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ABSTRACT
This study investigates unmanned aerial vehicle (UAV) trajectory planning strategies for localizing a target mobile device in
emergency situations. The global navigation satellite system (GNSS)-based accurate position information of a target mobile
device in an emergency may not be always available to first responders. For example, 1) GNSS positioning accuracy may be
degraded in harsh signal environments and 2) in countries where emergency positioning service is not mandatory, some mobile
devices may not report their locations. Under the cases mentioned above, one way to find the target mobile device is to use
UAVs. Dispatched UAVs may search the target directly on the emergency site by measuring the strength of the signal (e.g., LTE
wireless communication signal) from the target mobile device. To accurately localize the target mobile device in the shortest
time possible, UAVs should fly in the most efficient way possible. The two popular trajectory optimization strategies of UAVs
are greedy and predictive approaches. However, the research on localization performances of the two approaches has been
evaluated only under favorable settings (i.e., under good UAV geometries and small received signal strength (RSS) errors); more
realistic scenarios still remain unexplored. In this study, we compare the localization performance of the greedy and predictive
approaches under realistic RSS errors (i.e., up to 6 dB according to the ITU-R channel model). From the simulation result,
the greedy approach performs better in reducing the localization error at the initial stage of the search; however, the predictive
approach performs better once the localization error converges to a certain value. Based on these observations, we propose a
hybrid application involving both the approaches. The performance of the proposed hybrid approach was evaluated under less
diverse UAV geometries and realistic RSS errors. During simulation tests, the hybrid approach showed localization accuracy
improvements of 30.8% and 55.0% over the greedy-only and predictive-only approaches, respectively.

I. INTRODUCTION
The exact and fast localization of a target mobile device is critical in emergency response. In the United States, the Federal
Communications Commission (FCC) currently requires commercial mobile radio service (CMRS) providers to satisfy the
specified accuracy requirements (e.g., vertical accuracy of 3 m and horizontal accuracy of 50 m for 80% of all indoor 911
calls) on mobile devices (FCC, 2019). To meet those requirements and provide various location-based services (LBS), most
modern mobile devices contain global navigation satellite system (GNSS) chipsets. However, the accuracy and availability of
GNSS may be largely degraded in harsh environments, such as urban or indoors, owing to signal blockage and attenuation by
buildings (Soloviev, 2010; Strandjord et al., 2020; Lee et al., 2022c; Kim et al., 2021; Lee and Park, 2022). Further, in countries
where emergency positioning services are non-mandatory for manufacturers or carriers, the position information of a user in an
emergency may not be accessible on some devices.
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Figure 1 Conceptual Difference Between (a) Greedy and (b) Predictive Approaches

Therefore, to find the target mobile device in GNSS-denied conditions, unmanned aerial vehicle (UAV)-based target localization
(Dogancay, 2012; Shahidian and Soltanizadeh, 2016; Wang et al., 2018; Uluskan, 2020; Koohifar et al., 2016; Lee et al., 2022a)
is considered in this study. We assume UAVs (Kim et al., 2020a, 2014) are dispatched to the emergency location to localize the
target by measuring the target’s signal. Among several signal measurements (e.g., time-of-arrival (TOA) (Shamaei and Kassas,
2018; Wang et al., 2018; Uluskan, 2020; Lee and Seo, 2020; Lee et al., 2020a), time-difference-of-arrival (TDOA) (Son et al.,
2018, 2019; Kim et al., 2020b; Park et al., 2020), angle-of-arrival (AOA) (Park and Seo, 2021; Park et al., 2018), and received
signal strength (RSS) (Wang et al., 2018; Uluskan, 2020; Koohifar et al., 2016; Kang and Seo, 2020; Lee and Seo, 2022)), this
study considers the RSS measurement because of its hardware and software design simplicity.

The flying trajectory of UAVs should be optimized in a manner to localize the target as precisely as possible within the given
time frame. There are numerous well-established trajectory optimization strategies (Li andWu, 2020; Liu et al., 2018; Aggarwal
and Kumar, 2020; Rutkowski, 2012; Rutkowski et al., 2015; Lee et al., 2020b). In this study, we considered the Cramer-Rao
lower bound (CRLB), which is a lower bound on the variance of position estimates of an unbiased estimator, as a metric for
optimization (Dogancay, 2012; Shahidian and Soltanizadeh, 2016; Wang et al., 2018; Uluskan, 2020; Koohifar et al., 2016).

