipsoids

We now outline a general procedure for obtaining the maximum output
bound based on theorem 1. Denote σ = χy, where χ ∈ R1×n, as the output
function. Our intention is to obtain the maximum bound of σ. Introducing
ȳTi+1χ

Tχȳi+1 < ε where ε is a bound on the output. In our original coordinate
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4 Maximum Output Bound 10

system y, the maximum output bound in terms of ε is,

σMax = sgn(σMax)
√
ε+ χA−1

i+1Bi+1ρi+1 ≥ χy (20)

We seek the minimum ε such that,

ȳTi+1Pi+1ȳi+1 > ȳTi+1χ
T (1/ε)χȳi+1 (21)

i.e. the output bound is within the second invariant ellipsoid. For i = 1, the
objective can be redefined in the form of the following convex LMI optimization
problem: For some positive definite symmetrical P̄1, P2 ∈ Rn×n, minimize ε
such that:

(1)

[
P2 χT

χ ε

]
≥ 0,

(2)
(
y −A−1

1 B1ρ1
)T
P1

(
y −A−1

1 B1ρ1
)
≤ τ̄ ,

(3) AT1 P̄1 + P̄1A1 < 0,

(4) AT2 P2 + P2A2 < 0,

(5)

[
P̄1 + λ̄CTC − P2 Q12

QT12 Q22

]
> 0,

Q12 = −P̄1

(
A−1

1 B1ρ1
)
− CTβ1γ̄ + P2

(
A−1

2 B2ρ2
)
,

Q22 = 1− τ̄ + λ̄
(
β2
1 − γ2

)
+
(
A−1

1 B1ρ1
)T
P1

(
A−1

1 B1ρ1
)
,

−
(
A−1

2 B2ρ2
)T
P2

(
A−1

2 B2ρ2
)
,

∃τ̄ > 0, λ̄ > 0 where step 1 is the Schur complement of equation (21), and steps
2-5 are obtained from theorem 1.

The state-trajectory of the system may cross multiple switching manifolds
before reaching the maximum output. Successive invariant ellipsoids for i ≥ 2
are obtained by successive use of the following convex LMI optimization: For
some positive symmetrical Pi+1 ∈ Rn×n, and a known Pi - which is obtained
from the previous optimization - minimize ε such that:

(1)

[
Pi+1 χT

χ ε

]
≥ 0,

(2) ATi+1P̄i+1 + P̄i+1Ai+1 < 0,

(3)

[
τ̄ P̄i + λ̄CTi CTi − Pi+1 Q12

QT12 Q22

]
> 0,

Q12 = −P̄i
(
A−1
i Biρi

)
− CTi βiλ̄+ Pi+1

(
A−1
i+1Bi+1ρi+1

)
,

Q22 = 1− τ̄ + λ̄
(
β2
i − γ2

)
+
(
A−1
i Biρi

)T
P̄i
(
A−1
i Biρi

)
,

−
(
A−1
i+1Bi+1ρi+1

)T
Pi+1

(
A−1
i+1Bi+1ρi+1

)
,

∃τ̄ > 0, λ̄ > 0.
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4 Maximum Output Bound 11

We consider the application of this procedure to finding the maximum output
bound of systems controlled by the 2-sliding mode controllers. Any linear system
of the form,

ẋ = Ax+Bu(t), σ = Sx, (22)

controlled by either the twisting controller or generalized sub-optimal controller,
can be expressed as the switching system in theorem 1. Thus, we can use the
outlined procedure to obtain the maximum output bound. The homogeneous
controller has a non-linear switching manifold and requires a modification to
the procedure before it can be used.

1) The twisting controller has two switching manifolds, σ = 0 and σ̇ = 0 and
four possible ρi; one for each quadrant of the state-space {σ, σ̇}, i.e.{

ρi = r1 + r2 σ > 0
ρi+1 = r1 − r2 σ̇ > 0

}
,

{
ρi = −r1 + r2 σ < 0
ρi+1 = r1 + r2 σ̇ > 0

}
,{

ρi = −r1 − r2 σ < 0
ρi+1 = −r1 + r2 σ̇ < 0

}
,

{
ρi = r1 − r2 σ > 0

ρi+1 = −r1 − r2 σ̇ < 0

}
.

