
IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998 1041

Performance Evaluation and Cost Analysis
of Cache Protocol Extensions

for Shared-Memory Multiprocessors
Fredrik Dahlgren, Member, IEEE Computer Society,

Michel Dubois, Senior Member, IEEE, and Per Stenström, Senior Member, IEEE

Abstract—We evaluate three extensions to directory-based cache coherence protocols in shared-memory multiprocessors. These
extensions are aimed at reducing the penalties associated with memory accesses and include a hardware prefetching scheme, a
migratory sharing optimization, and a competitive-update mechanism. Since each extension targets distinct components of the read
and write penalties, they can be combined effectively. This paper identifies the combinations yielding the best performance gains
and cost trade-offs in the context of a class of cache-coherent NUMA (Non-Uniform Memory Access) architectures. Detailed
architectural simulations of a multiprocessor with single-issue, statically scheduled CPUs, using five benchmarks, show that the
protocol extensions often provide additive gains when they are properly combined. For example, the combination of prefetching with
the competitive-update mechanism speeds up the execution by nearly a factor of two under release consistency. The same speedup
is obtained under sequential consistency by combining prefetching with the migratory sharing optimization. This paper shows that a
basic write-invalidate protocol augmented by appropriate extensions can eliminate most memory access penalties without any
support from the programmer or the compiler.

Index Terms—Shared-memory multiprocessors, cache-coherence protocols, prefetching, competitive-update protocols, write
caches, performance evaluation.

——————————���F���——————————

1 INTRODUCTION

RIVATE caches in conjunction with directory-based,
write-invalidate protocols are essential, but not suffi-

cient, to cope with the high memory latencies of large-scale
shared-memory multiprocessors. Therefore, many studies
have focused on techniques to tolerate or reduce the la-
tency. In [13], Gupta et al. compared three approaches to
tolerate latency: relaxed memory consistency models, soft-
ware-based prefetching, and multithreading. Whereas the
relaxation of the memory consistency model improves the
performance of all applications uniformly, the effects of
prefetching and multithreading vary widely across the ap-
plication suite. Overall, these techniques are effective, but
they also have negative implications for software develop-
ments because the programmer and the compiler have to
worry about complex issues such as data-race detection,
cache miss identification, and increased concurrency.

In order to hide the latency between the processors and
the rest of the memory system or to reduce its impact on
performance, we propose a different approach, namely
tuning the cache protocol by adding a few simple exten-
sions. Since these extensions are completely hardware-
based, they are transparent to the software. Moreover, they

add only marginally to overall system complexity while
still providing a significant performance advantage when
applied separately. We focus on three extensions: adaptive
sequential prefetching [4], [5], migratory sharing optimization
[3], [20], and competitive-update mechanisms [7], [12].

Adaptive sequential prefetching cuts the number of read
misses by fetching a number of consecutive blocks into the
cache in anticipation of future misses. The number of pre-
fetched blocks is adapted according to a dynamic measure
of prefetching effectiveness which reflects the amount of
spatial locality at different times. This simple scheme relies
on three modulo-16 counters per cache and two extra bits
per cache line, and it removes a large number of cold, re-
placement, and (sometimes) true sharing misses. Moreover,
as opposed to simply adopting a larger block size, it does
not affect the false sharing miss rate [4]. The migratory
sharing optimization targets a common sharing pattern in
which a block is read and modified by different processors
in turns. This optimization is aimed at the write penalty1 for
migratory blocks, a major component of the overall penalty
under sequential consistency. Two independent studies [3],
[20] have shown that this optimization is very successful in
many cases and requires only minor modifications to the
cache coherence protocol.

The above two protocol extensions are fairly ineffective
when it comes to coherence misses. It is also well-known [9]
that write-update protocols have no coherence miss penalty.

1. Consistent with the literature, we use the word latency to designate the
time taken by an access and the word penalty to designate the time that the
processor is blocked on each access. The words penalty and stall time are
used interchangeably throughout the paper.

0018-9340/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� F. Dahlgren and P. Stenström are with the Department of Computer Engi-
neering, Chalmers University of Technology, S-412 96 Gothenburg, Swe-
den. E-mail: {dahlgren, pers}@ce.chalmers.se.

•� M. Dubois is with the Department of Electrical-Engineering Systems,
University of Southern California, Los Angeles, CA 90089-2562.
E-mail: dubois@paris.usc.edu.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 106849.

P

1042 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

The major drawback of these protocols is their large write
memory traffic. Competitive-update protocols strike a com-
promise by mixing updates and invalidations. The idea is
simple. Instead of invalidating a block copy at the first
write by another processor, the block is at first updated; if
the local processor does not access the block after a few up-
dates, then the copy is invalidated. This scheme works very
well under relaxed memory consistency models [12]. To
further reduce the write traffic, a small write cache [7] can be
used to buffer writes to the same block and to combine
them before they are issued.

Because these three extensions to a basic directory-based
write-invalidate protocol address different components of
the read and write penalties, their gains may add up when
they are combined. One focus of this paper is to identify
combinations affording maximum performance gains
within an architectural framework consisting of a directory-
based cache-coherent NUMA architecture [19] based on
single-issue, statically scheduled CPUs. We find that the
combined techniques provide additive gains in many cases.
For example, the performance improvement of adaptive
prefetching combined with the competitive-update mecha-
nism is often the sum of their individual improvements and
yields, for some applications, a speedup of nearly a factor
of two under release consistency. These gains are obtained
by simple modifications to the lockup-free caches [8] and to
the cache coherence protocol. A preliminary version of this
paper is published in [6] and, in this paper, we extend that
work by a closer analysis of some architectural parameters,
such as cache and buffer sizes.

In order to compare implementations carefully, we start
in Section 2 with the detailed design of our baseline archi-
tecture. In Section 3, we review the implementation details
of the three protocol extensions as well as their expected
performance gains in isolation. Based on detailed architec-
tural simulation models and five benchmark programs
from the SPLASH suite [18] introduced in Section 4, we
evaluate the combined performance gains of the protocol
extensions in Section 5. Finally, we compare the implica-
tions of the performance and implementation evaluations
with work done by others in Section 6, before we conclude
the paper in Section 7.

2 ARCHITECTURAL FRAMEWORK AND BASELINE
ARCHITECTURE

None of the three protocol extensions we consider sets any
specific requirement on the processor architecture. While
we assume single-issue, blocking-load processors in our
evaluation, the techniques also apply to multiple-issue
processors with nonblocking loads. Fig. 1 shows the overall
organization of each processing node and of the system.
The environment of each processor is comprising a first-
level cache (FLC), a second-level cache (SLC), and a first-
and second-level write buffers (FLWB and SLWB). The
processor and its caches are connected to the network inter-
face and to a shared memory module by a local bus. The
FLC is a direct-mapped, write-through cache with no allo-
cation of blocks on write misses and is blocking on read
misses. If the block is valid in the FLC, it is updated with

the new value and the write request is buffered in the FLWB
in FIFO order. Otherwise, the write request is buffered in
the FLWB without any block frame allocation in the FLC.
Read miss requests issued by the FLC are also buffered in
FIFO order in the FLWB. The SLC is a direct-mapped write-
back cache and maintains inclusion so that all blocks valid
in the FLC are also valid in the SLC. Each write request give
rise to a tag-check in the SLC before the block is allowed to be
updated with the new value. If a write request has updated a
valid block in the FLC, but that block becomes invalidated in
both the SLC and FLC while the write request is still in the
FLWB, that write request will be handled like a write-miss in
the FLC, preventing the loss of the updated value.

