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ABSTRACT
Over more than a century now, a wide variety of system per-
formance evaluation techniques have been developed, based
on the theory of stochastic processes. These have shown
their practical relevance in guiding system design, and have
found their way into software tools. But what is their sta-
tus nowadays? In industrial practice we see simulation tech-
niques prevailing. Is there any future for classical (analyti-
cal) performance evaluation?

In this paper, we will plea for a marriage between classi-
cal performance (and dependability) evaluation and state-of-
the-art verification techniques. The last decade has shown a
number of important joint efforts in this area, resulting in a
quantitative system evaluation technology nowadays known
as stochastic model checking. Not only does this marriage
provide two evaluation types in one —correctness and per-
formance— which is of utmost importance in many newer
application areas, it also yields mutually beneficial insights
that improve methods and techniques at either end. For
these new techniques, we observe a growing application po-
tential, well beyond computer science.

Categories and Subject Descriptors
C.4 [Performance of Systems]: modeling techniques, per-
formance attributes, reliability, availability, serviceability;
D.2.4 [Software/Program Verification]: formal meth-
ods, model checking, reliability; F.4.1 [Mathematical Lo-
gic]: temporal logic

General Terms
performance, reliability, verification
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Consider a major news website like BBC or CNN. Typ-
ically, such a site is equipped with a number of machines
serving as front-ends to receive incoming requests together
with some application servers such as database engines to
handle these requests. When a new request arrives, to which
server does the dispatcher have to route it? To the machine
with the shortest queue, i.e., the queue with the minimal
number of outstanding requests? This might be the best
decision most times, but not in cases where some of the re-
quests in the shortest queue happen to require a very long
service time, e.g., because they involve very detailed queries.
And what to do when the servers differ in computational
capabilities? And what to do when multiple hosts have the
same queue length? Well, the “join-the-shortest queue” pol-
icy might be adequate in most cases, but surely not in all.
Its adequacy also depends on what quantity —or measure—
one is interested in. This may be the mean delay of service
requests, the mean queue length of waiting requests, rejec-
tion rates for waiting requests, and so on.

The effect of queue-selection policies on measures of in-
terest or on decisions on how many servers are needed to
reduce the waiting time by a given percentage, are answered
by performance evaluation techniques. This branch of com-
puter (system) science studies the perceived performance of
systems based on an architectural system description and a
workload model. Prominent techniques to obtain the afore-
mentioned measures of interest are mathematical analysis
that is typically focused on obtaining closed-form expres-
sions, numerical evaluation that heavily relies on methods
from linear algebra, and (discrete-event) simulation tech-
niques which are based on statistical methods. The study
and description of stochastic processes, most notably Markov
chains, is pivotal for these techniques.

A complementary issue to performance is correctness. The
central question is whether a system is conforming to the
requirements and does not contain any flaws. Typically up-
dates to our news website are queued, and it is relevant to
know whether such buffers may overflow, giving rise to losing
—perhaps headline— news items. Can such situations ever
occur? Is there a possible scenario in which the dispatcher
and application server are mutually waiting for each other,
thus effectively halting the system? If such situations make
the CNN news website unreachable at U.S. president elec-
tion day, this has far reaching consequences. And may the
content of webpages unexpectedly depend on the ordering of



seemingly unrelated events in the application servers? Such
“race conditions” should, if possible, be avoided.

A prominent discipline in computer science to assure the
absence of errors, or, complimentarily, to find errors (“bug
hunting”) is formal verification. The spectrum of key tech-
niques in this field ranges from run-time verification, i.e.,
checking properties while executing the system, over deduc-
tive techniques such as theorem proving, to model checking.
The latter is a highly automated model-based technique as-
sessing whether a system model, i.e., the possible system
behavior, satisfies a property describing the desirable be-
havior. Typically, properties are expressed in temporal ex-
tensions of propositional logic, and system behavior is cap-
tured by Kripke structures, i.e., finite-state automata with
labeled states. Traditionally, such models do not incorpo-
rate quantitative information like timing or likelihoods of
event occurrences.

The purpose of this paper is to report on combining per-
formance evaluation with model checking. Although these
fields have been developed by different research communities
in the past, over the last decade we have seen an integration
of these two techniques for system analysis. Significant mer-
its of this trend are: (i) a major increase of the applicability
to real cases, and (ii) an impulse in the further development
for both fields.

2. A HISTORIC ACCOUNT
To appreciate the benefits of combining performance eval-

uation and model checking, it is worthwhile to reflect on past
and recent developments. We aim to shed light on the hid-
den assumptions associated with these developments. For
more details on performance evaluation we refer to [22, 10],
for details on model checking we refer to [11, 7].