2) The generalized sub-optimal controller has a switching manifold that moves
proportionally with the peak oscillations of the output sliding variable, that is
σ = r2σM , where σM is the previous extremal value of the oscillating σ. The
controller has two possible ρi; they are ρi = r1, and ρi+1 = −r1 and the reverse.

3) The homogeneous controller has a non-linear switching manifold, and thus
theorem 1 cannot be directly applied. Denote Σ(y) = 0 as the nonlinear man-
ifold. We derive a new condition which can be used to guarantee that the set
Ωi+1 encloses the intersection of the set Ωi and the manifold Σ(y) between zero
and some maximum upper-bound σ̃. For simplicity, we consider the case where
the trajectory begins in the half-plane σ > 0. Define,

σ = χ1y, σ̇ = χ2y, and χ =
[
χ1 χ2

]T
. (23)

Let us denote Ω̃i as a new elliptical set,

Ω̃i ∈
{
y : 0 < χ1y < σ̃, (χy − E)

T
P̃ (χy − E) < 1

}
,

where E =
[

1/
√
P11 0

]T
, P̃ ∈ R2×2 is,

P̃ =

[
P11 0
0

(
2
√
P11 − P11σ̃

)
/r22

]
P11 > 0,

and σ̃ is an upper-bound on the sliding variable output. We find by definition of
Ω̃i, that it is an ellipsoid which encloses the switching manifold Σ(y) = 0 upto

σ = σ̃. The set Ώi in theorem 1 is then replaced by Ώi ∈
{

Ω̃i ∩ Ωi

}
, and a new
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5 Example 12

inequality proposed such that y /∈ Ώi,

yT
(
P1 + λχT P̃χ− P2

)
y − 2

(
P1

(
A−1Br1

)
+ λχT P̃E

)
y,

+
(
A−1B

)T
P1

(
A−1B

)
− 1− λ+ λET P̃E > 0. (24)

A new LMI is derived by following the procedure in the proof of theorem 1, but
with (17) replaced by (24):[

P̄1 + λ̄χT P̃χ− P2 Q12

QT12 Q22

]
> 0

Q12 = −P̄1

(
A−1Br1

)
− λ̄CT P̃E − P2

(
A−1Br1

)
,

Q22 = 1− τ̄ +
(
A−1Br1

)T
P̄1

(
A−1Br1

)
,

−
(
A−1Br2

)
P2

(
A−1Br2

)
, (25)

∃τ̄ > 0, λ̄ > 0. The maximum output bound is −
√
ε−χ1A−1Br1− 1, where ε is

obtained by following the general outlined procedure but with step 5 replaced
by the new LMI. For systems starting in the half-plane σ < 0, the following
parameters are replaced: E = −E, r1 = −r1.

5 Example

The performance estimation procedures are illustrated with an example second
order system with actuator and sensor parasitic dynamics. Introducing a system
with second order plant, the sliding variable as output, and a set of fast-acting
first order dynamics acting on the actuator and sensors,

ż
z̈

0.03ẋ
0.03ẍ

0.01 ˙̃u

 =


0 1 0 0 0
−15 −5 0 0 3

1 0 −1 0 0
0 1 0 −1 0
0 0 0 0 −1



z
ż
x
ẋ
ũ

+


0
0
0
0
1

u(σ),

σ = 10x+ ẋ.