The SLC and the SLWB designs incorporate most of the
mechanisms to support each protocol extension. Unlike the
FLC, which has to respond to all processor accesses and must
be fast and simple, the SLC can afford sophisticated mecha-
nisms for latency tolerance and reduction. The SLC is lockup-
free [8] and buffers all pending requests (e.g., prefetches, up-
dates, or invalidations) in a second-level write buffer (SLWB).
This feature is critical in order to take advantage of relaxed
memory consistency models [8] such as release consistency
[10]. The protocol extensions require some extra control
mechanisms in the lockup-free SLCs as well as some modifi-
cations to the system-level cache coherence protocol.

At the system level, the baseline architecture (henceforth
referred to as BASIC) implements a write-invalidate proto-
col with a full-map directory similar to Censier and Feau-
trier’s [2]. A presence-flag vector associated with each
memory block points to the processor nodes with a copy in
their cache. An SLC read miss sends a read miss message to
the home memory module (the node at which the physical
memory page containing the block is allocated). If the home
memory is local and if the block is clean (unmodified), the
miss is serviced locally. Otherwise, the miss is serviced ei-
ther in two or in four node-to-node transfers depending on
whether the block is dirty (modified) in some other cache.
A write access to a shared or invalid copy in the SLC sends
an ownership request to the home node; in response, the
home node sends invalidations to all nodes with a copy,
waits for acknowledgments from these nodes, and, finally,
sends an ownership acknowledgment to the requesting
node plus the copy of the block if needed.

Three state bits encode two stable and three transient
states for each memory block. The stable states are CLEAN
(the memory copy is valid) and MODIFIED (exactly one
cache keeps the exclusive copy of the memory block). While
the home node is waiting for the completion of a coherence
action—e.g., the invalidation of copies—the memory block
is in a transient state. If a read miss or ownership request
reaches the memory while the block is in a transient state, it
is rejected and must be retried.

There are three stable cache states: INVALID, SHARED,
or DIRTY. No transient state is needed in cache because all
pending accesses are kept in the SLWB of the requesting
node until they are completed. For example, if a write is
issued to a cache block in state SHARED, the cached copy is
updated and an ownership request is buffered in the SLWB.
Thus, the SLC can continue servicing local accesses for as
long as there is space in the SLWB. Synchronizations such

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1043

as acquires and releases bypass the FLC and are inserted in
the SLWB with other memory requests. However, under
release consistency, previously issued ownership requests
must be completed before a release can be issued.

The hardware support for cache coherence in BASIC is
limited to two bits per cache block and N + 3 bits per mem-
ory block for N nodes. Under sequential consistency, the
read and write penalties are significant for large latencies.
Under release consistency, multiple write requests can be
overlapped with each other and with local computation to a
point where the write penalty is completely eliminated [10].
This overlap is achieved through the lockup-free mecha-
nism implemented in the SLC controller working in con-
junction with the SLWB. The protocol extensions of the next
section can reduce the read and the write penalties by sim-
ple modifications to the SLC and to the system-level cache
coherence protocol.

3 SIMPLE CACHE COHERENCE PROTOCOL
EXTENSIONS

We now cover in some details the protocol extensions, in-
cluding the hardware support needed beyond BASIC, and
their effects on memory access penalties in Sections 3.1 to
3.3. We then discuss how the protocol extensions can be
combined to further cut the penalties in Section 3.4. In the
rest of this paper, we use the following classification of read
misses. A miss is classified as a cold miss if the requested
block has never been referenced by the processor. If the
block has been referenced by the processor but has been
written to by another processor, the miss is classified as a

coherence miss. All other misses are referred to as replacement
misses since they are caused by replacements from the cache
because of its limited size and associativity.

3.1 Adaptive Sequential Prefetching
Nonbinding prefetching [13] cuts the read penalty by
bringing into cache the blocks which will be referenced in
the future and are not present in cache. The value returned
by the prefetch is not bound because the prefetched block
remains subject to invalidations and updates by the cache
coherence mechanism. Software prefetching relies on the
compiler or user to insert prefetch instructions statically
into the code [16], whereas hardware schemes dynamically
detect patterns in past and present data accesses to predict
future accesses. Nonbinding prefetching is applicable to
systems under any memory consistency model, including
sequential consistency.

A nonbinding hardware-based prefetching scheme
called adaptive sequential prefetching was proposed and
evaluated experimentally in [4]. When a reference misses in
the SLC, a miss request is sent to memory and the K con-
secutive blocks directly following the missing block in the
address space are accessed in the cache to force a miss if
needed. A Prefetch Counter in the SLC controller generates
the addresses for these K blocks and a prefetch is inserted in
the SLWB for each block missing in the cache unless a re-
quest for the block is already pending. (K is called the degree
of prefetching.) The prefetches are issued one at a time, are
pipelined in the memory system, and can be overlapped
with the original read miss in the memory system.

(a)

(b)

Fig. 1. The processor environment and the simulated architecture. (a) The processor environment. (b) The simulated architecture.

1044 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

This prefetching scheme exploits the spatial locality
across cache blocks. Although one might believe that a
block K times larger could have the same effect, it was
shown in [4] that false sharing effects may nullify or even
reverse the benefits of a bigger block size. Moreover, the
need to adjust the degree of prefetching dynamically to
variations in the spatial locality was demonstrated in [4]. If
K remains fixed throughout the execution of a program,
sequential prefetching is only marginally effective.

Conceptually, the degree of prefetching is controlled by
counting the number of useful prefetches, i.e., the fraction of
prefetched blocks which are later referenced by the processor.
This fraction is compared to preset thresholds: If it is higher
than the high mark, the degree of prefetching is increased,
and if it is lower than the low mark, the degree of pre-
fetching is decreased. Prefetching across page boundaries is
not supported, i.e., a read miss on one page will never gen-
erate a prefetching for a block in another page, as it could
potentially generate useless page faults. More details of this
scheme are given in [4].

The adaptive prefetching scheme improves performance
by cutting the number of cache misses. From the simulation
of six benchmark programs, the scheme was shown to cut
the number of cold and replacement misses. Contrary to
common belief, the cold miss rate does not necessarily de-
cline with time and may impact the overall performance of
an application. This is true in general for direct (i.e., nonit-
erative) solution methods in linear algebra, exemplified by
LU and Cholesky used in Section 5. In these applications,
the cold miss rate remains high during the whole execution.
A significant reduction in the replacement miss rate for
most of the applications was also reported in [4], which
implies that the spatial locality of data references in these
parallel applications is very high. Coherence misses are also
cut in Cholesky and Water because of spatial locality in the
true-sharing miss component. However, the false-sharing
miss component is unchanged.

The hardware needed to extend BASIC with the adaptive
prefetching scheme is three modulo-16 counters per cache
and two bits per cache line. This overhead is recorded in
column P in Table 1.

3.2 Migratory Sharing Optimization
While the adaptive sequential prefetching scheme cuts the
read penalty, it does not improve the write penalty, which
can be large under sequential consistency. In write-
invalidate protocols, the write penalty comes from owner-
ship requests to shared or invalid blocks. For memory
blocks exhibiting migratory sharing, a sharing pattern in
which a block is read and modified by different processors
in turns, this penalty is particularly large because different
processors in turn trigger a read miss followed by an own-
ership request. The miss is serviced by the cache attached to
the last processor to access the block. The ownership re-
quest propagates a single invalidation to the same cache
and could be avoided if the invalidation was done at the
time the read miss is serviced. The protocol extension
avoiding this invalidation is called the migratory sharing
optimization. This optimization is aimed at a particular ap-
plication behavior which is quite common and results from
accesses to data in critical sections or in read/write se-
quences on shared variables occurring in statements such as
“x := x + 1.” (In the case of MP3D, migratory sharing is at-
tributable to the latter.)

