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Performance Evaluation and 
Online Realization of Data-
driven Normalization Methods 
Used in LC/MS based Untargeted 
Metabolomics Analysis
Bo Li1,*, Jing Tang1,*, Qingxia Yang1,*, Xuejiao Cui1, Shuang Li1, Sijie Chen2, Quanxing Cao1, 

Weiwei Xue1, Na Chen1 & Feng Zhu1

In untargeted metabolomics analysis, several factors (e.g., unwanted experimental & biological 

variations and technical errors) may hamper the identification of differential metabolic features, which 
requires the data-driven normalization approaches before feature selection. So far, ≥16 normalization 
methods have been widely applied for processing the LC/MS based metabolomics data. However, 

the performance and the sample size dependence of those methods have not yet been exhaustively 

compared and no online tool for comparatively and comprehensively evaluating the performance of 

all 16 normalization methods has been provided. In this study, a comprehensive comparison on these 
methods was conducted. As a result, 16 methods were categorized into three groups based on their 
normalization performances across various sample sizes. The VSN, the Log Transformation and the PQN 

were identified as methods of the best normalization performance, while the Contrast consistently 

underperformed across all sub-datasets of different benchmark data. Moreover, an interactive web 
tool comprehensively evaluating the performance of 16 methods specifically for normalizing LC/MS 
based metabolomics data was constructed and hosted at http://server.idrb.cqu.edu.cn/MetaPre/. In 

summary, this study could serve as a useful guidance to the selection of suitable normalization methods 

in analyzing the LC/MS based metabolomics data.

Metabolomics aims at characterizing metabolic biomarkers by analytically describing complex biological sam-
ples1. At present, the metabolomics based on liquid chromatography mass spectrometry (LC/MS) is capable of 
simultaneously monitoring thousands of metabolites in bio-�uid, cell and tissue, and is widely applied to vari-
ous aspects of biomedical research. In particular, metabolomics analysis on LC/MS data can aid the choice of 
therapy2, provide powerful tools for drug discovery by revealing drug mechanism of actions and potential side 
e�ects3, and help to identify biomarkers4–6 of various diseases such as hepatocellular carcinoma (HCC)7, colorec-
tal cancer8, insulin resistance9, and so on.

Several factors (e.g., unwanted experimental & biological variations and technical errors) may hamper the 
identi�cation of di�erential metabolic pro�les and e�ectiveness of metabolomics analysis (e.g., paired or nested 
studies)10–14. To remove speci�c types of unwanted variations, the signal dri� correction (when quality control 
samples are available), the batch e�ect removal (when internal standards or quality control samples are availa-
ble), and the scaling (not suitable when the self-averaging property does not hold) are adopted13. �ese com-
monly used strategies are generally grouped into two categories: (1) method-driven normalization approaches 
extrapolating external model that is based upon internal standards or quality control samples and (2) data-driven 
normalization approaches scaling or transforming metabolomics data15–20. As reported in Ejigu’s work, the 
method-driven strategies may not be practical due to several reasons, especially their unsuitability for treating 
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untargeted metabolomics data, while data-driven ones are better choices for untargeted LC/MS based metabo-
lomics data15. �e capacities of 11 data-driven normalization methods (“normalization method” in short for the 
rest of this paper) for processing nuclear magnetic resonance (NMR) based metabolomics data were systemat-
ically compared21. Two methods (the Quantile and the Cubic Splines) were identi�ed as the “best” performed 
normalization methods, while other two methods (the Contrast and the Li-Wong) could “hardly” reduce bias at 
all and could not improve the comparability between samples21. For gas chromatography mass spectrometry (GC/
MS) based metabolomics, a comparative research on the performances of 8 normalization methods discovered 
two (the Auto Scaling and the Range Scaling) of “overall best performance”12. Similar to NMR and GC/MS, the LC/
MS is one of the most popular sources of current metabolomics data, and it is of great importance to analyze the 
di�erential in�uence of those methods on LC/MS based data. Ejigu et al. measured the performance of 6 methods 
according to their “average metabolite speci�c coe�cient of variation (CV)”15. �e CV showed that the Cyclic 
Loess and the Cubic Splines performed “slightly better” than other methods, but no statistical di�erence among 
CVs of those methods was observed15.