Using CRLB, twoUAV trajectory optimization schemes were considered: greedy (Dogancay, 2012; Shahidian and Soltanizadeh,
2016; Wang et al., 2018) and predictive (i.e., noncausal (Uluskan, 2020) or receding horizon (Koohifar et al., 2016)) approaches.
Figure 1 shows the conceptual difference between the two approaches. Both approaches optimize the UAV trajectories in the
direction of minimizing the CRLB. However, the predictive approach optimizes the next waypoint (t+1 in Figure 1(b)) based on
the predicted CRLB of the final epoch (i.e., CRLB at the maximum allowable search time, which is N in Figure 1(b)), whereas
the greedy approach considers only the CRLB of the next epoch (t+ 1 in Figure 1(a)) when calculating the next waypoint.

In Uluskan (2020) andKoohifar et al. (2016), it was shown that the predictive approach has better localization accuracy compared
to the greedy approach. However, these simulations were performed under less realistic settings; diverse UAV geometries and
small RSS errors were assumed (Wang et al., 2018; Uluskan, 2020; Koohifar et al., 2016). Table 1 compares the RSS error
assumption of the previous studies (Wang et al., 2018; Uluskan, 2020; Koohifar et al., 2016) with the realistic line-of-sight
(LOS) scenarios recommended by the International Telecommunication Union Radiocommunication Sector (ITU-R) channel
model (ITU, 2009). The RSS error in dB refers to the standard deviation of the ratios in dB of the measured RSS values to the
expected RSS values. The expected RSS value is the ideal RSS value obtained by the log-distance path loss model. The RSS
error is assumed to be normally distributed in the dB scale. The variable d in Table 1 is the distance between the target and the
UAV.

Most studies have considered an RSS error of 0.01 dB. However, this assumption is more optimistic compared to the realistic
channel models (note that the ITU-R channel model (ITU, 2009) recommends up to 6 dB RSS error in suburban or rural macro
scenarios). Even in scenarios that considered a realistic RSS error (e.g., 5 dB) (Uluskan, 2020), the UAV geometry was assumed
favorable (e.g., eight UAVs started the mission by surrounding the target).

We evaluated the localization performance of greedy and predictive approaches in scenarios with realistic RSS error assumptions.
According to simulation results, the greedy approach showed better localization accuracy at the initial stage of the search.
However, after the localization error converged to a certain value, the predictive approach showed better accuracy than the
greedy approach. Hence, we propose a hybrid scheme of combined greedy and predictive approaches.

The remainder of this paper describes the following: Section II describes the UAV-based target localization problem. Section
III focuses on the calculation of CRLB, and Section IV introduces greedy and predictive approaches. Section V evaluates the



TABLE 1 Comparison of RSS Error Assumptions in the Literature

ITU-R LOS Scenarios (ITU, 2009)
Reference Urban

Micro
Urban
Macro

Suburban
Macro

Rural
Macro

Wang et al.
(2018)

Uluskan
(2020)

Koohifar et al.
(2016)

RSS Error
(dB) 3 4 4–6 4–6 0.01× d 0.01 or 5 0.01

Note: The variable d is the distance between the UAV and target.

performance of greedy and predictive approaches in various scenarios and proposes a hybrid approach. Finally, Section VI
concludes this paper.

II. PROBLEM DESCRIPTION
We assumed the following emergency localization situation. M UAVs are equipped with receivers capable of measuring RSS of
a signal transmitted from the target. It is assumed that UAVs can estimate their own positions through their navigation systems
(e.g., GNSS (Misra and Enge, 1994; Sun et al., 2021; Park et al., 2022; Seo and Walter, 2014; Lee et al., 2022b; Park and
Seo, 2021; Kwak and Sung, 2018; Kim et al., 2021) or alternative navigation systems (Zhang et al., 2011; Kim et al., 2014;
Lee et al., 2019; Huang et al., 2019; Jia et al., 2021; Strandjord et al., 2021; Rhee et al., 2021; Jeong et al., 2020; Kim et al.,
2022; Lee et al., 2022d)). When the maximum allowable search time is limited to N seconds, the position of the m-th UAV
at time t ∈ [0, N ] is expressed as xUAV

m,t =
[
xUAV
m,t , y

UAV
m,t

]T. Note, although two-dimensional target localization is assumed in
this study, our method can simply be expanded to three dimensions by adding a z-axis variable. When the actual position of the
target is r = [xr, yr]