Performance Evaluation
Single queues. Performance evaluation dates back to the
early 1900s, when Erlang developed models to dimension
the number of required lines in analogue telephone switches,
based on the calculation of call loss probabilities. In fact,
he used a queueing model, in which a potentially infinite
supply of customers (callers) compete for a limited set of
resources (the lines). The set of models and the theory that
evolved from there, is nowadays known as queueing theory.
It has found, through the last century, wide applicability
especially in telecommunications. Characteristic for most
of these models is the competition for a single scarce re-
source at a time, leading to models with a single queue.
A large variety of modeling assumptions were made, e.g.,
regarding the number of available servers (lines), buffering
facilities, scheduling strategies, job discrimination, and the
timing involved. The timings were assumed to follow some
continuous-time distribution, most often a negative expo-
nential distribution, leading to (what we now call) Marko-
vian models. These models were subsequently analysed,
using calculus, to obtain such quantities as mean number
of customers queued, mean delay, sometimes even the de-
lay distribution, or the call blocking probability (“hearing a
busy tone”). Many of these measures are available in closed
form; at other times, numerical recipes were proposed, e.g.,
to derive such measures from explicit expressions in the
Laplace domain. Important to note is that model construc-
tion, as well as solution, was (and still is) seen as a craft,

only approachable by experts.
Networks of queues. In the late 1960s, computer net-

works, networked computer systems, and time-sharing com-
puter systems came into play. These systems have as dis-
tinguishing feature that they serve a finite customer popu-
lation; however, they comprise multiple resources. This led
to developments in the area of queueing networks, in which
customers travel through a network of queues, are served
at each queue according to some scheduling discipline, and
are routed to their next point of service, and so on, until
returning to the party that originated the request. Efficient
algorithms to evaluate networks of queues to obtain a set
of “standard measures” such as mean delays, throughputs
and mean queue lengths, were developed in the 1970s [40,
51]. A variety of software tools emerged supporting these
algorithms that typically have a polynomial complexity in
the number of queues and customers.

Stochastic Petri nets. In early 1980s, new computer ar-
chitectures asked for more expressive modeling formalisms.
In particular, parallel computers motivated modeling no-
tions to spawn customers and to recombine smaller tasks
into larger ones (fork/join queues), as well as the simulta-
neous use of multiple resources at the same time needed to
be studied. Clearly, these concepts could not be expressed
using queueing networks. This led, among others, to the pro-
posal to extend Petri nets —originally developed to model
concurrency— with a notion of time, leading to (generalised)
stochastic Petri nets (SPNs) [2]. Here, the tokens can either
play the role of customers or of resources. Two observations
are important. First, due to the increase in expressivity, spe-
cialised algorithms such as available for queueing networks,
can typically not be used anymore. Instead, the SPN mod-
els need to be mapped to an underlying stochastic process,
a Markov chain, that is solved by numerical means. Hence,
the state space of the model has to be generated explicitly,
and the resulting Markov chain has to be solved numerically
(linear equation solvers). The computational complexity of
these state-based methods is polynomial in the number of
states, but this often is, in turn, (often) a high-degree poly-
nom in the SPN size. Secondly, as a result of the new solu-
tion trajectory, tool support became a central issue. Results
achieved in this area also inspired new numerical algorithms
for extended queueing network models. With hindsight,
SPNs can be considered as the first “product” of the mar-
riage between the field of performance evaluation and the
field of formal modeling. In the 1990s, this trend contin-
ued and led to probabilistic variants of guarded command
languages and of process algebras, the latter focusing on
compositionality.

Nondeterminism. All of the above models are full stochas-
tic models; that is, at no point in the model can some
behavioural alternatives be left unspecified. For instance,
the join-the-shortest-queue strategy referred to in Section 1
leaves it open how to handle the case of several equally short
queues. This choice cannot be left open with the above
methods; leaving such a choice is regarded as underspec-
ification. What typically happens is that these cases are
dealt with probabilistically, e.g., by assigning probabilities
to the alternatives. That is, nondeterminism is seen as a
problem that has to be removed before analysis can take
place. This is important especially for modeling formalisms
as SPNs; tools supporting the evaluation of these models
will either detect and report such nondeterminism through



a “well-specified check” or will simply insert probabilities to
resolve it. In this case, analysis is carried out under a hidden
assumption, and there is no guarantee that an actual im-
plementation will exhibit the assumed behaviour, nor that
the performance derived on the basis of this assumption is
achieved.

Trends. The last 20 years have seen a variety of devel-
opments in performance evaluation, mostly related to spe-
cific application fields, such as the works on effective band-
width [42], network calculus [46], self-similar traffic models
[47] and traffic (and mobility) models [43] (for communica-
tion network dimensioning purposes). A more general con-
cept has been the development of fluid models to avoid the
state space explosion problem (e.g., [45]) by addressing a
large denumerable state space as a single continuous state
variable. Furthermore, queueing network models have been
extended with layering principles to allow for the model-
ing of software phenomena [52]. Finally, work on matrix-
geometric methods [48] has led to efficient analysis methods
for large classes of queueing models.