For the past decade, no less than 16 methods have been developed for normalizing the LC/MS based metab-
olomics data13,22,23, some of which (e.g., the VSN24, the Quantile25, the Cyclic Loess26) are directly adopted from 
those previously used for processing transcriptomics data. Both metabolomics data and transcriptomics data 
are high-dimensional. However, the dimension of transcriptomics data can reach 10 thousands, while that of 
metabolomics data is about a few thousands. Moreover, unlike transcriptomics, correlation among metabolites 
identi�ed from metabolomics data may not indicate a common biological function27. Apart from the above dif-
ferences, there are signi�cant similarities between two OMICs data: (1) right-skewed distribution23, (2) great 
data sparsity28, (3) substantial amount of noise29,30 and (4) signi�cantly varied sample sizes31,32. Due to these 
similarities, it is feasible to apply some of the normalization methods used in transcriptomics data analysis to the 
metabolomics one.

Those 16 methods specifically normalizing LC/MS based metabolomics data can be classified into two 
groups21. Methods in group one (including the Contrast Normalization33, the Cubic Splines34, the Cyclic Loess35, 
the Linear Baseline Scaling25, the MSTUS22, the Non-Linear Baseline Normalization36, the Probabilistic Quotient 
Normalization37 and the Quantile Normalization25) aim at removing the unwanted sample-to-sample variations, 
while methods of the second group (including the Auto Scaling38, the Level Scaling12, the Log Transformation39, the 
Pareto Scaling40, the Power Scaling41, the Range Scaling42, the VSN43,44 and the Vast Scaling45) adjust biases among 
various metabolites to reduce heteroscedasticity. However, the performance and the sample size dependence of 
those methods widely adopted in current metabolomics studies (e.g., the Pareto Scaling and the VSN)28,46 have not 
yet been exhaustively compared in the context of LC/MS metabolomics data analysis.

Moreover, several comprehensive metabolomics pipelines are currently available online, where various nor-
malization algorithms are integrated in as one step in their corresponding analysis chain. �ese online pipelines 
include the MetaboAnalyst28, the Metabolomics Workbench47, the MetaDB48, the MetDAT49, the MSPrep50, the 
Work�ow4Metabolomics51 and the XCMS online52. Based on a comprehensive review, the number of normaliza-
tion algorithms provided by the above pipelines varies signi�cantly from 2 (the Work�ow4Metabolomics) to 13 
(the MetaboAnalyst). 6 out of those 7 pipelines only provide < 50% of those 16 methods analyzed in this study. �e 
MetaboAnalyst is the only pipeline o�ering 13 methods, but some methods reported as “well-performed” in LC/
MS based metabolomics analysis (e.g., the VSN and the PQN)28,37,46 are not provided. �e inadequate coverage of 
these methods may weaken the applicability range of those pipelines. Moreover, the suitability of a normalization 
method was reported to be greatly dependent on the nature of the analyzed data53, a comparative performance 
evaluation among methods is therefore essential to the determination of the most appropriate method for profes-
sional/inexperienced researchers. However, no comparative evaluation among those normalization methods was 
conducted in the above pipelines. So far, the Normalyzer53 is the only online tool o�ering comparative evaluation 
of 12 di�erent normalization methods treating high-throughput OMICs data53. In particular, this tool accepted a 
variety of data types including metabolomics, proteomics, DNA microarray and the real-time polymerase chain 
reaction data53. However, since the Normalyzer was designed to process a wide range of OMICs, it did not cover 
8 of those 16 methods speci�cally for LC/MS based metabolomics studies. �us, it is in urgent need to construct 
a publicly available tool for comparatively and comprehensively evaluating the performances of methods used 
speci�cally for normalizing LC/MS based metabolomics data.

In this study, a comprehensive comparison on the normalization capacities of 16 methods was conducted. 
Firstly, the di�erential metabolic features selected based on each method were validated by a benchmark spike-in 
dataset and by experimentally validated markers. To further understand the in�uence of sample size on the 
method performance, 10 sub-datasets of various sample size were generated to evaluate the variation of normali-
zation performance among 16 methods, and to categorize these methods into 3 groups (superior, good and poor 
performance group). Finally, a web-based tool used to comprehensively evaluate the performance of all 16 meth-
ods was constructed. In sum, this study could serve as valuable guidance to the selection of suitable normalization 
methods in analyzing the LC/MS based metabolomics data.