T, the RSS measured by them-th UAV at time t (i.e., P̂m,t), can be modeled as:

P̂m,t = Pm,t + nm,t = P0 − 10β log10
dm,t
d0

+ nm,t,

dm,t = ‖xUAV
m,t − r‖,

nm,t ∼ N (0, σ2
dB),

(1)

where P0 (in dBm) is the RSS at the distance d0 from the target (in this study, d0 is assumed to be 1 mwithout loss of generality);
β is the path loss exponent; nm,t is the log-normal shadowing that can be modeled as normal distribution in the dB scale with
standard deviation of σdB; and ‖ · ‖ denotes Euclidean norm.

Our goal is to determine an optimal UAV position at time t+ 1 (i.e., xUAV
m,t+1) in the direction of lowering the target localization

error the most using the RSS measurements up to time t. The geometry between the target and the UAVs has a significant
impact on RSS-based localization performance. The effects of geometry are reflected in the CRLB, which is the lower bound
on any unbiased estimator’s error variance.

III. CRAMER-RAO LOWER BOUND FOR RSS LOCALIZATION
The CRLB is the inverse of the Fisher information matrix (FIM). The Fisher information quantifies how much information
an observed random variable P̂m,t has about an unknown parameter r (Wang et al., 2018; Uluskan, 2020; Ly et al., 2017).
Our objective is to optimize the UAVs’ trajectories in the direction of increasing Fisher information (i.e., reducing CRLB) to
accurately estimate the target’s position. Considering any unbiased estimate of r (i.e., r̂), the covariance of r̂ is bounded by the
inverse of the FIM (Wang et al., 2018; Uluskan, 2020):

E
[
(r̂− r) (r̂− r)

T
]
≥ Jt (r)

−1
, (2)

where the (i, j)-th element of the FIM Jt at time t is given by (Ly et al., 2017; Wang et al., 2018):

[Jt (r)]i,j = E
[(

∂

∂ri
ln
(
f
(
P̂t;r

)))( ∂

∂rj
ln
(
f
(
P̂t;r

))) ∣∣∣∣ r] , (3)



where P̂t =
[
P̂1,t, · · · , P̂M,t

]T
is the set of measurements collected by M UAVs at time t; and f

(
P̂t;r

)
is the probability

density function (PDF) of P̂t conditioned on the value of r, which is a multivariate normal distribution as follows (Ly et al.,
2017):

f
(
P̂t;r

)
=

1

(2π)M/2 · σdB
exp

[
−1

2

(
P̂t −Pt

)T
σ−1
dB

(
P̂t −Pt

)]
, (4)

where Pt = [P1,t, · · · , PM,t]
T.

By combining Equations (1) and (3), the FIM for estimating the parameter r using RSS measurements P̂t can be reformulated
as follows (Uluskan, 2020):

Jt (r) = K



M∑
m=1

(
xUAV
m,t − xr

)2
dm,t

4

M∑
m=1

(
xUAV
m,t − xr

)
·
(
yUAV
m,t − yr

)
dm,t

4

M∑
m=1

(
xUAV
m,t − xr

)
·
(
yUAV
m,t − yr

)
dm,t

4

M∑
m=1

(
yUAV
m,t − yr

)2
dm,t

4

 ,

K =
1

σdB

(
10β

ln (10)

)
.

(5)

To calculate the FIM of Equation (5), the true position of the target, r, must be known to UAVs. However, knowing r in a
real target localization situation is impossible. Following the approach of previous studies (Uluskan, 2020; Wang et al., 2018;
Koohifar et al., 2016), we calculated FIM using the estimate of r at time t (i.e., r̂t) instead of the true r. We updated r̂t every
epoch by maximum likelihood estimation (MLE) as follows (Lee et al., 2022a):

r̂t = argmin
r

t∑
i=0

M∑
m=1

n2m,t

= argmin
r

t∑
i=0

M∑
m=1

(
Pm,i − P0 + 10β log10

dm,t
d0

)2

.

(6)

MLE in Equation (6) can be solved using numerical methods (Baldi, 1995; Garg et al., 2012; Lee et al., 2022a). In this study,
we implemented a grid search-based MLE solver.