Model checking
Proof rules. The fundamental question “when and why does
a software not work as expected?” has been the subject
of intensive research since the early days of computer sci-
ence. Software quality is typically based on peer review,
i.e., manual code inspection, extensive simulation, and test-
ing. These rather ad-hoc validation techniques have severe
limitations and restrictions. Research in the field of for-
mal verification has led to complementary methods that are
aimed at establishing software correctness with a very high
level of confidence. The origins of a sound mathematical
approach towards program correctness —at a time where
programs were described as flow diagrams— can be traced
back to Turing in the late 1940s. Early attempts to as-
sess the correctness of computer programs were based on
mathematical proof rules that allow to reason in a purely
syntax-based manner. In the 1960s, these techniques were
developed for sequential programs, whereas about a decade
later, this approach was generalized towards concurrent pro-
grams, in particular shared-variable programs.

Temporal logic. These syntax-based approaches are based
on an interpretation of programs as input/output transform-
ers and serve to prove partial correctness (i.e., soundness of
output values for given inputs, provided the program ter-
minates) and termination. Thanks to an important insight
in the late 1970s by Pnueli, one recognized the need for
concurrent programs to not only make assertions about the
starting and final state of a program, but also about the
states during the computation. This led to the introduc-
tion of temporal logic in the field of formal verification [50].
Proofs, however, were still conducted mainly by hand along
the syntax of programs. Proofs for programs of realistic size,
though, were rather lengthy and required a good dose of hu-
man ingenuity. In the field of communication protocols, the
first techniques appeared towards automated checking of el-
ementary properties [53].

Model checking. In the early 1980s, an alternative to using
proof rules was proposed that checks systematically whether
a (finite) model of a program satisfies a given property [11,
7]. The pioneers Clarke, Emerson, and Sifakis, received the
ACM Turing Award 2007 for this breakthrough; it was the
first step towards the fully automated verification of con-

current programs. How does model checking work? Given
a model of the system (the possible behavior) and a speci-
fication of the property to be considered (the desirable be-
havior), model checking is a technique that systematically
checks the validity of the property in the model. Models are
typically nondeterministic finite-state automata, consisting
of a finite set of states and a set of transitions that de-
scribe how the system evolves from one state into another.
These automata are usually composed of concurrent enti-
ties and are often generated from a high-level description
language such as Petri nets, process algebras, Promela, or
Statecharts. Properties are specified in temporal logic such
as CTL (Computation Tree Logic), an extension of proposi-
tional logic that allows one to express properties that refer
to the relative order of events. Statements can either be
made about states or about paths, i.e., sequences of states
that model system evolution.

The backbone of the CTL model checking procedure is
a recursive descent over the parse tree of the formula un-
der consideration where temporal conditions (e.g., a reach-
ability or an invariance condition) are checked using fixed
point computations. The class of path properties express-
ible in CTL is restricted to local conditions on the cur-
rent states and its direct successors, constrained reachability
conditions—is a goal state reachable by not visiting certain
states before?— and their duals.

More complex path properties such as repeated reachabil-
ity or progress properties which, e.g., can state that when-
ever a request enters the news website, it is served even-
tually, can be specified in LTL (Linear Temporal Logic).
The rough idea of model checking LTL specifications is to
transform the formula at hand into an automaton (recog-
nizing infinite words) and then to analyze the product of
this automaton with the system model by means of graph
algorithms.

The strength of model checking is not in providing a rig-
orous correctness proof, but rather the ability to generate
diagnostic feedback in the form of counterexamples (i.e., er-
ror traces) in case a property is refuted. This information
is highly relevant to find flaws in the model and in the real
system.

Taming state space explosion. The time and space com-
plexity of these algorithms is linear in the size of the finite-
state automaton describing the system. The main problem
is, however, that this size may grow exponentially in the
number of program and control variables, and in the num-
ber of components in a multi-threaded or distributed sys-
tem. Since the birth of model checking, effective methods
have been developed to combat this state explosion prob-
lem. Prominent examples of such techniques are: symbolic
data structures [39], partial-order reduction [49], casting
model checking as SAT-problems [38], or abstraction tech-
niques [11]. Due to these techniques, together with unremit-
ting improvements of underlying algorithms and data struc-
tures and hardware technology improvements, model check-
ing techniques that a decade ago only worked for simple ex-
amples, are nowadays applicable to more realistic designs.
State-of-the-art model checkers can handle state spaces of
about 109 states using off-the-shelf technology. Using clever
algorithms and tailored data structures, much larger state
spaces (up to 10120 states [41]) can be handled for specific
problems and reachability properties.