Materials and Methods
Benchmark datasets collection and sub-datasets generation. Five criteria were used to select data-
sets from the MetaboLights (http://www.ebi.ac.uk/metabolights/)32 in this study, which include: (1) data type set 
as “study”; (2) technology set as “mass spectrometry”; (3) organism set as “homo sapiens”; (4) study validation 
set as “fully validated”; (5) untargeted LC/MS based metabolomics data with > 100 samples selected by manual 
literature and dataset reviews. Based on the above criteria, 4 benchmark datasets were collected for analysis, 
which include the positive (ESI+ ) and negative (ESI− ) ionization modes of both MTBLS2854 and MTBLS1755. 
For MTBLS17, only the dataset of experiment 1 with >100 studied samples was included. For the remaining text 
of this paper, MTBLS17 was used to stand for the dataset of experiment 1 in Ressom’s work55. Both ESI+  and 
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ESI−  of MTBLS28 provided LC/MS based metabolomics pro�les of 1,005 samples (469 lung cancer patients and 
536 healthy individuals)54, and MTBLS17 ESI+  and ESI−  gave pro�les of 189 samples (60 HCC patients and 129 
people with cirrhosis) and 185 samples (59 HCC patients and 126 people with cirrhosis), respectively55.

To construct training and validation datasets and sub-datasets of various sample size, random sampling and 
k-means clustering were applied. Taking MTBLS28 ESI+  as an example, 1,005 samples were divided into training 
dataset (400 lung cancer patients and 500 healthy individuals) and validation dataset (105 samples) by random 
sampling. Moreover, to generate the sub-datasets from training dataset, the k-means clustering56 was used to 
sample 10 sub-datasets of various sample size. In particular, the number of lung cancer patients versus that of 
healthy individuals were 50 vs. 40, 100 vs. 80, 150 vs. 120, 200 vs. 160, 250 vs. 200, 300 vs. 240, 350 vs. 280, 400 vs. 
320, 450 vs. 360, and 500 vs. 400 for 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% of the samples in the 
training group, respectively.

LC/MS based metabolomics data pre-processing. Biological variance and technical error are two key 
factors introducing biases to the metabolomics data. Biological variance arises from the spread of metabolic sig-
nals detected from various biological samples57, while technical error results from machine dri�58. In particular, 
biological variances (e.g., varying concentration levels of bio-�uid, di�erent cell sizes, varying sample measure-
ments) are commonly encountered in metabolomics data13, while technical errors (e.g., a sudden drop in peak 
intensities or measurements on di�erent instruments) are the major issues in large-scale metabolomics studies58. 
Apart from those above methods widely adopted to remove biological variances22, quality-control (QC) samples 
were used to signi�cantly reduce technical errors58.

Moreover, sparsity is the nature of metabolomics data, which can be represented by a substantial amount of 
missing values (10~40%), which can a�ect up to 80% of all metabolic features59. �e direct assignment of zero 
to the missing values could be useful for cluster analysis, but it may lead to poor performance or even malfunc-
tion if normalization method is applied50, especially for those methods based on the logarithm (e.g., the Log 
Transformation)50,53. Several missing value imputation methods are currently available, among which the KNN 
algorithm60 was reported as the most robust one for analyzing mass spectrometry based metabolomics data60. 
�erefore, the KNN algorithm was adopted in this work to impute the missing signals of the metabolic features.

In this study, a widely adopted data pre-processing procedure54,60,61 was applied, which included sample �lter-
ing, data matrix construction and signal �ltering & imputing (Fig. 1). In particular, (1) samples with signal inter-
ruption or not detectable internal standard were removed based on Mathé’s work54; (2) peak detection, retention 
time correction and peak alignment54 were applied to the UHPLC/Q-TOF-MS raw data (in CDF format) using 
the xcmsSet, the group and the rector functions in the XCMS package62 with both the full width at half-maximum 
(fwhm) and the retention time window (bw) set as 10; (3) metabolic features detected in < 20% of QC samples61 
or with large variations54 were removed based on Mathé’s work, and missing signals of the remaining metabolic 
features were imputed by the KNN algorithm60. �e detailed work�ow of data pre-processing used in this study 
was illustrated in Fig. 1.