As optimization metrics from the FIM, some optimal designs (e.g., A-, E-, and D-optimality) can be used. In previous studies
(Uluskan, 2020; Wang et al., 2018; Koohifar et al., 2016), the D-optimality for UAV trajectory optimization was commonly
used. The D-optimality minimizes the volume of the uncertainty ellipsoid of the target’s position estimate. To minimize the
volume of the uncertainty ellipsoid, the determinant of Jt (r) should be maximized.

IV. GREEDY AND PREDICTIVE TRAJECTORY OPTIMIZATION APPROACHES
This section introduces two well-known trajectory optimization approaches: greedy and predictive approaches. As the number
of RSS measurements increases over time, the volume of uncertainty ellipsoid of the position of target gradually decreases (or
equivalently, the determinant of Jt (r) gradually increases). In emergency situations, diminishing the volume of the uncertainty
ellipsoid rapidly becomes important. To achieve this, the greedy and predictive approaches formulate optimization problems in
determining the next moving directions of UAVs.

1. Greedy Approach
Given the previous trajectories and the current RSS measurements, the greedy approach optimizes the best possible moving
direction αt+1 of each UAV, which can be formulated as (Uluskan, 2020; Wang et al., 2018):



αt+1 = argmax
α

[
det

(
Jt+1 (r̂, α) +

t∑
i=0

Ji (r̂)

)]
, (7)

where Jt+1 (r̂, α) is the FIM at the next epoch t+ 1 and a function of α; and the position of the m-th UAV at next epoch t+ 1
is given by (Uluskan, 2020):

xUAV
m,t+1 (α) = xUAV

m,t + l · cos (α)

yUAV
m,t+1 (α) = yUAV

m,t + l · sin (α) ,
(8)

where l is the separation between two subsequent waypoints of the UAV.

The optimal solution of Equation (7) can be obtained by numerical methods. After calculating the optimal moving direction of
the UAV, the UAV moves in the corresponding direction and adopts a new RSS measurement. This procedure continues until
time reaches the maximum allowable search time N . This optimization approach is called “greedy” because it only considers
the FIM after one epoch, which yields a “short-sighted” optimal choice.

2. Predictive Approach
In contrast to the greedy approach, the predictive approach seeks a “long-sightedness” by predicting the FIM at the end of search
(i.e., the maximum allowable search time). The predictive approach for optimizing the best possible moving direction of each
UAV can be formulated as (Uluskan, 2020):

αt+1 = argmax
α

[
det

(
N−t∑
k=1

Jt+k (r̂, α) +

t∑
i=0

Ji (r̂)

)]
, (9)

where the position of UAV at the epoch t+ k is given by (Uluskan, 2020):

xUAV
m,t+k (α) = xUAV

m,t + k · l · cos (α)

yUAV
m,t+k (α) = yUAV

m,t + k · l · sin (α) .
(10)

In Equation (9), the predictive approach considers the FIM of all the future values along the UAV heading direction from time
t+1 toN . Uluskan (2020) analyzed that the predictive approach induces UAVs to move in a linear motion, whereas the greedy
approach induces a curved motion by their nature.

In Uluskan (2020), it has been shown that the predictive approach is especially effective for UAVs with limited capability (e.g.,
time limitation or battery capacity) on traveling. The previous study showed that the predictive approach is effective in reducing
localization error at the end of the search “when the total travel length is shorter than the initial distance to the target” (Uluskan,
2020). We consider an emergency situation with a time constraint on search. Therefore, we mainly assumed in our simulation
that the overall travel length of each UAV is less than the initial distance between the UAV and target.

V. EVALUATION
We evaluated the target localization performance of the greedy and predictive approaches according to optimistic or realistic
RSS error assumptions. Based on the performance observations, a hybrid application of the greedy and predictive methods
is proposed. The performance of the proposed hybrid approach is evaluated under realistic UAV geometries and RSS error
assumptions.