Quantitative aspects. From the early 1990s on, various



extensions of model checking have been developed to treat
aspects such as time and probabilities. Automata have been
equipped with clock variables to measure the elapse of time
(resulting in timed automata), and it has been shown that
despite the infinite underlying state space of such automata,
model checking of a timed extension of CTL is still decid-
able [37]. LTL has been interpreted over (discrete) prob-
abilistic extensions of automata, focusing on the probabil-
ity that an LTL formula holds, and probabilistic variants
of CTL have been developed, as we will elaborate in more
detail later on. For an overview, see [7, Ch. 10]. The com-
bination of timing aspects and probabilities started about
two decades ago and is highly relevant for this paper.

Various software tools have been developed that support
model checking. Some well-known model checking tools are:
SPIN for LTL, NuSMV for CTL (and LTL), Uppaal for timed
CTL, and PRISM for probabilistic CTL.

3. LET’S JOIN FORCES
Developments in performance evaluation are tending to-

wards more complex measures of interest, and focus on more
complex system behavior. On the other hand, quantitative
aspects such as timing and random phenomena are becom-
ing more and more important in the field of model checking.
Performance evaluation and model checking have thus grown
in each other’s direction, simply because from either end, it
was felt that the methods in isolation did not answer the
questions that were at stake. Let us discuss the reasons for
this, and the benefits of combining these methods.

Individual shortcomings
Why is a performance (or a dependability) evaluation of a
system in itself not good enough? And why is a formal ver-
ification of a system insufficient to validate its usefulness?
These questions are best answered by taking a simple sys-
tem design example, for instance a reliable data transmission
protocol such as TCP. Such a protocol relies on a number
of ingredients that, when suitably combined, result in the
desired behavior: reliable, end-to-end in-order delivery of
packets between communicating peers. These ingredients
comprise timers, sequence numbers, retransmissions and er-
ror detecting codes.

A typical performance model will take into account the
TCP timing and retransmission aspects, whereas the error
correction will mostly be included as a random phenomenon.
For the sake of simplicity, sequence numbers are neglected.
This results in a model that can be analysed using either
a closed-form formula or some numerical technique, that,
under the assumption that the model is functionally correct,
gives a certain mean performance, measured as throughput
or mean packet delay. However, the obtained quantities do
not say anything about the question of whether the pack-
ets do arrive correctly at all, hence, whether the protocol
is correct. Conversely, a classical functional model of the
above sketched protocol will most probably result in a cor-
rectness statement of the form “all packets will eventually
arrive correctly”. This, however, gives no information at
all about perceived delays and throughputs. Needless to
say, one cannot simply “add up” the results of both analy-
ses, as they result from two different —and possibly quite
unrelated— models.

The key challenge lies in developing an integrated model.
Preferably, the user, i.e., the system architect or design en-

gineer, just has to provide a single model (as engineering
artefact) that forms the basis for both types of analysis.
To improve the efficiency, additional property-dependent ab-
straction techniques can be applied to abstract away from
all details of the model that are irrelevant for the property
to be checked. For example, checking whether a purely func-
tional property holds for a Markov model requires an anal-
ysis of the underlying graph structure, and one can ignore
all stochastic information.

Benefits
Modeling and measure specification. An important advan-
tage of using temporal logics (or automata) to specify prop-
erties of interest —in fact guarantees on measures of interest—
is the possibility to decribe properties at the same abstrac-
tion level as the modeling of the stochastic process. Up to
now, it has been tradition to specify measures of interest
such as “what is the probability to fail within deadline d?”
at state level, i.e., in terms of the states and their elementary
properties (logically speaking, atomic propositions). Some-
times reward structures have been added at state level to
quantify the use of resources such as queue occupancies and
the like. This stands in sharp contrast with the descrip-
tion of the models themselves, which is mostly done using
high-level modeling formalisms such as queueing networks,
SPNs, stochastic automata networks, or stochastic process
algebra. Temporal logics close this paradigm gap between
high-level and state-based modeling as they allow to specify
properties in terms of the high-level models, e.g., in terms of
the token distribution among places in a Petri net. By the
use of temporal logics, modeling and measure specification
become treated at an equal footing.

An example logic with semantics interpretation is illus-
trated in Figure 1. Instances of this generic logic arise by
considering special types of stochastic processes, e.g., for an
interpretation over discrete-time Markov chains (DTMC),
T = N and we obtain probabilistic computation tree logic
(PCTL) [18]. For continuous-time Markov chains (CTMC),
the time domain is T = R, and continuous stochastic logic
(CSL) is obtained [4, 6]. Figure 3 presents a small repre-
sentative example [9, 3], together with some typical logical
formulae.