Normalization methods analyzed in this study. 16 methods were analyzed in this work, which include 
the Auto Scaling (unit variance scaling, UV)38, the Contrast Normalization33, the Cubic Splines34, the Cyclic Locally 
Weighted Regression (Cyclic Loess)35, the Level Scaling12, the Linear Baseline Scaling25, the Log Transformation39, 
the MS Total Useful Signal (MSTUS)22, the Non-Linear Baseline Normalization (Li-Wong)36, the Pareto Scaling40, 
the Power Scaling41, the Probabilistic Quotient Normalization (PQN)37, the Quantile Normalization25, the Range 
Scaling42, the Variance Stabilization Normalization (VSN)43,44 and the Vast Scaling45.

Auto Scaling (unit variance scaling, UV) is one of the simplest methods adjusting metabolic variances21, which 
scales metabolic signals based on the standard deviation of metabolomics data. �is method makes all metabo-
lites of equal importance, but analytical errors may be ampli�ed due to dilution e�ects21. Auto scaling has been 
used to improve the diagnosis of bladder cancer using gas sensor arrays63 and to identify urinary nucleoside 
markers from urogenital cancer patients64.

Contrast Normalization is originated from the integration of MA-plots and logged Bland-Altman plots, which 
assumes the presence of non-linear biases21. �e use of a log function in this method may impede the processing 
of zeros and negative numbers, which requires the conversion of non-positive numbers to an extremely small 
value21. �e contrast method has been employed to reveal the role of polychlorinated biphenyls in non-alcoholic 
fatty liver disease by metabolomics analysis65.

Cubic Splines is one of the non-linear baseline methods assuming the existence of non-linear relationships 
between baseline and individual spectra21. Cubic splines has been adopted to reduce variability in DNA microar-
ray experiments by normalizing all signal channels to a target array34. Moreover, this method has been performed 
to evaluate di�erential e�ects of clinical and biological variables in breast cancer patients66.

Similar to contrast normalization, Cyclic Locally Weighted Regression (Cyclic Loess) comes also from the com-
bination of MA-plot and logged Bland-Altman plot by assuming the existence of non-linear bias21. However, 
cyclic loess is the most time-consuming one among those studied normalization methods, and the amount of 
time grows exponentially as the number of sample increases67. �is method has been used to discover microRNA 
candidates regulating human osteosarcoma68.

Level Scaling transforms metabolic signal variation into variation relative to the average metabolic signal by 
scaling according to the mean signal12. �is method is especially suitable for the circumstances when huge relative 
variations are of great interest (e.g., studying the stress responses, identifying relatively abundant biomarkers)12. 
Level Scaling has been used to identify urinary nucleoside markers from urogenital cancer patients64.

Linear Baseline Scaling maps each sample spectrum to the baseline based on the assumption of a constant 
linear relationship21. However, this assumption of a linear correlation among sample spectra may be oversim-
pli�ed21. �is method has been conducted to identify di�erential metabolomics pro�les among the banana’s 5 
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di�erent senescence stages69. Moreover, linear baseline scaling has been performed to discover the toxicity pro�l-
ing of capecitabine in patients with inoperable colorectal cancer70.

Log Transformation converts skewed metabolomics data to symmetric via the non-linear transformation, 
which is usually used to adjust heteroscedasticity and transform metabolites’ relations from multiplication to 
addition12. In metabolomics, relations among metabolites may not always be additive, this method is thus needed 
to identify multiplicative relation with linear techniques12. �is method has been used to delineate potential role 
of sarcosine in prostate cancer progression71.

MS Total Useful Signal (MSTUS) utilizes the total signals of metabolites that are shared by all samples by 
assuming that the number of increased and decreased metabolic signals is relatively equivalent22,72. However, 
the validity of this hypothesis is questionable since an increase in the concentration of one metabolite may not 
necessarily be accompanied by a decrease in that of another metabolite72,73. MSTUS has been reported as among 
the best choices for overcoming sample variability in urinary metabolomics73 and used to identify diagnostic and 
prognostic markers for lung cancer patients54.