1. Single UAV Scenarios
Single UAV simulations were performed with σdB set to 1) optimistic (i.e., 0.01 dB) and 2) realistic (i.e., 6 dB) values. Figure
2 shows the target localization performance of greedy and predictive approaches with (a) optimistic and (b) realistic RSS error
assumptions. In both cases, the UAV started the mission at (0 m, 100 m) and the target was fixed at (0 m, 0 m). UAV flied 5 m
per epoch (i.e., l was set to 5 m). The total number of epochs was set to 15 for both optimistic and realistic RSS error cases. In
both cases, 100 simulations were conducted, and the root-mean-squared error (RMSE) was calculated. P0 and β were set to 10



Figure 2 Target Localization Performance of the Greedy and Predictive Approaches Using a Single UAV under (a) Optimistic and (B) Realistic
RSS Error Assumptions

Figure 3 Initial Position of UAVs (Colored Circles) and Target (Black Square) in (a) Favorable Geometry Scenario and (B) Realistic Geometry
Scenario

dBm and 3, respectively. The optimization problems of Equations (6), (7), and (9) were solved by the grid search-based MLE
solver that we implemented. The distance increment for the grid search for localizing the target using Equation (6) was set to 1
m. The directional angle increment for the grid search for finding the optimal flying direction of UAVs using Equations (7) and
(9) was set to 5◦.

2. Hybrid Application of the Greedy and Predictive Methods
According to the simulation results in Figure 2, the greedy approach shows better localization accuracy in the realistic RSS
error case and the initial stage of the optimistic RSS error case. However, after the localization error reduces to a certain value
(e.g., approximately 10 m in the case of Figure 2(a)), the predictive approach shows better accuracy than the greedy approach.
When the target localization error is large, the curved trajectories induced by the greedy approach are beneficial to diverging
UAV geometry. However, after the localization error is decreased below a certain level (that is, when the UAV geometry
has sufficiently diverged), the linear trajectories induced by the predictive approach become more effective in minimizing the
localization error variance. Hence, we propose a hybrid scheme of greedy and predictive approaches: using a greedy approach
at the beginning of the target search and then using a predictive approach after the target localization error reduces to a certain
extent. The time of switching from greedy to predictive can be determined adaptively. However, we selected the switching time
manually in this preliminary study.



Figure 4 Target Localization Performance of the Greedy and Predictive Approaches Using Four UAVs under (a) Favorable and (B) Realistic
Geometry Scenarios

TABLE 2 Final Target Localization Errors of Three Approaches

Approach Greedy Predictive Hybrid
(proposed)

Final Position
Error (m) 16.12 24.78 11.15

3. Multiple UAV Scenarios
We first evaluated the greedy and predictive approaches in scenarios when the geometries between the target and UAVs are 1)
favorable (i.e., all UAVs are evenly distributed around the target) and 2) realistic (i.e., all UAVs depart from the same base).
Figure 3 shows the initial positions of the UAVs and target in two scenarios. The UAVs are represented by colored circles, while
the target is represented by a black square. In the favorable geometry scenario, four UAVs are evenly deployed on a square with
a side length of 200 m that surrounds the target. In the realistic geometry scenario, four UAVs start the mission at (−100 m,
−100 m) and the target is fixed at (0 m, 0 m). In both two scenarios, σdB was set to 6 dB. l was set to 5 m and the total number
of epochs was set to 27. A total of 27 epochs was selected because we set “the ability to reach the target” of the predictive
approach to 0.95. The ability to reach the target refers to the ratio of the total travel distance to the initial distance between the
UAV and target, which is discussed in Uluskan (2020). In both scenarios, 100 simulations were performed. The settings for
MLE were the same as the single UAV simulation case discussed in Section V.1. The range for the grid search was set to 300 m
× 300 m, which is shown as dashed squares in Figure 3.

Figure 4 shows the simulation results. In the favorable geometry scenario, both approaches demonstrated similar target
localization performance. This is because both approaches induced UAVs to fly similar trajectories (i.e., along straight lines
toward the target). On the other hand, the greedy approach was more effective in minimizing the target localization error in
the realistic geometry scenario. While both approaches performed well in the favorable geometry scenario, a more effective
approach is needed in the realistic geometry scenario. Hence, we applied the proposed hybrid approach to the realistic geometry
scenario.

Table 2 shows the localization performance of the proposed hybrid approach in the realistic scenario. The final target localization
errors after 27 epochs are compared. In the hybrid approach, the greedy approach was applied for the first 10 epochs, and then
the mode was switched to the predictive approach. Even with this simple scheme, the hybrid approach improved the target
localization performance by 30.8% and 55.0%, compared to the greedy-only and predictive-only approaches, respectively.