Expressivity and flexibility. The use of logics offers, in ad-
dition, a high degree of expressiveness. Simple performance
and dependability metrics such as transient probabilities —
what is the probability of being in a failure state at time
t?— and long-run likelihoods (when the system is observed
long enough) can readily be expressed. Most standard per-
formance measures are easy be captured, cf. Table 1 for a
selection of properties. More importantly, the use of logics
offers an enormous degree of flexibility. Nesting formulas
yields a simple mechanism to specify complex measures in a
succinct manner. A property like “ the probability to reach
a state within 25 seconds that almost surely stays safe for
the next 10 seconds, via legal states only exceeds 1

2
” boils

down to

P> 1
2

“
legal U�25

P=1(�
�10 safe)

”
.

This immediately pinpoints another advantage: given the
formal semantics of the temporal logic, the meaning of the
above formula is precise. That is to say, there is no possibil-
ity that any confusion might arise about its meaning. Un-
ambiguous measure specifications are of utmost importance.



Let X be a general stochastic process, i.e, an indexed family {X(t) | t ∈ T} of random variables taking values in the set
S. The index set T denotes the time domain of X and is either discrete (T = N) or continuous (T = R). We suppose
that all states have positive probability under the initial distribution µinit, i.e., µinit(s) = PrPrPrX(X(0) = s) > 0 for all
states s. For event E, let PrPrPrX,s(E) denote the probability for E under the condition that s is the start state. Each state
is labelled by a set of atomic propositions which can be viewed as state predicates.

Logical formulas (denoted by capital greek letters Φ, Ψ) are given by the grammar:

Φ ::= a
˛̨̨

Φ ∧ Ψ
˛̨̨

¬Φ
˛̨̨

P�p(Φ U IΨ)
˛̨̨

L�p(Φ)

Here, a is an atomic proposition, p ∈ [0, 1], � ∈ {�, �, >, <} and I is a closed interval of T.

The semantics of this logic is defined inductively as follows:

s |= a iff state s is labelled with atomic proposition a

s |= Φ ∧ Ψ iff s |= Φ and s |= Ψ

s |= ¬Φ iff s �|= Φ

s |= P�p(Φ U I Ψ) iff PrPrPrX,s

n
∃t ∈ I

`
X(t) |= Ψ ∧ ∀t′ ∈ T ( t′ < t ⇒ X(t′) |= Φ )

´o
� p

s |= L�p(Φ) iff LRA(s,SatX(Φ)) � p

where SatX(Φ) = {s ∈ S | s |= Φ} and for B ⊆ S, LRA(s,B) denotes the “long run average” of being in a state of B for
runs starting in state s. Formally, LRA(s, B) is the expected value of the random variable

lim
t→∞

1

t

Z t

0

111B(X(θ)) dθ

with respect to the probability measure PrPrPrX,s. Here, 111B denotes the characteristic function of B, i.e., 111B(s′) = 1 if s ∈ B
and 0 otherwise.

Derived operators. Let U T denote U . Usual propositional operators such as ff, tt, ∨ are derivable. The eventually
operator �I with time bounds given by a time interval I is obtained by �IΦ = ttU IΦ. To specify that condition Φ
holds continuously in the time interval I, the time-constrained always operator �I can be defined by using the duality of
“eventually” and “always”. For instance, P�p(�

IΦ) is a shorthand notation for P�1−p(�I¬Φ).

Figure 1: A logic for quantitative properties: syntax and semantics

long-run L�p(up)

instantaneous P�p(�
[t,t]up)

conditional instantaneous P�p(ΦU [t,t]up)

interval P�p(�
[t,t′]up)

long-run interval L�p(P�q(�
[t,t′]up))

conditional interval long-run P�p(ΦU [t,t′]
L�q(up))

Table 1: Availability measures and their logical
specification

Existing mathematical measure specifications are rigorous
too of course, but do not offer the flexibility and succinct-
ness of logics. Temporal logic provides a framework that is
based on just a few basic operators.

Many measures, one algorithm. The above concerns the
measure specification. The main benefit though is the use
of model checking as a fully algorithmic approach towards
measure evaluation. Even better, it provides a single com-
putational technique for any possible measure that can be
written. This applies from simple properties to complicated,
nested, and possibly hard-to-grasp formulas. For the ex-

ample logic this is illustrated in Figure 2. This is radically
different from common practice in performance and depend-
ability evaluation where tailored and brand new algorithms
are developed for “new” measures. One might argue that
this will have a high price, i.e., that the computational and
space complexity of the exploited algorithms must be ex-
tremely high. No! On the contrary, in the worst case, the
time complexity is linear in the size of the measure specifica-
tion (logic fomula), and polynomial (typically of order 2 or
3, at most) in the number of states of the stochastic process
under consideration. As indicated in Figure 4, the verifi-
cation of bounded reachability probabilities in DTMCs and
CTMCs —often the most time-consuming ones— is a mat-
ter of a few seconds even for millions of states: The space
complexity is quadratic in the number of states in the worst
case. In fact, as for other state-based performance evalu-
ation techniques this polynomial complexity is an issue of
concern as the number of states may grow rapidly.