Both Cox and Fowler [3] and Stenström et al. [20] have
indicated ways to extend a write-invalidate protocol with
the migratory optimization. The detection is done at the
home node, which sees read misses as well as ownership
requests. A block is deemed migratory if the home node has
detected a read/write sequence by one processor followed
by a read/write sequence by another processor (see [3], [20]
for more information about this). Stenström et al. [20]
evaluate the performance advantage of the migratory opti-
mization. For three applications (MP3D, Cholesky, and
Water), the number of ownership requests are cut by be-
tween 69 percent and 96 percent and the execution time is
reduced by as much as 35 percent (MP3D) under sequential
consistency because of the lower write penalty. Performance
can also be improved under release consistency because the
migratory optimization cuts the write traffic as well, and the
ensuing reduction of contention cuts the read and the syn-
chronization penalties. This is critical for applications with
higher bandwidth requirements than the network can sus-
tain. We will demonstrate these effects in Section 5.

TABLE 1
HARDWARE NEEDED TO SUPPORT BASIC AND THE HARDWARE OVERHEAD NEEDED BY EACH EXTENSION

BASIC P (Prefetch) M (Migratory
Optimization)

CW (Competitive-
Update and

Write Caches)
State bits per 2 bits 2 bits (Prefetch and 1 state 1 counter
SLC line (3 states) ZeroBit) (Typically 1 bit)
Additional None 3 counters (4 bits) None Direct-mapped
mechanisms write cache
per cache (Typically 4 blocks)
SLWB features Number of entries Outstanding No extra entries Each entry holds a

is dictated by the prefetch requests (less entries than block, but few
consistency model are buffered BASIC expected) entries suffice

State bits per 3 state bits (for No extra state 1 state bit plus No extra state
memory line 2 stable states and a pointer (log2 N

3 transient states) bits for N caches)
plus N presence bits

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1045

Compared to BASIC, the hardware overhead of the mi-
gratory optimization is an extra bit per memory line en-
coding two memory states (MIG-CLEAN and MIG-
MODIFIED), a pointer of size log2 N bits (for N caches) per
memory line, and an extra state (MIGRATING) per cache
line [20]. This extra cache state is needed to disable the mi-
gratory optimization when the access pattern to a block
deemed migratory changes to another form of sharing such
as read-only sharing. These overheads appear in Table 1 in
column M.

3.3 Competitive-Update Mechanisms
The above techniques are fairly inefficient at reducing the
penalties associated with coherence misses. However, it is
well known that a write-update protocol completely elimi-
nates them. The cost is the increased number of update
messages to shared blocks. Under a relaxed memory consis-
tency model in conjunction with a sufficiently large SLWB,
the latency of these updates can be hidden, as was shown in
[10], but the memory traffic may offset the gains because of
memory conflicts.

Competitive-update protocols, i.e., update-based protocols
which invalidate a copy if the local processor does not ac-
cess it sufficiently often, have been the subject of previous
evaluations [12] in the context of an architecture similar to
BASIC. The hardware cost is limited to a counter associated
with each cache line. When a block is loaded into the cache,
or when the block is accessed, the counter is preset to a
value called the competitive threshold. The counter is decre-
mented every time the block is updated by another proces-
sor. When the counter reaches zero, the block is invalidated
locally. Thus, if a number of global updates equal to the
competitive threshold reach the cache with no intervening
local access, the block is invalidated locally and the propa-
gation of updates to that cache is stopped.

Two factors contribute to the good performance of a
competitive-update protocol [7], [12]:

1)�The coherence miss rate is reduced and
2)�The latencies of the remaining coherence misses are

shorter because the likelihood of finding a clean copy
at memory is higher under a competitive-update
protocol than under a write-invalidate protocol.

In [12], the competitive-update protocol briefly described
here was shown to outperform write-invalidate for all ap-
plications, although the performance improvement for ap-
plications with migratory sharing was limited. In order for
these applications to benefit from write-update, the com-
petitive threshold needs to be large, which in turn tends to
increase the write traffic and thus reduce the benefits. A
competitive threshold of four was recommended in [12] as
a good compromise.

This simple competitive update mechanism is even more
effective in conjunction with write caches [7]. A write cache
is a small cache which allocates blocks on write requests
only. Because consecutive writes to the same word are
combined in the write cache before being issued, the write
traffic is reduced. This combining is only possible under a
relaxed memory consistency model which allows for delays
in the propagation of writes until a synchronization point.
For example, under release consistency, the propagation of

updates to a block in the write cache can wait until the
block is replaced or until the release of a lock.

In BASIC, the write cache must be attached to the SLC so
that the write cache can be accessed at the same time as the
SLC. For read accesses hitting in the SLC and for write ac-
cesses to dirty blocks in the SLC, no write cache action is
taken. On an SLC read miss hitting in the write cache, the
data is returned to the processor. However, if the read re-
quest also misses in the write cache, the block is fetched
into the SLC from memory as usual. A block fetch is not
triggered by a write miss in the SLC. Instead, a write to a
shared or invalid block in the SLC allocates a block frame in
the write cache; the new value is stored in the write cache
and is not propagated to other caches. Subsequent writes to
the same block are combined in the write cache until the
block is eventually written to the home node at the next
release or at the replacement of the block in the write cache.
To keep track of the modified words in a block of the write
cache, a dirty/valid bit is associated with each word. These
bits are also used to selectively send the modified words to
the home node, further reducing traffic. However, a single
header is needed for such partial block transfers, thus re-
ducing traffic. The write cache blocks that are written to
memory on a replacement or at a synchronization point are
temporarily buffered in the SLWB.

Detailed performance evaluations reported in [7] show that
a direct-mapped write cache with only four blocks is very ef-
fective at combining writes to the same block. Moreover, after
a synchronization point or after a block is victimized, the
probability that the block will be accessed by a different proc-
essor is very high. Therefore, a competitive update protocol
with write caches and a threshold of one will in general exhibit
less network traffic because of combined writes and lower
coherence miss penalty than a competitive-update protocol
using a threshold of four and no write caches.

To conclude, the extension of BASIC with a competitive-
update mechanism with write caches requires a modulo-2
counter per cache line (one bit). However, the SLWB is
somewhat more complex because each entry now contains
a block. The overheads associated with this technique are
summarized in Table 1 in the column denoted CW.

3.4 Combining the Techniques
We now consider the implications of combining the proto-
col extensions. To simplify, we refer to BASIC plus adaptive
sequential prefetching as P, to BASIC plus the migratory
optimization as M, and to BASIC plus the competitive-
update mechanism and write caches as CW. For example,
the mechanisms needed to implement P can be derived
from Table 1 by the hardware mechanisms under BASIC
plus the hardware mechanisms under P.

The combination of P with CW (P + CW) is expected to
remove almost all misses since P is aimed at cold and re-
placement misses and CW is aimed at coherence misses.
This will result in a very small read penalty and high per-
formance gains, as we will show in Section 5. These tech-
niques are trivially combined; no new hardware resource
and no modification to the cache coherence protocol is
needed. Thus, the hardware mechanisms needed appear in
Table 1 under BASIC plus P plus CW.

1046 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

Whereas P mainly reduces the read penalty due to cold
and replacement misses, M cuts the write penalty and traf-
fic associated with migratory blocks. Thus, a combination
of P and M, referred to as P + M, is expected to reduce the
read as well as the write penalties for migratory blocks.
Since prefetch requests to MIGRATORY blocks retrieve ex-
clusive copies (because they are seen as read misses by the
home node), prefetching in P + M is equivalent to a hard-
ware-based read-exclusive prefetching scheme [16]. From
an implementation viewpoint, this combination does not
need any additional hardware resource besides those listed
in Table 1 for P and M.