Figure 5 shows example UAV trajectories under the three approaches. The greedy approach makes UAVs follow curved
trajectories toward the target at the origin, as shown in Figure 5(a). In contrast, the predictive approach in Figure 5(b) generates
linear trajectories. During the initial period of search, our hybrid approach in Figure 5(c) yields curved trajectories as the greedy
approach case. After the first 10 epochs, linear trajectories are generated as the predictive approach case.



Figure 5 Example UAV Trajectories (Colored Circles) under (a) Greedy, (b) Predictive, and (c) Hybrid Approaches (The True Position of the
Target is Marked as a Black Square at the Origin and the Estimated Positions of the Target are Marked as Empty Squares)

VI. CONCLUSION
In emergency situations, the location information of a target mobile device based on GNSS is not always available to first
responders. Therefore, a backup system for localizing the target is necessary. One way to localize the target is to use UAVs
in an emergency site for directly searching the target based on the received radio signals transmitted from the target. UAVs in
an emergency should fly efficiently to find the location of the target in the shortest time possible. Previous research suggested
two UAV trajectory optimization methods: greedy and predictive approaches. However, the performance of the two approaches
was evaluated only under optimistic scenarios where the RSS error is small and the geometry between the UAVs and target is
favorable.

Hence, we first evaluated the two approaches with single UAV simulations in an optimistic RSS error case and a realistic RSS
error case where the RSS error satisfies the ITU-R recommendation. In the simulation results, the greedy approach showed
better localization accuracies in the realistic RSS error case and the initial stage of the optimistic RSS error case. However, after
the localization error converged to a certain value (e.g., about 10 m in our simulation), the predictive approach showed better
accuracy than the greedy approach in the optimistic RSS error case.

Based on these observations, we propose a simple hybrid approach using both the greedy and predictive approaches. The
performance of the hybrid approach was evaluated in a realistic scenario where the UAV geometry is unfavorable (i.e., four
UAVs depart from the same location) and the RSS error is large. According to the simulation results, the hybrid approach
provides a better localization accuracy than the cases of greedy and predictive approaches.

ACKNOWLEDGEMENTS
This research was supported by the Future Space Navigation & Satellite Research Center through the National Research
Foundation funded by the Ministry of Science and ICT, Republic of Korea (2022M1A3C2074404). This research was also
supported by the Unmanned Vehicles Core Technology Research and Development Program through the National Research
Foundation of Korea (NRF) and Unmanned Vehicle Advanced Research Center (UVARC) funded by the Ministry of Science
and ICT, Republic of Korea (2020M3C1C1A01086407).



REFERENCES
Aggarwal, S. and Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges.

Comput. Commun., 149:270–299.

Baldi, P. (1995). Gradient descent algorithm overview: A general dynamical systems perspective. IEEE Trans. Neural Netw.
Learn. Syst., 6(1):181–195.

Dogancay, K. (2012). UAV path planning for passive emitter localization. IEEE Trans. Aerosp. Electron. Syst., 48(2):1150–1166.

FCC (2019). Wireless E911 location accuracy requirements. FCC 19-124A1.

Garg, R., Varna, A. L., and Wu, M. (2012). An efficient gradient descent approach to secure localization in resource constrained
wireless sensor networks. IEEE Trans. Inf. Forensics Secur., 7(2):717–730.

Huang, H., Yang, Y., Wang, H., Ding, Z., Sari, H., and Adachi, F. (2019). Deep reinforcement learning for UAV navigation
through massive MIMO technique. IEEE Trans. Veh. Technol., 69(1):1117–1121.

ITU (2009). Guidelines for evaluation of radio interface technologies for IMT-Advanced. ITU-R M.2135-1.

Jeong, S., Lee, H., Kang, T., and Seo, J. (2020). RSS-based LTE base station localization using single receiver in environment
with unknown path-loss exponent. In Proc. ICTC, pages 958–961.

Jia, M., Lee, H., Khalife, J., Kassas, Z. M., and Seo, J. (2021). Ground vehicle navigation integrity monitoring for multi-
constellation GNSS fused with cellular signals of opportunity. In Proc. IEEE ITSC, pages 3978–3983.

Kang, T. and Seo, J. (2020). Practical simplified indoor multiwall path-loss model. In Proc. ICCAS, pages 774–777.