Non-Linear Baseline Normalization (Li-Wong) is one of the normalization methods aiming at removing 
unwanted sample-to-sample variations21. �is method is �rst used to analyze oligonucleotide arrays based on a 
multiplicative parametrization36,74, and currently adopted to improve NMR-based metabolomics analysis21. �is 
method has already been successfully integrated into the dChip74.

Di�erent from the auto scaling, Pareto Scaling uses the square root of the standard deviation of the data as 
scaling factor40. �erefore, comparing to the auto scaling, this method is able to reduce more signi�cantly the 
weights of large fold changes in metabolite signals, but the dominant weight of extremely large fold changes may 
still be unchanged21. Pareto scaling has been performed for improving the pattern recognition for targeted75 and 
untargeted76 metabolomics data.

Power Scaling aims at correcting for the pseudo scaling and the heteroscedasticity12. Di�erent from the log 
transformation, the method is able to handle and zero values12. Power scaling has been used to study the serum 
amino acid pro�les and their variations in colorectal cancer patients77.

Probabilistic Quotient Normalization (PQN) transforms the metabolomics spectra according to an overall esti-
mation on the most probable dilution37. �is algorithm has been reported to be signi�cantly robust and accurate 
comparing to the integral and the vector length normalizations37. PQN has been used to discover potential diag-
nostic technique for ovarian and breast cancers from urine metabolites78.

Quantile Normalization aims at achieving the same distribution of metabolic feature intensities across all 
samples, and the quantile-quantile plot in this method is used to visualize the distribution similarity21. Quantile 
normalization has been used to probe di�erential molecular pro�ling between pancreatic adenocarcinoma and 
chronic pancreatitis79, and currently adopted to improve NMR-based metabolomics analysis21.

Figure 1. �e overall research design and �owchart of this study. 
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Range Scaling scales the metabolic signals by the variation of biological responses63. A disadvantage of this 
method lies in a limited number (usually only 2) of values used to describe the variation unlike other scaling 
methods taking all measurements into account using the standard deviation, which makes this algorithm rela-
tively sensitive to outliers12. Because all variation levels of the metabolites are treated equally by the range scaling, 
it has been used to fuse mass spectrometry-based metabolomics data42.

Variance Stabilization Normalization (VSN) is one of the non-linear methods aiming at remain variances 
unchanged across the whole data range21. �e method is reported to be a preferred approach for exploratory 
analysis such as the principal component analysis80. VSN was originally developed for normalizing single and 
two-channel microarray data81, and currently used to determine metabolic pro�les of liver tissue during early 
cancer development82.

As an extension of the auto scaling, Vast Scaling scales the metabolic signals based on the coe�cient of var-
iation12. Vast scaling has been used to identify prognostic factors for breast cancer patients from the magnetic 
resonance based metabolomics83.

Detailed descriptions on these methods could be found in Supplementary Note S1, and their source codes 
programed in this study could be found in Supplementary Note S2.

Assessment of the normalization performance by classification algorithm. Firstly, the di�erential 
metabolic features were identi�ed by VIP value (> 1) of the partial least squares discriminant analysis (PLS-DA)84 
in R package ropls85 together with p-value (< 0.05) of Student t-test71. All computational assessments were con-
ducted in R (http://www.r-project.org) version 3.2.4 running on 64-bit Mac OS X EI Capitan (v10.11.5) platform. 
Source codes of related programs designed in this study could be found in Supplementary Note S2.

Secondly, classification algorithm was applied to assess the performance of each normalization method 
based on the identi�ed di�erential metabolic features. Several classi�cation algorithms were adopted to evaluate 
the performance of normalization methods, which include the Support Vector Machine (SVM)21, the k-Nearest 
Neighbors (k-NN)86, the Gaussian Mixture Model (GMM)87, and so on. As illustrated in Fig. 1, the SVM algorithm 
in the R package e1071 (http://cran.r-project.org/web/packages/e1071) was selected to assess normalization per-
formance in this study. In the process of training the classi�cation models, 10-fold cross validation was used to 
optimize parameters, and the validation dataset was then used to assess the classi�cation performance of the 
selected di�erential features by the receiver operating characteristic (ROC) plots generated by R package ROCR88. 
Source codes of the classi�cation algorithm programed in this study could be found in Supplementary Note S2.