The combination of CW and M (CW + M) has the fol-
lowing implications. Since CW is only applicable to imple-
mentations under relaxed memory consistency models,
there is no write stall time. Since optimizations for migra-
tory sharing, M, aim at reducing the number of global write
requests, the potential gains of adding M to CW must come
from reduced traffic and less network contention.

With the competitive-update mechanism, the home node
cannot detect that two consecutive nonoverlapping
read/write sequences by distinct processors are migratory
because it sees only updates and not local reads. To make
sure that read/write sequences are nonoverlapping, the
following heuristic is used when the home node receives an
update request. If the number of cached copies is greater
than one and the update request comes from another proc-
essor than the last update request, the block is potentially
regarded as migratory. To deem it migratory, the home
node interrogates all caches that have copies. Upon receipt
of this request, each cache responds in one of two ways. If
the block has not been modified locally at all, or, if the block
has been read but not modified since the last update from
the home node, the block is not deemed migratory. Other-
wise, the cache gives up its copy and acknowledges home.
For the block to be deemed migratory, all caches must give
up their copies. An extra bit is needed in the cache to keep
track of whether or not a block has been locally modified.

Finally, combining all three techniques, i.e., P + CW + M,
does not require any further modifications beyond the ones
already described in this section.

4 SIMULATION METHODOLOGY AND BENCHMARK
PROGRAMS

We have developed simulation models of BASIC and all its
protocol extensions presented in the previous section. The
simulation platform is the CacheMire Test Bench [1], a pro-
gram-driven functional simulator of multiple SPARC V8
processors. It consists of two parts:

1)�a functional simulator and
2)�an architectural simulator.

The SPARC processors in the functional simulator issue
memory references and the architectural simulator delays
the simulated processors according to its timing model.
Consequently, the same interleaving of memory references
is maintained as in the target system we model. To reduce
the simulation time, we simulate all instructions and pri-
vate data references as if they always hit in the FLC.

We have carefully selected some architectural parame-
ters that remain the same in all simulations. These parame-
ters appear in Table 2. The timing assumptions are based on
a processor clock (or pclock) rate of 100 MHz. We assume
single-issue, statically scheduled processors. The FLC has
the same cycle time as the processor with an FLC fill time of
three cycles. The SLC is built from static RAMs with a cycle
time of 30 ns. We assume a fully interleaved memory with
an access time of 90 ns, and a 256-bit wide local split-
transaction bus clocked at 33 MHz.

The variable parameters include the sizes of the FLWB,
of the SLWB, and of the SLC. By default, we assume a con-
tention-free uniform access time network with a node-to-
node latency of 54 pclocks. Contention is accurately mod-
eled in each node. To specifically study the impact of net-
work contention, we consider, in some cases, a detailed
model of a mesh with wormhole-routing. The design con-
siderations for the mesh are discussed in detail in Section 5.
Finally, synchronization is based on a queue-based lock
mechanism at memory similar to the one implemented in
DASH, with a single lock variable per memory block. In
addition, pages (4 Kbytes) are allocated across nodes in a
round-robin fashion based on the least significant bits of the
virtual page number.

We use five benchmark programs to drive our simulation
models. These are summarized in Table 3. Three of them are
taken from the SPLASH suite (MP3D, Water, and Cholesky)
[18]. The other two applications (LU and Ocean) have been
provided to us from Stanford University. They are all written
in C using the ANL macros to express parallelism and are
compiled by gcc (version 2.1). For all measurements, we
gather statistics during the parallel sections only according to
the recommendations in the SPLASH report [18].

5 EXPERIMENTAL RESULTS

In Section 5.1, we compare the performance gains obtained
by each protocol extension in isolation and by each of the
four combinations, assuming infinite caches, sufficient net-
work bandwidth, and local buffering under release consis-
tency. In Sections 5.2 through 5.5, we impose various archi-
tectural constraints: sequential consistency in Section 5.2,
network bandwidth limitations in Section 5.3, buffer size
limitations in Section 5.4, and finite cache sizes in Section 5.5.
Finally, we contrast the hardware cost of each extension
with its performance gain in Section 5.6.

5.1 Individual and Combined Performance Gains
In this section, the individual and combined perform-
ance gains of all protocol extensions are compared to the

TABLE 2
FIXED ARCHITECTURAL PARAMETERS

Parameter Value (1 pclock = 10ns)

Number of processors 16
First-level cache (FLC) size 4 Kbytes

Block size (FLC + SLC) 32 bytes
Read from FLC 1 pclock
Read from SLC 6 pclocks

Read from local memory 30 pclocks

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1047

performance of BASIC under release consistency.2 BASIC
exploits the write latency tolerance afforded by release con-
sistency with a 16 entry deep SLWB (as many as 16 writes
can be pending in each node) and an eight entry deep
FLWB. Henceforth, if not stated explicitly otherwise, BASIC
will refer to this implementation.

Since latency tolerance techniques in general require
more bandwidth and since our purpose in this section is to
understand the gains, given enough network bandwidth,
we simulate a network with infinite bandwidth, although
we carefully model contention in each node. Later, in Sec-
tion 5.3, we will consider the impact of network contention
in detail. To concentrate on cold and coherence miss penal-
ties, we also limit ourselves to infinite second-level caches
in this section.

2. Our release consistency implementation allows an acquire to bypass a
previous release request provided that they are directed to different blocks.
This is in accordance with Gharachorloo’s RCpc model [10].

Figs. 2, 3, 4, 5, and 6 show the execution times for each
benchmark program relative to BASIC. The execution time
for each protocol extension is further decomposed into the
fraction of busy time (the time the processor is executing
instructions), read stall time (the time the processor is
waiting for read requests to complete), and acquire stall
time (the time spent waiting for an acquire to complete).
Since the write latency is completely hidden, it does not
contribute to the execution time for any of the protocols.

Let us focus on the gains of each individual protocol ex-
tension first. The three bars to the right of BASIC corre-
spond to the relative execution times of BASIC with adap-
tive sequential prefetching (P), with the competitive-update
mechanism (CW), and with the migratory optimization (M)
for each application. As can be seen, P and CW are the most
successful protocols. P manages to cut the read stall time
because of cache miss reductions for all applications except
Ocean. To see this, we show the cold and coherence miss
rates for P and for BASIC in Table 4. For example, P manages

TABLE 3
BENCHMARK PROGRAMS

Benchmark Description Data Sets

MP3D 3D particle-based wind-tunnel simulator 10 K parts, 10 time steps
Water N-body water molecular dynamics simulation 288 molecules, 4 time steps

Cholesky Cholesky factorization of a sparse matrix matrix bcsstk14
LU LU-decomposition of a dense matrix 200 × 200 matrix

Ocean Ocean basin simulator 128 × 128 grid, tolerance 10-
7

Fig. 2. Execution times of MP3D relative to BASIC under release consistency.

Fig. 3. Execution times of Cholesky relative to BASIC under release consistency.

1048 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

to cut the cold miss rate from 0.86 percent to 0.22 percent in
LU, and from 0.90 percent to 0.19 percent in Cholesky.
Moreover, P also removes some of the coherence misses in
MP3D, Cholesky, and Water.

The protocol with the competitive-update mechanism (CW)
uses a competitive threshold of one and a fully associative3

3. In [7], it is shown that the organization of the write cache is not critical;
a direct-mapped write cache would perform nearly as well.

Fig. 4. Execution times of Water relative to BASIC under release consistency.

Fig. 5. Execution times of LU relative to BASIC under release consistency.

Fig. 6. Execution times of Ocean relative to BASIC under release consistency.