Kim, J., Kwon, J.-W., and Seo, J. (2014). Multi-UAV-based stereo vision system without GPS for ground obstacle mapping to
assist path planning of UGV. Electron. Lett., 50(20):1431–1432.

Kim, S., Lee, H., and Park, K. (2021). GPS multipath detection based on carrier-to-noise-density ratio measurements from a
dual-polarized antenna. In Proc. ICCAS, pages 1099–1103.

Kim, S., Park, J., Yun, J.-K., and Seo, J. (2020a). Motion planning by reinforcement learning for an unmanned aerial vehicle in
virtual open space with static obstacles. In Proc. ICCAS, pages 784–787.

Kim, W., Son, P.-W., Park, S. G., Park, S. H., and Seo, J. (2022). First demonstration of the Korean eLoran accuracy in a narrow
waterway using improved ASF maps. IEEE Trans. Aerosp. Electron. Syst., 58(2):1492–1496.

Kim, W., Son, P.-W., Rhee, J., and Seo, J. (2020b). Development of record and management software for GPS/Loran
measurements. In Proc. ICCAS, pages 796–799.

Koohifar, K., Kumbhar, A., and Guvenc, I. (2016). Receding horizon multi-UAV cooperative tracking of moving RF source.
IEEE Commun. Lett., 21(6):1433–1436.

Kwak, J. and Sung, Y. (2018). Autonomous UAV flight control for GPS-based navigation. IEEE Access, 6:37947–37955.

Lee, H., Abdallah, A., Park, J., Seo, J., and Kassas, Z. (2020a). Neural network-based ranging with LTE channel impulse
response for localization in indoor environments. In Proc. ICCAS, pages 939–944.

Lee, H., Kang, T., Jeong, S., and Seo, J. (2022a). Evaluation of RF fingerprinting-aided RSS-based target localization for
emergency response. In Proc. IEEE VTC, pages 1–7.

Lee, H., Kang, T., and Seo, J. (2019). Safety distance visualization tool for LTE-based UAV positioning in urban areas. J. Adv.
Navig. Technol., 23(5):408–414.

Lee, H., Pullen, S., Lee, J., Park, B., Yoon, M., and Seo, J. (2022b). Optimal parameter inflation to enhance the availability of
single-frequency GBAS for intelligent air transportation. IEEE Trans. Intell. Transp. Syst., 23(10):17801–17808.

Lee, H. and Seo, J. (2020). A preliminary study of machine-learning-based ranging with LTE channel impulse response in
multipath environment. In Proc. IEEE ICCE-Asia, pages 1–4.

Lee, H. and Seo, J. (2022). Performance comparison of machine learning algorithms for received signal strength-based indoor
LOS/NLOS classification of LTE signals. J. Position. Navig. Timing, 11(4):361–368.

Lee, H., Seo, J., and Kassas, Z. (2020b). Integrity-based path planning strategy for urban autonomous vehicular navigation
using GPS and cellular signals. In Proc. ION GNSS+, pages 2347–2357.



Lee, H., Seo, J., and Kassas, Z. (2022c). Urban road safety prediction: A satellite navigation perspective. IEEE Intell. Transp.
Syst. Mag., 14(6):94–106.

Lee, S., Kim, E., and Seo, J. (2022d). SFOL DME pulse shaping through digital predistortion for high-accuracy DME. IEEE
Trans. Aerosp. Electron. Syst., 58(3):2616–2620.

Lee, Y. and Park, B. (2022). Nonlinear regression-based GNSS multipath modelling in deep urban area. Mathematics,
10(3):1–15.

Li, B. and Wu, Y. (2020). Path planning for UAV ground target tracking via deep reinforcement learning. IEEE Access,
8:29064–29074.

Liu, Y., Wang, Q., Hu, H., and He, Y. (2018). A novel real-time moving target tracking and path planning system for a quadrotor
UAV in unknown unstructured outdoor scenes. IEEE Trnas. Syst. Man Cybern., 49(11):2362–2372.

Ly, A., Marsman, M., Verhagen, J., Grasman, R., and Wagenmakers, E. (2017). A tutorial on Fisher information. J. Math.
Psychol., 80:40–55.

Misra, P. and Enge, P. K. (1994). The Global Positioning System: Signals, Measurements, and Performance. Ganga-Jamuna
Press.