Perhaps the largest advantage of model checking for per-
formance analysis is that all algorithmic details, all detailed
and non-trivial numerical computation steps are hidden to
the user. Without any expert knowledge on, say, numerical
analysis techniques for CTMCs, measure evaluation is possi-
ble. Even better: the algorithmic analysis is measure-driven.
That is to say, the stochastic process can be tailored to the



given: a stochastic process X and a logical formula Φ

task: compute PrPrPrX{X(0) |= Φ}
idea: compute the sets SatX(Ψ) = {s ∈ S | s |= Ψ} for any subformula Ψ of Φ and return

X
s∈SatX(Φ)

µinit(s)

• SatX(a) = {s ∈ S | state s is labelled with atomic proposition a}
• SatX(Ψ1 ∧ Ψ2) = SatX(Ψ1) ∩ SatX(Ψ2)

• SatX(¬Ψ) = S \ SatX(Ψ)

• computation of SatX(P�p(Ψ1 U I Ψ2)):

case 1: I = [0, t] for some t ∈ T, t > 0. Let Y be the stochastic process that results from X by making all states
where Ψ2 holds or Ψ1 is refuted absorbing. That is, if B = SatX(Ψ2) ∪ S \ SatX(Ψ1), then Y is given by

Y (t) =

(
X(t) : if X(t′) /∈ B for all t′ < t

s : if X(t′) = s ∈ B for some t′ < t and X(t′′) /∈ B or X(t′′) = s for all t′′ < t′.

Apply known methods of performance evaluation to compute the probabilities

ps = PrPrPrY,s

n
X(t) ∈ SatX(Ψ2)

o
and return SatX(P�p(Ψ1 U I Ψ2)) = {s ∈ S | ps � p}.
case 2: I = [t1, t2] for some t1 > 0. Let Y be the stochastic process that arises from X by making all states refuting
Ψ1 absorbing. Regard the stochastic process Z that arises from Y by shifting the time by t1 time units, i.e., Z is
specified by Z(t) = Y (t + t1). We then evaluate the formula P�p(Ψ1 U [0,t2−t1] Ψ2) over Z as in case 1 and return

SatX(P�p(Ψ1 U I Ψ2)) = SatZ(P�p(Ψ1 U [0,t2−t1] Ψ2)).

• Let B = SatX(Φ) and apply known methods of performance evaluation to compute the long run average LRA(s, B)
of being in a state of B for runs starting in state s. Return

SatX(L�p(Φ)) = {s ∈ S | LRA(s,B) � p}.

Figure 2: Schema for model checking stochastic processes
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Figure 4: Efficiency of computing reachability prob-
abilities versus the state space size

measure of interest prior to any computation, avoiding the
consideration of parts of the state space that are irrelevant
for the property of interest. In this way, computations have
to be carried out only on the fragments of the state space
that are relevant to the property of interest. In fact, this
generalises the ideas put forward by Sanders and Meyer on
variable-driven state space generation in the late 1980s [33].

Dependability evaluation. This measure-driven aspect is
even more beneficial in the field of system dependability eval-

uation, a field tightly related to performance evaluation,
but especially concerned with evaluating service continuity
of computer systems. Questions like “under which system
faults can a given service still be provided adequately?” are
adressed, and typical measures of interest are system reli-
ability and availability, cf. Table 1. Since the beginning of
the 1980s this field has matured significantly, due to the
introduction of state-oriented models and the invention of
uniformization [44]. This facilitated the efficient analysis of
time-dependent properties such as reliability or availability
evaluation, in combination with high-level model specifica-
tion techniques such as SPNs. The models that one could
analyze now went well above the “standard models” based
on reliability block diagrams or fault-trees.

The measures of interest in this field often involve costs,
modeling the usage of resources. Extensions of stochastic
processes with cost (or reward) functions give rise to a logic
where in addition to, e.g., time bounds, conditions about
the accumulated reward along an execution path can be im-
posed. Model checking still goes along the lines of Figure 2,
but involves computational procedures that are more time-
consuming.

One for free. Is that all? Not quite. An important
problem with performance modeling regardless whether one
aims at numerical evaluation or at simulation, is to check
the functional correctness of the model. For a stochastic
Petri net specification, place and transition invariants are
exploited to check for deadlocks and liveness, among oth-
ers. For a Markov chain model, graph-based algorithms are