Identification of the performance relationship among normalization methods. �e hierarchical 
clustering56,89,90 was adopted to identify the relationship of sample size dependent performance among 16 meth-
ods. Firstly, the area under the curve values (AUCs) of a speci�c method among 10 sub-datasets of various sample 
size were used to generate a 10 dimensional vector. Secondly, hierarchical clustering was adopted to investigate 
the relationship among vectors, and therefore among corresponding methods. As an assessment of consistency 
between di�erent distance metrics, two metrics (the Manhattan and the Euclidean) were applied:

∑= −a bManhattan distance (a,b) (1)i i i

∑= −
=

a bEuclidean distance (a,b) ( ) (2)i

n
i i1

2

In Eq. (1) and Eq. (2), i refers to each AUC of method a and b. Clustering approach adopted is the Ward’s 
minimum variance method91, which is used to reduce the total within-cluster variance to the maximum extent. In 
this work, Ward’s minimum variance module in R package was used92. Source codes of the hierarchical clustering 
algorithm programed in this study could be found in Supplementary Note S2.

Construction of web-based tool for evaluating performance of 16 normalization method. A 
web-based tool named as MetaPre for comprehensively evaluating the normalization performance of all 16 meth-
ods was constructed and hosted at http://server.idrb.cqu.edu.cn/MetaPre/. MetaPre was developed in R environ-
ment, and further extended using HTML, CSS and JavaScript. �e R package Shiny (http://shiny.rstudio.com/) 
was used to construct web application (comprised of a front end and a back end). R package Di�Corr93 and vsn 
from Bioconductor Project94 were utilized to support background processes. MetaPre server was deployed at 
Apache HTTP web server v2.2.15 (http://httpd.apache.org).

Results and Discussion
Validation of the differential metabolic features selected based on 16 normalization methods.  
Supplementary Table S1 showed the number of di�erential metabolic features identi�ed by PLS-DA based on 
16 normalization methods. As demonstrated, the numbers of features selected based on some methods were 
the same as each other, while the numbers identi�ed by some others varied signi�cantly. SVM classi�er based 
on those features was used in this work, the validity of these features were therefore crucial for assessing perfor-
mances of 16 methods. In this study, two lines of evidence were provided for this assessment. First, a benchmark 
spike-in dataset from Franceschi’s work95 was analyzed. As shown in Supplementary Table S2, the performances 
on identifying spike-in compounds based on 16 methods were equivalent to that of Franceschi’s work, which 
indirectly re�ected the reliability of strategy applied in this study. Secondly, 2 markers (creatine riboside and 
561.3432) from positive and other 2 markers (cortisol sulfate and N-acetylneuraminic acid) from negative 
ionization mode were experimentally validated in Mathé’s work54. Supplementary Table S3 listed the number 
of experimentally validated markers identi�ed by this work from the same datasets as that in Mathé’s work 
(MTBLS28 ESI+  and ESI− ). For all methods of various sample sizes, the absolute majority (91.6%) identi�ed 
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all experimentally validated markers, which could server as another line of evidence for the validity of metabolic 
features selected by this study.

Variation of normalization performances among 16 methods based on benchmark datasets.  
Table 1 demonstrated the prediction accuracy (ACC) of each method trained by 10 sub-datasets based on 
MTBLS28 (ESI+  and ESI− ). For the training set of 900 samples from MTBLS28 ESI+ , the ACC values of 11 
methods fell in the range from 0.6095 (the Level Scaling) to 0.6952 (the Log Transformation, the Power Scaling 
and the Range Scaling). �e ACC values of 4 methods (the VSN, the PQN, the Cyclic Loess and the Cubic Splines) 
exceeded 0.7, while that of another method (the Contrast) was only 0.5143. For training set of 900 samples from 
MTBLS28 ESI−, the ACC values of 14 methods fell in the range from 0.6095 (the Level Scaling) to 0.6857 (the 
Cyclic Loess and the VSN). �e ACC value of only one method (the Quantile) exceeded 0.7, while that of another 
method (the Contrast) was only 0.3333. Moreover, Supplementary Table S4 showed the ACC values of each 
method trained by 10 sub-datasets based on MTBLS17 (ESI+  and ESI− ). For the training set of 170 samples 
from MTBLS17, the Contrast method always underperformed comparing to other methods, which was similar to 
that of MTBLS28. However, the top-ranked normalization methods for each ionization mode of each dataset vary 
signi�cantly, which is in accordance with Chawade’s conclusion that the e�ectiveness of a method in normalizing 
data relied on the nature of the analyzed data53. �us, this signi�cant variation reminded us that it is essential to 
take various sample size into account, if one try to compare the performance among normalization methods.