TABLE 4
COLD AND COHERENCE MISS RATE COMPONENTS FOR BASIC, P, CW, AND P + CW

BASIC P CW P + CW

Application Cold Coherence Cold Coherence Cold Coherence Cold Coherence

MP3D 1.3% 9.0% 0.7% 7.5% 1.3% 8.0% 0.6% 6.3%
Cholesky 0.90% 0.30% 0.19% 0.09% 0.91% 0.26% 0.18% 0.07%
Water 0.04% 0.72% 0.01% 0.24% 0.04% 0.63% 0.01% 0.22%
LU 0.86% 0.05% 0.22% 0.06% 0.86% 0.01% 0.22% 0.01%
Ocean 0.02% 0.72% 0.01% 0.69% 0.02% 0.20% 0.01% 0.18%

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1049

write cache of four blocks with a FIFO replacement policy.
CW manages to cut the read stall time substantially for all
applications but LU. These gains are entirely attributed to
the reduction of the coherence miss penalty. Table 4 con-
firms this expectation. While the coherence miss rates are
cut by CW for all applications, the cold miss rates are al-
most unaffected. In the case of MP3D, CW only manages to
reduce the coherence miss rate from 9 percent to 8 percent
(see Table 4). Nonetheless, the read penalty reduction is
significant and is essentially due to the shorter latency of
the remaining coherence misses, which are now serviced
mostly by the home node because the memory copy is more
often clean than in BASIC. To confirm this, we measured
the average time to handle a read miss for MP3D and found
that it is 41 percent shorter under CW than under BASIC.

Finally, since the write latency is completely hidden un-
der release consistency, the contribution of M is indirect and
comes from the reduced write traffic and the ensuing re-
duction of the number of pending writes. The write traffic
reduction has virtually no impact on the read stall time be-
cause we model an infinite bandwidth network; rather, it
helps cut the acquire stall time, as is clearly visible in the
case of MP3D (Fig. 2).

Moving on to the combined performance gains, we see
that combining P and CW (P + CW) leads to additional re-
ductions of the read stall times for all applications as com-
pared to P or CW alone. For the sake of illustration, con-
sider the case of LU in Fig. 5. The combined gain of P + CW
is the sum of the gains of P and CW alone. The reason for
this can be seen from Table 4, which shows that the cold
miss rates for P and P + CW are the same and that the co-
herence miss rates of CW and P + CW are also the same.
(These values are entered in boldface in Table 4.) The same
observations are applicable to the other programs. The com-
bined gains of P and CW lead to a performance improvement
of nearly a factor of two (with respect to BASIC) for MP3D
and Cholesky, and to a reduction of between 60 percent and
81 percent of the read stall time for all applications.

Because M can only cut the acquire stall time under re-
lease consistency, P + M performs only slightly better than
P alone. Combining M with CW, we note that the gains of
CW are wiped out for all applications exhibiting a signifi-
cant degree of migratory sharing (MP3D, Cholesky, and
Water). Indeed, CW helps these applications by keeping the
memory copy clean, whereas M promotes the existence of a
single copy. Thus, CW + M is not a useful combination in an
architecture implementing release consistency and with
enough network bandwidth. The combination of all three
techniques (P + CW + M) almost has the same performance
as P + M for all applications and, therefore, is not a useful
combination.

In summary, under release consistency and with enough
network bandwidth to accommodate the bandwidth re-
quirements, P + CW provides a significant performance
improvement because of the additive effects of miss penalty
reduction. By contrast, M and its combinations with P or
CW are not useful in this case because there is no write
penalty under release consistency.

5.2 Combined Gains under Sequential Consistency
An advantage of release consistency is the complete elimi-
nation of the write penalty. Unfortunately, relaxed consis-
tency models in general tend to add complexity to software
developments. Since sequential consistency offers a more
intuitive programming model, techniques to reduce the
read stall time, as well as the write stall time under sequen-
tial consistency, are therefore very useful. In this section, we
evaluate the performance gains of P and M under sequen-
tial consistency; we omit CW because it is not feasible under
sequential consistency. We implement sequential consis-
tency in all designs in this section by stalling the processor
for each issued shared memory reference until it is globally
performed. Therefore, a single entry suffices in the FLWB
for BASIC, M, and P. Moreover, under BASIC and M, only a
single entry in the SLWB is needed in contrast to P which
still needs to keep track of pending prefetch requests. For
the purpose of comparing the different systems with re-
spect to the SLC and the SLWB designs, we refer to the se-
quential consistency implementations of BASIC and M as B-
SC and M-SC, respectively. Note that since P under se-
quential consistency still needs a SLWB, it does not differ in
this respect from a release consistent implementation.

Figs. 7 and 8 show the execution times for P, M-SC, and
P + M under sequential consistency for all applications.
Each bar is decomposed into the same time components as
in Section 5.1, with the addition of the write stall time (due
to pending write requests) and of the release stall time (due
to pending release requests).

The read stall time in P is quantitatively reduced by
about the same amount (with respect to B-SC) as under re-
lease consistency. The write stall time is either the same or
is slightly increased as compared to B-SC. This slight in-
crease of the write stall time is a side effect of prefetching,
which tends to increase the number of propagated invali-
dates because of a larger number of cached copies. In some
cases, a prefetched copy may be invalidated before it is ac-
cessed by the local processor. However, this effect is small
because the adaptive scheme adjusts the degree of pre-
fetching according to the prefetching efficiency. The overall
execution time reduction is at most 26 percent for Cholesky
as compared to B-SC.

Since M-SC is aimed at the write and acquire stall times
for migratory blocks, the execution time is significantly
shorter for MP3D, Cholesky, and Water. Although Ocean
does not exhibit any significant migratory sharing, the
write and the acquire stall times are nonetheless reduced.
We speculate that false sharing interactions cause blocks to
become migratory at times. Although some ownership re-
quests are removed and, thus, the write and acquire stall
times are cut, the read miss rate and the read stall time are
slightly increased. Overall, the execution time reduction in
M-SC is at most 39 percent (MP3D) as compared to B-SC.

We have seen that P attacks the read stall time and that
M attacks the write and the acquire stall times. Therefore,
the combination of the two techniques might help reduce
all three components. Fig. 7 confirms this expectation; P + M
manages to improve performance significantly for MP3D,
Cholesky, and Water, which are applications with signifi-
cant migratory sharing. Again, we see an example of a

1050 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

combination where the gains are additive; the read stall
times of P and P + M are almost the same, as are the write
and the acquire stall times of M-SC and P + M. For Ocean,
the slight increase in execution time caused by prefetching
does also show up, together with the migratory optimiza-
tion. For LU, there is a small load-imbalance which is im-
proved by the faster execution in P as well as M, but the
combination does not lead to further improvements. There-
fore, the additional improvement of adding M to P is only
5 percent (81 percent relative to 85 percent), while it is
7 percent (93 percent relative to 100 percent) without P. The
combined gains lead to an execution time reduction of
46 percent for MP3D and 55 percent for Cholesky. P + M is,
to the best of our knowledge, the first hardware-based read-
exclusive prefetching scheme reported in the literature.

There are two possible side effects of combining M with
P. First, useless exclusive prefetches may lead to situations
where migratory blocks currently under modification by
one processor are exclusively prefetched by another cache.
This type of occurrence would increase the read stall time
as compared to P without M. Second, since P slightly in-
creases the memory traffic, the write stall time of P + M
might be slightly higher than that of M. However, Figs. 7
and 8 show that these effects are negligible.

In summary, under sequential consistency, P and M cut
the read and write penalties, respectively, and their combi-

nation is equivalent to a very effective hardware-based
read-exclusive prefetching scheme. Finally, to compare the
execution times under sequential consistency and under
release consistency, we show the execution time for BASIC
(using an SLWB with 16 entries) in the diagrams of Figs. 7
and 8 (dashed lines). The combined P + M scheme under
sequential consistency manages to outperform BASIC un-
der release consistency for three out of the five applications.