The IPv4 zeroconf protocol is a simple protocol proposed by the IETF (RFC 3927), aimed at the self-configuration of IP
network interfaces in ad-hoc networks. Such ad-hoc networks must be hot-pluggable and self-configuring. Among others,
this means that when a new appliance, hitherto called a newcomer, is connecting to a network, it must be configured with
a unique IP address automatically. The zeroconf protocol solves this task using randomization. A newcomer intending
to join an existing network randomly selects an IP address, U say, out of the 65024 available addresses and broadcasts a
message (called a probe) asking “Who owns the address U?”. If an owner of U is present and does receive that message,
it replies, to force the newcomer to randomly select another address. Due to message loss or busy hosts, messages may
not arrive at some hosts. Therefore a newcomer is required to send a total of 4 probes, each followed by a listening
period of 2 seconds before it may assume that a selected address is unused. Therefore, the newcomer can start using
the selected IP address only after 8 seconds. Notably, there is a low probability risk that a newcomer may still end up
using an already owned IP address, e.g., because all probes were lost. This situation, called address collision, is highly
undesirable.
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The protocol behaviour of a newcomer is easily modeled by a DTMC depicted above consisting of 9 states [9, 3]. The
protocol starts in s0 where the newcomer randomly chooses an IP address. With probability q = m/65024 the address
is already owned, where m is the current size of the network. State si (0 < i � 4) is reached after issuing the i-th probe.
With probability p no reply is received during 2 seconds on a sent probe (as either the probe or its reply has been
lost). State s8 (labelled ok) indicates that eventually a unique address has been selected, while state s6 (labelled error)
corresponds to the undesirable situation of an address collision.

For such a model some typical example formulae are:

• On the long run, the protocol will have selected an address: L�1(ok ∨ error).

• The probability to end up with an address collision is at most p′: P�p′(�error)

• The probability to arrive at an unused address within k steps exceeds p′: P>p′(�[0,k]ok)

Many more measures including expected times and accumulated costs can be expressed using extensions of the base logic
and model introduced here.

Figure 3: A simple model checking example: The Zeroconf protocol

used to check elementary properties. The good news when
employing model checking is that we get this functional-
ity for free. Using the same machinery for validating the
measures of interest, functional properties can be checked.
Probabilistic model checking thus provides two for the price
of one: both performance/dependability analysis and check-
ing functional properties. This forces the user to construct
models with a high precision as any tiny inconsistency will
be detected. Compare this to simulation model construction
in ns2 or Opnet!

Nondeterminism. Sometimes this need for precision might
seem as a burden, but it is a vehicle to force the modeler
to make hidden assumptions explicit – or to leave them
out. For instance, we have discussed the nondeterminism
inherent in the join-the-shortest-queue idea, which – unless
made concrete – implies that the underlying model is not a
stochastic process. Stochastic models with nondeterminism
are usually referred to as stochastic decision processes. In
these models the future behaviour is not always determined
by a unique probability distribution, but by selecting one
from a set of them. Temporal logics and verification technol-
ogy have been extended to this type of models with relative
ease for CTL [8] and LTL [14, 36]. Actually, they consti-
tute the genuine supermodel that comprises both the model

checking and performance evaluation side as special cases:
When transition systems are paired with Markov chains or
Markov reward models, the model is known as Markov deci-
sion processes. For these models, performance model check-
ing is still possible, but the checker now computes bounds
on the performance, in the sense that however the nondeter-
minism is concretized, the concrete performance figure will
stay within the calculated bounds. Whereas for the discrete-
time setting, efficient model checking algorithms have been
developed, this field is still relatively open in the continuous-
time setting.

4. APPEALING APPLICATION AREAS
Over the last five years, a number of stochastic model

checking tools have been developed, of which PRISM [20]
is by far the most widely used. A number of well-known
tools from the performance and dependability evaluation
area, like tools for SPNs and stochastic process algebras have
been extended with stochastic model-checking features. All
these tools automatically generate a Markovian model of
some sort, either using symbolic or sparse data structures.

With these tools, a wide variety of case studies have been
carried out, amongst others, in application areas such as
communication systems and protocols, embedded systems,



systems biology, hardware design, and security, as well as
more “classical” performance and dependability studies.

Examples of the latter category, for which CTMCs are a
very natural model, include the analysis of various classes
of traditional queuing networks and even infinite-state vari-
ants thereof, fault-tolerant workstation clusters, and wireless
access protocols such as IEEE 802.11. Also system surviv-
ability, i.e., the ability of a system (e.g., military or aircraft)
to recover predefined service levels in a timely manner after
the occurrence of disasters, has been precisely captured us-
ing a logic similar to that introduced before, and has been
verified for Google-like file systems [12]. The evaluation of
a wireless access protocol for ad-hoc networks using model
checking could be carried out at far lower cost than using
discrete-event simulations [32].

The popularity of Markovian models is rapidly growing
due to their application potential in systems biology; the tim-
ing and probabilistic nature of CTMCs naturally reflect the
operations of biological mechanisms such as molecular reac-
tions. In fact, various biological systems have been studied
by CTMC model checking in recent years, cf. [26]. Promi-
nent examples include ribosome kinetics, signalling path-
ways, cell cycle control in Eukaryotes, and enzyme-catalyzed
substrate conversion. In particular, the possibility to com-
pute time-bounded reachability probabilities is of great im-
portance here as traditional studies focus on steady-state be-
haviour. Another application area for CTMC model check-
ing is embedded systems where the timeliness of commu-
nication between sensor and actuator devices, e.g., within
cars or between high-speed trains, is of utmost importance.
Stochastic model-checking techniques allow us to address
the timeliness and the protocols’ correctness from a single
model. A nice example in this setting is dynamic power
management in relation to job scheduling [31].