�e receiver operating characteristic (ROC) curves and the area under the curve values (ACCs) were used 
to illustrate the performances of 16 methods in Fig. 2 and Supplementary Table S5. Figure 2a–d illustrated ROC 
curves of MTBLS28 ESI+ , MTBLS28 ESI− , MTBLS17 ESI+  and MTBLS17 ESI− , respectively. �e training data-
set of Fig. 2a and b consisted of 900 samples (400 lung cancer patients and 500 healthy individuals), and that of 

Normalization 
method

MetaboLights ID 
(ionization mode)

Sample size of 10 various sub-datasets used in the training set

90 180 270 360 450 540 630 720 810 900

Auto Scaling
MTBLS28 (ESI+ ) 0.5905 0.6286 0.6381 0.6952 0.5810 0.6286 0.6381 0.6381 0.6476 0.6667

MTBLS28 (ESI− ) 0.5524 0.5333 0.5810 0.6190 0.6000 0.6190 0.6571 0.6476 0.6381 0.6667

Contrast
MTBLS28 (ESI+ ) 0.4762 0.5238 0.4095 0.4667 0.5238 0.5619 0.5429 0.5619 0.4762 0.5143

MTBLS28 (ESI− ) 0.4381 0.3429 0.4667 0.3524 0.3524 0.3714 0.4000 0.3619 0.3524 0.3333

Cubic Splines
MTBLS28 (ESI+ ) 0.6095 0.6095 0.6762 0.6952 0.6095 0.7143 0.6476 0.7048 0.6762 0.7048

MTBLS28 (ESI− ) 0.6667 0.6095 0.6381 0.6000 0.6476 0.6952 0.6952 0.6762 0.7238 0.6667

Cyclic Loess
MTBLS28 (ESI+ ) 0.6000 0.6190 0.6667 0.6381 0.6476 0.6476 0.6381 0.6762 0.7524 0.7238

MTBLS28 (ESI− ) 0.5905 0.6667 0.6571 0.6190 0.6476 0.6667 0.6857 0.6762 0.6857 0.6857

Level Scaling
MTBLS28 (ESI+ ) 0.5905 0.6190 0.6381 0.6476 0.6286 0.6476 0.6286 0.6381 0.6286 0.6095

MTBLS28 (ESI− ) 0.5714 0.5619 0.6095 0.6190 0.6000 0.6095 0.6667 0.6476 0.6381 0.6095

Li-Wong
MTBLS28 (ESI+ ) 0.5524 0.6095 0.5524 0.6000 0.5619 0.5714 0.6190 0.6286 0.6667 0.6762

MTBLS28 (ESI− ) 0.5048 0.6286 0.5429 0.6571 0.6476 0.6762 0.6381 0.5905 0.6476 0.6286

Linear Baseline
MTBLS28 (ESI+ ) 0.6095 0.6095 0.6476 0.7238 0.6095 0.6286 0.6667 0.6762 0.6952 0.6286

MTBLS28 (ESI− ) 0.5619 0.5619 0.5905 0.6095 0.6190 0.6000 0.6762 0.6571 0.6286 0.6476

Log Transformation
MTBLS28 (ESI+ ) 0.6476 0.6857 0.6952 0.6476 0.7048 0.6667 0.6857 0.6952 0.6762 0.6952

MTBLS28 (ESI− ) 0.6095 0.6286 0.6190 0.6762 0.6095 0.6571 0.6857 0.6190 0.6952 0.6476

MSTUS
MTBLS28 (ESI+ ) 0.5905 0.6095 0.6286 0.6476 0.6000 0.6571 0.6667 0.6762 0.6667 0.6762

MTBLS28 (ESI− ) 0.5619 0.5714 0.5619 0.6000 0.6095 0.6286 0.6762 0.6762 0.6667 0.6476

Pareto Scaling
MTBLS28 (ESI+ ) 0.6190 0.6571 0.6190 0.5905 0.6476 0.6667 0.6476 0.6952 0.6381 0.6667