The described procedures are used to predict chatter amplitude, settling
time, and maximum output bound of this system. Chattering amplitude was
found directly from the frequency response (Nyquist plots) of the system. We
first set ζ = 0 in the describing functions N(a, ω, ζ = 0). Placing equation (9)
in the frequency domain (p = jω) we have,

− 1

N(a, ω)
=
B(jω)

A(jω)
, (26)

from which we can solve for a, ω. This can be done graphically on the Nyquist
plot by finding the point of intersection between the frequency response and the
negative inverse of the describing function.
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6 Conclusion 13

Settling times were found by calculating ζ and ω at a range of discrete
amplitudes between a = 1 and a = 0.2 at intervals of ∆a = 0.005, e.g. a =
1, 0.995, 0.99, .... The values of ζ and ω at some a were calculated from the
following optimisation problem,

min
ζ,ω

Re(H(a, ζ, ω))2 + Im(H(a, ζ, ω))2 s.t.
ζ < 0
ω > 0

, (27)

where H(a, ζ, ω) = A(ζ+ jω) +B(ζ+ jω)N(a, ζ, ω). The additional constraints
on ζ, ω are added as a practical measure to ensure the solution does not fall into
a false minimum. Finally, settling time is obtained by numerical integration of
the values of ζ at each discrete division of a to find a solution to (12).

The LMI problems for maximum output bound were solved using the Matlab
LMI toolbox (MathWorks Inc, USA). The variable γ in the LMI problem is
chosen by trial and error to be γ = 0.0001. The results were not found to be
overly sensitive to this parameter, provided γ was chosen to be sufficiently small.

The system is simulated using Simulink (MathWorks Inc, USA) with each of
the controllers. The response of the output sliding variable σ is shown in figure
5. The predicted maximum output bound computed using the LMI method is
shown in the figure for each of the controllers. The approximated chattering
amplitude and settling time (decay-rate) are also shown in figures a) and c),
computed using the describing function of the controller.

The predicted maximum output bound is found to be a conservative esti-
mate. This is further illustrated using the following second-order system with
variable stiffness parameter K,[

σ̇(t)
σ̈(t)

]
=

[
0 1
K −1

] [
σ(t)
σ̇(t)

]
+

[
0
1

]
u(σ),

σ(0) = 1,
σ̇(0) = 0,

(28)

The maximum output bound ellipsoids computed by the proposed LMI method
for each of the controllers over varying values of K = −15, K = −50 and
K = −300 are shown in figures 3, 4 and 5. The result is confirmed. In each
case, the invariant ellipsoid produced a conservative estimate for the maximum
output bound.

6 Conclusion

The comprehensive formalization of tuning procedures for chatter suppression
sliding mode control is necessary to encourage their wider use in real systems.
This papers contribution is towards this goal, by establishing straightforward
procedures to estimate key performance metrics of some common chatter sup-
pression 2-sliding mode controllers.

Describing functions are derived to estimate instantaneous frequency and
damping during the transient phase. These are used to find settling times
between an initial starting amplitude and some final amplitude, and to find
the chattering amplitude under steady-state conditions. Both procedures are
found to be accurate in an example system which satisfies the low-pass filter
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6 Conclusion 14

assumption. This assumption, in general, is not overly restrictive and is true for
a wide range of systems. A procedure based on invariant ellipsoids is presented
to estimate the maximum output bound. This method computes a sequential
series of invariant ellipsoids which enclose the state-trajectory of the 2-sliding
mode controlled system. A set of linear matrix inequalities (LMIs) are derived to
compute the ellipsoids sets. Optimal solutions are readily found using standard
LMI methods.
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(c) Generalized sub-optimal controller

Fig. 2: Output response and predicted performance of the system in (26)
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Fig. 3: Trajectory and approximate bounded ellipsoid (σ, σ̇)P2(σ, σ̇)T = 1 of
system (28) controlled by twisting controller
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Fig. 4: Trajectory and approximate bounded ellipsoid (σ, σ̇)P2(σ, σ̇)T = 1 of
system (28) controlled by generalized sub-optimal controller
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Fig. 5: Trajectory and approximate bounded ellipsoid (σ, σ̇)P2(σ, σ̇)T = 1 of
system (28) controlled by homogeneous controller
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