Park, B., Lim, C., Wang, J., and Morton, Y. T. J. (2022). Horizontal drift velocity and dimensions of ionospheric irregularities
using ROT from a GNSS receiver array. IEEE Trans. Geosci. Remote Sens., 60:1–14.

Park, J., Son, P.-W., Kim,W., Rhee, J., and Seo, J. (2020). Effect of outlier removal from temporal ASF corrections onmultichain
Loran positioning accuracy. In Proc. ICCAS, pages 824–826.

Park, K., Lee, D., and Seo, J. (2018). Dual-polarized GPS antenna array algorithm to adaptively mitigate a large number of
interference signals. Aerosp. Sci. Technol., 78:387–396.

Park, K. and Seo, J. (2021). Single-antenna-based GPS antĳamming method exploiting polarization diversity. IEEE Trans.
Aerosp. Electron. Syst., 57(2):919–934.

Rhee, J. H., Kim, S., Son, P.-W., and Seo, J. (2021). Enhanced accuracy simulator for a future Korean nationwide eLoran
system. IEEE Access, 9:115042–115052.

Rutkowski, A. (2012). The most accurate path from point A to point B is not necessarily a straight line. In Proc. AIAA GNC,
pages 1–8.

Rutkowski, A., Taylor, B., Eilders, M., Brink, K., and Taylor, C. (2015). Path planning for cooperative navigation with inter-agent
range measurements. In Proc. ION Pacific PNT, pages 344–349.

Seo, J. and Walter, T. (2014). Future dual-frequency GPS navigation system for intelligent air transportation under strong
ionospheric scintillation. IEEE Trans. Intell. Transp. Syst., 15(5):2224–2236.

Shahidian, S. A. A. and Soltanizadeh, H. (2016). Path planning for two unmanned aerial vehicles in passive localization of radio
sources. Aerosp. Sci. Technol., 58:189–196.

Shamaei, K. and Kassas, Z. M. (2018). LTE receiver design and multipath analysis for navigation in urban environments. Navig.
J. Inst. Navig., 65(4):655–675.

Soloviev, A. (2010). Tight coupling GPS and INS for urban navigation. IEEE Trans. Aerosp. Electron. Syst., 46(4):1731–1746.

Son, P.-W., Rhee, J., Hwang, J., and Seo, J. (2019). Universal kriging for Loran ASF map generation. IEEE Trans. Aerosp.
Electron. Syst., 55(4):1828–1842.

Son, P.-W., Rhee, J., and Seo, J. (2018). Novel multichain-based Loran positioning algorithm for resilient navigation. IEEE
Trans. Aerosp. Electron. Syst., 54(2):666–679.

Strandjord, K., Axelrad, P., andMohiuddin, S. (2020). Improved urban navigation with shadowmatching and specular matching.
Navig. J. Inst. Navig., 67(3):547–565.

Strandjord, K., Morton, Y., and Wang, P. (2021). Evaluating the urban signal environment for GNSS and LTE signals. In Proc.
ION GNSS+, pages 2166–2182.

Sun, A. K., Chang, H., Pullen, S., Kil, H., Seo, J., Morton, Y. J., and Lee, J. (2021). Markov chain-based stochastic modeling of
deep signal fading: Availability assessment of dual-frequency GNSS-based aviation under ionospheric scintillation. Space
Weather, 19(9):1–19.



Uluskan, S. (2020). Noncausal trajectory optimization for real-time range-only target localization by multiple UAVs. Aerosp.
Sci. Technol., 99:105558.

Wang, W., Bai, P., Liang, X., Zhang, J., and He, L. (2018). Performance analysis and path planning for UAVs swarms based on
RSS measurements. Aerosp. Sci. Technol., 81:157–166.

Zhang, J., Liu, W., and Wu, Y. (2011). Novel technique for vision-based UAV navigation. IEEE Trans. Aerosp. Electron. Syst.,
47(4):2731–2741.


	I INTRODUCTION
	II Problem Description
	III Cramer-Rao Lower Bound for RSS Localization
	IV Greedy and Predictive Trajectory Optimization Approaches
	1 Greedy Approach
	2 Predictive Approach

	V Evaluation
	1 Single UAV Scenarios
	2 Hybrid Application of the Greedy and Predictive Methods
	3 Multiple UAV Scenarios

	VI Conclusion