Examples for the discrete-time setting include several stud-
ies of the IPv4 Zeroconf protocol, cf. Figure 3, where next
to the probability of eventually obtaining an unused IP ad-
dress, extensions have been studied with costs, addressing
issues such as the number of attempts needed to obtain such
address. Security protocols are another important class of
systems in which discrete randomness is exploited, e.g., by
applying random routing to avoid information leakage. An
interesting case is the Crowds protocol [34], a well-known
security protocol that aims to hide the identity of web-
browsing stations. Checking Markovian models with upto
107 states, did provide important information on quantify-
ing the increase of confidence of an adversary when observ-
ing an internet packet of the same sender more than once.
A novel case study in the field of nanotechnology applies
stochastic model checking to quantify the reliability of a
molecular switch with increasing memory array sizes [13].
Other natural cases for discrete-time probabilistic models
are randomized protocols —in which probabilities are used
to break ties— such as consensus and broadcast protocols,
and medium access mechanisms such as Zigbee.

To conclude, an interesting case study using DTMCs with
non-determinism is the analysis of the Firewire protocol (IEEE
1394). This protocol has been developed to allow “plug-and-
play” network connectivity for multimedia consumer elec-
tronics in the home environment. A key component in IEEE
1394 is a leader election protocol (the “root contention pro-
tocol”) that exploits a coin-tossing mechanism to break ties.
Stochastic model checking revealed that using a biased coin

instead of the typically used unbiased coin, speeds up the
leader election process. This confirmed a conjecture in [35].
This insight would not have been found through “classical”
qualitative verification.

5. CURRENT TRENDS AND CHALLENGES
Recent Turing award winner Edmund Clarke points out

that probabilistic model checking is one of the brands of
verification that requires further developments [41]. We list
some of the current trends and major research challenges.

One of the major practical obstacles shared by model-
based performance evaluation and model checking is the
state space explosion problem. To combat the state space
explosion problem, various techniques have been developed
and successfully applied for model checking Kripke struc-
tures [11] (and the literature mentioned there).

For stochastic models the state space explosion problem
is even more severe. This is rooted in the fact that the
model checking algorithms for stochastic models rely on a
combination of model checking techniques for non-stochastic
systems, such as graph algorithms, but also mathematical,
often numerical methods for calculating probabilities, such
as linear equation solving or linear programming.

Many of the advanced techniques for very large non-sto-
chastic models have been adapted to treat stochastic sys-
tems, including, for instance variations of decision diagrams,
to represent large state spaces symbolically [30]. Comple-
mentary techniques attempt to abstract from irrelevant or
redundant details in the model and to replace the model
with a smaller, but “equivalent” one. Some of them rely
on the concept of lumpability for stochastic processes, which
in the formal verification setting is known as bisimulation
quotienting, and where states with the same probabilistic
behavior are collapsed into a single representative [16, 27].

Other advanced techniques to fight the state-explosion
problem include symmetry exploitation [24], partial order
reduction [5], or some form of abstraction [28], possibly
combined with automatic refinement [15, 19]. All these
approaches take inspiration in classical model checking ad-
vances, which often get much more intricate to realise, and
raise interesting theoretical and practical challenges. All-
together, they have advanced the field considerably in the
ability to handle cases as the ones discussed in the preceding
section.

An important feature of model checkers for non-stochastic
systems is the generation of counterexamples for properties
that have been refuted by the model checker. The princi-
pal situation is more difficult in the stochastic setting, as
for probabilistic properties, say the requirement that a cer-
tain undesired event will appear with probability at most
10−3, single “error traces” are not adequate. The generation
and representation of counterexamples is therefore a topic
of much increasing attention [17, 29] within the community.

To overcome the limitation to finite state spaces, much
work has been done to treat infinite-state probabilistic sys-
tems, in many different flavors [1, 23].

Another topic of ongoing interest lies in combining proba-
bilistic behaviour with continuous dynamics as in timed [25]
or hybrid automata, but more work on the tool side is needed
to assess the merits of these approaches faithfully. Theorem-
proving techniques for analyzing probabilistic systems [21]
is also a very promising direction. One of the major open
technical problems is the treatment of models with nonde-



terminism and continuous distributions. Initial results are
interesting but typically subject to (severe) restrictions.

As a final item, we mention the need to tailor the “general-
purpose” probabilistic model checking techniques to special
application areas. This covers the design of special modeling
languages and logics that extend or adapt classical modeling
languages and temporal logics by adding features that are
specific for the application area.
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