5.3 Effect of Limited Network Bandwidth
In order to evaluate the effect of network contention on the
behavior of individual and combined protocol extensions,
we have run the same simulations with three different
mesh networks assuming three link widths: 64, 32, and 16
bits. The meshes are wormhole-routed with two-phases
(routing + transfer), meaning that each additional link re-
quires two network cycles unless the message is affected by
contention. Furthermore, the mesh is clocked at the same
frequency as the processors (100 MHz). These network im-
plementations are not overly aggressive in order to stress
the impact of contention on the cache protocol extensions.

In this section, we will only concentrate on two combi-
nations, P + CW and P + M, under release consistency be-
cause these combinations proved to be effective under infi-
nite network bandwidth. Fig. 9 shows the execution times
in system P + CW for all applications and for all three

Fig. 7. Execution times of MP3D, LU, and Cholesky for B-SC, P, M-SC, and P + M under sequential consistency. The dashed line corresponds to
BASIC under release consistency.

Fig. 8. Execution times of Water and Ocean for B-SC, P, M-SC, and P + M under sequential consistency. The dashed line corresponds to BASIC
under release consistency.

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1051

meshes. The execution times are normalized to that of BASIC
for the same mesh and the same application. For example,
in the case of a 64- bit mesh, the execution time of P + CW is
only 69 percent of that of BASIC for MP3D (the leftmost
bar). For 16-bit links, we see that the execution time for P +
CW is 9 percent longer than for BASIC. This means that the
relative advantage of P + CW over BASIC for MP3D is
higher in systems with wider links.

In order to better comprehend the effect of network
bandwidth on the execution time, we show in Fig. 10 the
total amount of network traffic generated in different sys-
tems under release consistency. For MP3D the traffic is
36 percent higher in P + CW than in BASIC. For three appli-
cations (LU, Water, and Ocean), the differences between the
relative execution times in systems with different link widths
are very small. It appears that, whereas the difference be-
tween systems with 64 and 32-bit links is very small, the gap
widens between systems with 32-bit and 16-bit links. This
trend is also present in P + CW for Cholesky (Fig. 9): In sys-
tems with 32-bit and 64-bit links, the execution time is 25

percent and 31 percent shorter than in BASIC but these gains
vanish in systems with 16-bit links. Fig. 10 reveals that the
total amount of network traffic generated by Cholesky in P +
CW is about 70 percent higher than in BASIC. This traffic
increase explains why P + CW is more sensitive to network
contention than BASIC. It appears however that 32-bit and
64-bit links are wide enough to keep network contention low
whereas 16-bit links bring the network to saturation.

The same underlying trend is apparent in the case of the
other applications, but different applications have different
bandwidth requirements and, therefore, saturate the net-
work for different link widths. For example, MP3D pro-
duces a lot of traffic and is already affected by higher traffic
in systems with 32-bit links; on the other hand, the per-
formance of Water is independent of the link width even
down to 16-bit links. Overall, for all applications except
MP3D, link widths of 32 and 64 bits yield about the same
execution time in P + CW relative to BASIC, indicating that
P + CW is an extremely competitive combination at reason-
able network bandwidths.

Fig. 9. Execution times for P + CW in systems with different mesh link widths normalized to BASIC with the same link width.

Fig. 10. Total amount of network traffic generated (in bytes) normalized to that of BASIC.

1052 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

In contrast to P + CW, the difference in network traffic
between P + M and BASIC is small for all applications, as
can be observed from Fig. 10. As a direct result, the relative
improvement of P + M over BASIC is not very sensitive to
network contention. This is confirmed in Fig. 11, in which
the sensitivity to the link width of the relative execution
times is very small. Compared to P + CW, the gains of P + M
are not affected as much by network contention.

We can compare the performance of P + CW and P + M
from Figs. 9 and 11. Whereas P + CW provides the largest
performance improvement given sufficient network band-
width, P + M is better for three out of five applications for
the most conservative network. Although P and P + M re-
duce the number of read misses to about the same extent,
the increase in traffic due to prefetching is compensated by
a smaller write traffic provided by the migratory optimiza-
tion in P + M. As a result, P + M is shown to be a promising
way of utilizing hardware prefetching when the network
bandwidth is limited.

In summary, whereas the traffic generated by P + CW can
reduce its gains for conservative network designs, P + M is
much less sensitive to network contention because the
bandwidth freed by the migratory optimization is available
to the prefetch mechanism.

5.4 Effects of Limited Buffer Sizes
We have run the same simulations as in Section 5.1 but with
smaller FLWB and SLWB (four entries in each). Due to space
limitations, we only show the results for MP3D. The results
for the other applications are similar.

In Fig. 12, we show the execution times relative to BASIC.
The uppermost section of each bar represents the fraction of
time the processors are stalled due to a full FLWB. BASIC
now shows a significant buffer stall time (18 percent). Since
the processors block on read requests (implying at most one
pending read request), this stall time is due to write re-
quests. Most reads are completed in the FLC, whereas all
writes must be serviced by the SLC (the FLC is write-
through). If the SLWB is too small, a sequence of write re-
quests to invalid or shared cache blocks with no interven-
ing read miss request could fill it. This is because writes to
SLC blocks with pending ownership or write miss requests
must be kept in the SLWB. When this buffer is full, the SLC
is blocked, which eventually blocks the processor because
of a backed-up FLWB.

We see in Fig. 12 that the execution time of P has about
the same amount of buffer stall time as BASIC. One would
expect that hardware prefetching could lead to longer
buffer stall times since pending prefetches kept in the SLWB
may fill it. However, since the processor is blocked while
the prefetches are issued (because they are issued after a
miss), the risk that the FLWB backs up is low. On the other
hand, the smaller amount of free space in the SLWB limits
the number of prefetches that can be issued, so the small
size of the SLWB limits the potentials of reducing read misses
by prefetching. However, for the applications studied, the cut
in the read stall time in P (with respect to BASIC) is ap-
proximately the same with these smaller buffer sizes as
with the larger buffers used in Section 5.1, indicating that
the buffer stall time of P is attributable to writes.

Fig. 11. Execution times for P + M in systems with different mesh link widths, normalized to BASIC with the same link width.

Fig. 12. Performance of MP3D with an FLWB and an SLWB of four entries each.

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1053

The buffer stall times are negligible in both CW and M,
indicating that these systems need smaller SLWBs than does
BASIC. This observation is also true for any combination
including CW or M. The gains from a reduced number of
read misses and reduced read miss latencies in P + CW and P
+ M are still realized, even with small buffer sizes. Overall,
except for the buffer stall times in BASIC and P, the simula-
tion results are basically identical with those of Section 5.1.

5.5 Effects of Limited Cache Sizes
We have also run simulations of systems with a direct-
mapped 16-Kbyte SLC. Overall, the qualitative conclusions
are not affected by the cache size in significant ways. The
read stall time is relatively higher due to a much larger
number of misses (because of replacement misses). Adap-
tive sequential prefetching in general works just as well at
reducing the number of replacement misses as the number
of cold and true-sharing misses. In fact, for applications
such as Ocean, where replacement misses to consecutive
blocks occur in bursts, the impact of adaptive prefetching
grows with smaller caches and adding prefetching im-
proves the performance of the system with finite caches
significantly. For MP3D, LU, Cholesky, and Water, adding
prefetching has about the same effect for finite or for infi-
nite caches. This is equally true for all combinations in-
cluding adaptive sequential prefetching.

5.6 Cost-Effectiveness Analysis
To summarize our findings, we compare in this section the
cost and effectiveness of each combination under various
architectural constraints. Under release consistency, we
found that P + CW can effectively cut the read penalty rela-
tive to BASIC by between 60 percent and 81 percent, given
enough network bandwidth. Under limited network band-
width, P + M is attractive because the migratory optimiza-
tion reduces the traffic so that the network can accommo-
date the extra traffic generated by prefetching.

We have shown in Section 5.4 that an SLWB with only
four entries is not sufficient to eliminate the buffer stall
times in BASIC and P. Although a buffer size between four
and 16 can remove some of the losses due to full buffers, we
will base our cost analysis on the assumption that 16 entries
are needed. In BASIC, each buffer entry contains the word
address (four bytes), the command type (one byte), and the
data to be written (four bytes). By contrast, each buffer en-
try in CW contain the block address, the command type, a
copy of the whole block (32 bytes), along with a bit mask
with a single bit per word (one byte). Table 5 shows the
number of entries and sizes of the FLWB and SLWB in each
system. The buffering requirements in P + CW are about the
same as in BASIC, which implies that the additional com-
plexity of P + CW is due to the write cache (only four
blocks) and the prefetching mechanism. The buffering re-
quirements for P + M are significantly lower than BASIC,
and the overall hardware cost of P + M is thus smaller.
Given the performance improvements indicated in this pa-
per and the already significant complexity of BASIC, we
conclude that the additional hardware complexity of P + CW
as well as of P + M is marginal and cost-effective.

Table 6 shows the buffering requirements for B-SC (the se-
quential consistent implementation of BASIC in Section 5.2)
and P + M under sequential consistency. A single entry in
the FLWB and in the SLWB suffices in B-SC. Since the pre-
fetch efficiency of P is the same with four as well as 16 en-
tries, as shown in Section 5.4, P + M requires only four en-
tries. Thus, P + M requires one FLWB and four SLWB en-
tries, which is less than the requirements of P + M under
release consistency. P + M needs more buffer space than B-
SC, but significantly less buffering than BASIC (see Table 5).
According to Table 1, the additional mechanisms to imple-
ment P and M are few. Therefore, we consider P + M to be a
cost-effective optimization under sequential consistency.

It should be noted that one could consider the same
SLWB organization under BASIC as under CW. However,
this would necessitate the need of merging each write re-
quest to a pending block into the block frame of the SLC
once ownership is granted. Moreover, the same buffering
requirement as CW would still be needed. Conversely, one
could also consider the same SLWB organization for CW as
for BASIC. The disadvantage of this approach is the in-
creased traffic because all modified words in a write cache
block frame would then be propagated individually with
individual headers.

6 RELATED WORK AND DISCUSSION

Gupta et al. compared four latency tolerance and reduction
techniques [13] consisting of coherent caches (with a write-
invalidate protocol), relaxed memory consistency models,
prefetching, and multiple hardware contexts. The first two
techniques exhibit consistent performance improvements
across all the studied benchmarks. Therefore, we have con-
sidered both these techniques in our baseline architecture
BASIC. Although this combination can eliminate all the
write penalty, the read penalty is a severe problem.

One of the protocol extensions we have considered is a
hardware-based sequential prefetching scheme. Hager-
sten’s ROT prefetching [14] is another prefetching scheme
which takes advantage of the regularity of data accesses in
scientific computations by dynamically detecting access

TABLE 5
BUFFERING REQUIREMENTS UNDER RELEASE CONSISTENCY

FLWB SLWB SLWB
#entries #entries #bytes

BASIC 8 16 144
P 8 16 144
CW 4 4 152
M 4 4 36

P + CW 4 4 152

P + M 4 4 36

TABLE 6
BUFFERING REQUIREMENTS UNDER SEQUENTIAL CONSISTENCY

FLWB SLWB SLWB
#entries #entries #bytes

B-SC 1 1 9
P + M 1 4 36

1054 IEEE TRANSACTIONS ON COMPUTERS, VOL. 47, NO. 10, OCTOBER 1998

strides. Unfortunately, this solution requires complex
hardware and does not work well for applications with
irregular strides [5]. Another proposal by Lee et al. [15] re-
lies on data address lookahead in the processor, but is lim-
ited by the number of instructions in basic blocks. Mowry
and Gupta studied software-based prefetching [16]. Special
prefetch instructions are explicitly inserted in the code (by
the programmer or by the compiler).

Finally, we did not consider processor multithreading
because Gupta et al. [13], using a similar benchmark suite,
clearly showed that its interaction with prefetching is com-
plex and oftentimes degrades performance. Instead we
have considered previously proposed cache protocol op-
timizations and studied their interactions.

In our study, we have assumed single issue, statically
scheduled processors. Today, processors exploit instruction-
level parallelism to a continuously increasing extent, includ-
ing multiple-issue, dynamic scheduling and nonblocking
reads. Gharachorloo et al. [11] explored the consequences of
hiding read latency through relaxed memory models. They
found that it would require very large instruction windows
and very accurate branch prediction to be effective. In [17],
Pai et al. explore the impact of instruction-level parallelism
(ILP) on multiprocessor performance. In their evaluation,
they include three of the applications we have used in this
paper; LU, MP3D, and Water. Their results show that, while
the read stall time in wall clock time is often shorter for a
system with ILP processors as compared to the same system
with scalar, statically scheduled processors, the relative
speedup of the busy time, i.e., the time spent on actual in-
struction execution, was much larger. As a result, a system
with ILP processors spends a larger fraction of its execution
time stalled because of latencies in the memory system.
This makes us believe that the performance improving
techniques explored in this paper are at least as important
for ILP processors.

7 CONCLUSIONS

In this paper, we have evaluated the combined performance
gains and hardware costs of three simple extensions to a
directory-based write-invalidate protocol: adaptive se-
quential prefetching (P), a migratory sharing optimization
(M), and a competitive-update mechanism (CW). These
extended protocols and all their combinations were shown
to add only marginally to the complexity of the second-
level caches and of the system-level cache coherence proto-
col. Moreover, since they are hardware-based, they do not
impose any requirement on software.

Out of the four possible combinations, we have found P +
CW and P + M to be particularly effective. They often provide
additive performance gains because they attack different com-
ponents of the processor penalties; e.g., while P cuts the read
penalty, M cuts the write penalty, resulting in a combined gain
of nearly a factor of two for some applications under sequen-
tial consistency. Moreover, we did not see any detrimental ef-
fects of the interactions between these individual techniques.

P + CW provides a performance improvement of nearly
a factor of two under release consistency for Cholesky, as-
suming enough network bandwidth. Network contention

has virtually no effect except for conservative mesh net-
work implementations. Although the prefetching mecha-
nism and the write caches in P + CW cost additional hard-
ware, we have shown that the buffer space needed in the
lockup-free cache is almost the same as for BASIC. Thus,
given a reasonable network bandwidth, we believe that P +
CW is an important technique.

Unlike P + CW, P + M is applicable to sequential consis-
tency as well as to release consistency. Under sequential
consistency, P + M was shown to improve performance sig-
nificantly for all applications. For three out of five applica-
tions, it even outperformed our baseline architecture under
release consistency. Under release consistency, although P + M
does not improve performance to the same extent as does P
+ CW, it was shown to be less sensitive to network conten-
tion. The optimization for migratory sharing (M) reduces
the write traffic generated, which can be exploited by pre-
fetching. Thus, P + M opens the possibility of utilizing pre-
fetching with high-contention network. To our knowledge,
P + M is the first example of hardware-based read-exclusive
prefetching.

This paper shows that a basic write-invalidate protocol
augmented by appropriate extensions can eliminate most
memory access penalties without any support from the
programmer or the compiler. An open and interesting di-
rection for future research is to investigate which penalties
can be attacked by a combination of compiler algorithms
and simple hardware mechanisms to meet the demands of
next generation high-performance processors.

REFERENCES

[1]� M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenström, “The Ca-
cheMire Test Bench—A Flexible and Effective Approach for Simu-
lation of Multiprocessors,” Proc. 26th Ann. Simulation Symp., pp. 41-
49, 1993.

[2]� L.M. Censier and P. Feautrier, “A New Solution to Coherence
Problems in Multicache Systems,” IEEE Trans. Computers, vol. 27,
no. 12, pp. 1,112-1,118, Dec. 1978.

[3]� A.L. Cox and R.J. Fowler, “Adaptive Cache Coherency for De-
tecting Migratory Shared Data,” Proc. 20th Ann. Int’l Symp. Com-
puter Architecture, pp.98-108, 1993.

[4]� F. Dahlgren, M. Dubois, and P. Stenström, “Sequential Hardware
Prefetching in Shared-Memory Multiprocessors,” IEEE Trans. Par-
allel and Distributed Systems, vol. 6, no. 7, pp. 733-746, July 1995.

[5]� F. Dahlgren and P. Stenström, “Evaluation of Hardware-Based
Stride and Sequential Prefetching in Shared-Memory Multiproc-
essors,” IEEE Trans. Parallel and Distributed Systems, vol. 7, no. 4,
pp. 385- 398, Apr. 1996.

[6]� F. Dahlgren, M. Dubois, and P. Stenström, “Combined Perform-
ance Gains of Simple Cache Protocol Extensions,” Proc. 21st Ann.
Int’l Symp. Computer Architecture, pp. 187-197, 1994.

[7]� F. Dahlgren and P. Stenström, “Using Write Caches to Improve
Performance of Cache Coherence Protocols in Shared-Memory
Multiprocessors,” J. Parallel and Distributed Computing, vol. 26, no. 2,
pp. 193-210, Apr. 1995.

[8]� M. Dubois and C. Scheurich, “Memory Access Dependencies in
Shared Memory Multiprocessors,” IEEE Trans. Software Eng., vol. 16,
no. 6, pp. 660-674, June 1990.

[9]� S.J. Eggers and R.H. Katz, “A Characterization of Sharing in Par-
allel Programs and its Application to Coherency Protocol Evalua-
tion,” Proc. 15th Ann. Int’l Symp. Computer Architecture, pp. 373-
382, 1988.

[10]� K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance Evalua-
tion of Memory Consistency Models for Shared-Memory Multi-
processors,” Proc. Fourth Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 245-257, 1991.

DAHLGREN ET AL.: PERFORMANCE EVALUATION AND COST ANALYSIS OF CACHE PROTOCOL EXTENSIONS 1055

[11]� K. Gharachorloo, A. Gupta, and J. Hennessy, “Hiding Memory
Latency Using Dynamic Scheduling in Shared-Memory Multi-
processors,” Proc. 19th Ann. Int’l Symp. Computer Architecture,
pp. 22-33, 1992.

[12]� H. Grahn, P. Stenström, and M. Dubois, “Implementation and
Evaluation of Update-Based Cache Protocols Under Relaxed
Memory Consistency Models,” Future Generation Computer Sys-
tems, vol. 11, no. 3, pp. 247-271, June 1995.

[13]� A. Gupta et al., “Comparative Evaluation of Latency Reducing
and Tolerating Techniques,” Proc. 18th Ann. Int’l Symp. Computer
Architecture, pp. 254-263, 1991.

[14]� E. Hagersten, “Towards Scalable Cache Only Memory Architec-
tures,” PhD thesis, Swedish Inst. of Computer Science, Oct. 1992
(SICS Dissertation Series 08).

[15]� R. Lee, P.-C. Yew, and D. Lawrie, “Data Prefetching in Shared-
Memory Multiprocessors,” Proc. 1987 Int’l Conf. Parallel Processing,
vol. I, pp. 28-31, 1987.

[16]� T. Mowry and A. Gupta, “Tolerating Latency through Software-
Controlled Prefetching in Scalable Shared-Memory Multiproces-
sors,” J. Parallel and Distributed Computing, vol. 2, no. 4, pp. 87-106,
June 1991.

[17]� V.S. Pai, P. Ranganathan, and S.V. Adve, “The Impact of Instruc-
tion-Level Parallelism on Multiprocessor Performance and Simu-
lation Methodology,” Proc. Third Int’l Symp. High-Performance
Computer Architecture, pp. 72-83, 1997.

[18]� J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford Paral-
lel Applications for Shared-Memory,” Computer Architecture News,
vol. 20, no. 1, pp. 5-44, Mar. 1992.

[19]� P. Stenström, T. Joe, and A. Gupta, “Comparative Performance
Evaluation of Cache-Coherent NUMA and COMA Architectures,”
Proc. 19th Ann. Int’l Symp. Computer Architecture, pp. 80-91, 1992.

[20]� P. Stenström, M. Brorsson, and L. Sandberg, “An Adaptive Cache
Coherence Protocol Optimized for Migratory Sharing,” Proc. 20th
Ann. Int’l Symp. Computer Architecture, pp. 109-118, 1993.

Fredrik Dahlgren received his MS degree in
computer science and engineering in 1990, and
his PhD degree in computer engineering in 1994,
both from Lund University. He is an assistant
professor in the Department of Computer Engi-
neering, Chalmers University of Technology. His
research is focused on computer architecture,
with special emphasis on the interaction between
application and architecture in shared-memory
multiprocessors, memory systems, and perform-
ance evaluation techniques. As a visiting scien-

tist at the Massachusetts Institute of Technology, he participated in the
multiprocessor research during 1995. He is a member of the IEEE
Computer Society. More information about Dahlgren’s current activities
can be found at http:// www.ce.chalmers.se/~dahlgren/.

Michel Dubois holds a PhD from Purdue Uni-
versity, an MS from the University of Minnesota,
and an engineering degree from the Faculte
Polytechnique de Mons in Belgium, all in Electri-
cal Engineering. He is a professor in the De-
partment of Electrical Engineering of the Univer-
sity of Southern California. Before joining USC in
1984, he was a research engineer at the Central
Research Laboratory of Thomson-CSF in Orsay,
France. His main interests are computer archi-
tecture and parallel processing, with a focus on

multiprocessor architecture, performance, and algorithms. He currently
leads the RPM Project. RPM is a flexible hardware platform built with
FPGAs and used to prototype multiprocessor systems with widely
different architectures. More information can be found on the world
wide web at http://www.usc.edu/dept/ceng/dubois/RPM.html and at
http://www.usc.edu/dept/ceng/dubois/dubois.html.

Dr. Dubois is a member of the ACM and a senior member of the
Computer Society of the IEEE.

Per Stenström has been a professor of com-
puter engineering at Chalmers University of
Technology since 1995. He was previously on
the faculty of Lund University, where he also
received his MS degree in electrical engineering
and a Ph.D. degree in computer engineering in
1981 and 1990, respectively. Dr. Stenström’s
research interests are in computer architecture in
general, with an emphasis on multiprocessor
design and performance analysis, as well as
compiler optimization techniques. He has pub-

lished more than 50 papers in these areas and has authored two text-
books on computer architecture and organization. As a visiting scien-
tist, he participated in major multiprocessor architecture research proj-
ects at Carnegie Mellon University, Stanford University, and the Uni-
versity of Southern California. He is on the editorial board of the Jour-
nal of Parallel and Distributed Computing (JPDC) and has served on
numerous program committees for computer architecture and parallel
processing conferences. Dr. Stenström is a senior member of the IEEE
and a member of the IEEE Computer Society and the ACM. For more
information about Stenström’s current activities, please refer to
http://www.ce.chalmers.se/~pers.