MTBLS28 (ESI− ) 0.5714 0.5619 0.5905 0.6095 0.6000 0.6190 0.6667 0.6381 0.6381 0.6476

Power Scaling
MTBLS28 (ESI+ ) 0.6000 0.6571 0.5905 0.6190 0.6000 0.6286 0.6952 0.6476 0.7048 0.6952

MTBLS28 (ESI− ) 0.5810 0.6381 0.5905 0.5714 0.5810 0.6095 0.6476 0.6095 0.6286 0.6476

PQN
MTBLS28 (ESI+ ) 0.5619 0.6381 0.6476 0.6286 0.6381 0.6667 0.6762 0.6952 0.7524 0.7333

MTBLS28 (ESI− ) 0.6000 0.6095 0.6476 0.6381 0.6571 0.6857 0.6667 0.7238 0.7429 0.6667

Quantile
MTBLS28 (ESI+ ) 0.6095 0.6190 0.6476 0.6952 0.6095 0.6476 0.6762 0.7143 0.7048 0.6857

MTBLS28 (ESI− ) 0.6667 0.6190 0.6381 0.6095 0.6286 0.6667 0.6857 0.6571 0.6381 0.7238

Range Scaling
MTBLS28 (ESI+ ) 0.5714 0.6190 0.6190 0.5905 0.6381 0.6000 0.6190 0.6476 0.6381 0.6952

MTBLS28 (ESI− ) 0.5810 0.5429 0.5714 0.5905 0.6000 0.6095 0.6190 0.6476 0.6667 0.6571

Vast Scaling
MTBLS28 (ESI+ ) 0.5524 0.6190 0.6286 0.5905 0.6381 0.5905 0.6286 0.6571 0.6476 0.6381

MTBLS28 (ESI− ) 0.5333 0.5714 0.6095 0.6095 0.6095 0.5810 0.6571 0.6190 0.6667 0.6190

VSN
MTBLS28 (ESI+ ) 0.6381 0.6381 0.6286 0.7048 0.6476 0.7048 0.7048 0.6571 0.7524 0.7429

MTBLS28 (ESI− ) 0.6571 0.6762 0.6476 0.6762 0.6476 0.6667 0.6762 0.7048 0.6857 0.6857

Table 1.  Performance evaluation of 16 normalization methods across 10 sub-datasets based on the 
benchmark data MTBLS28 (ESI+ and ESI−). �e performance was evaluated by the prediction accuracies (ACCs) 
on the validation set. �e ACC equals to (true positive +  true negative)/(true positive +  false positive +  true  
negative +  false negative).
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Fig. 2c and d consisted of 170 samples (50 HCC patients and 120 people with cirrhosis). �e grey diagonal repre-
sented an invalid model with the corresponding AUC value equaled to 0.5. As illustrated in Fig. 2a–d, the Contrast 
method showed a poor normalization performance in all 4 datasets, while the VSN and the Log Transformation 
outperformed consistently. However, performance rank of the remaining methods �uctuated dramatically, which 
also requested a collective assessment of normalization performance based on various sample size.

Categorization of 16 methods based on their normalization performances. AUCs of a speci�c 
method among 10 sub-datasets were calculated to construct a 10 dimensional vector. �e resulting 16 vectors 
were then hierarchically clustered based on two popular distance metrics (the Manhattan in Fig. 3 and the 
Euclidean in Supplementary Figure S1). Cluster analysis of 16 methods was conducted based on 4 benchmark 
datasets: (a) MTBLS28 ESI+ , (b) MTBLS28 ESI− , (c) MTBLS17 ESI+  and (d) MTBLS17 ESI− . As shown in 
Fig. 3a–d, 16 methods were divided by the corresponding dendrogram on the le� side of each �gure into three 
areas: top, middle and bottom areas colored by green, blue and magenta, respectively. Clearly, 3 methods (the 
VSN, the Log Transformation and the PQN) were consistently ranked into the top area of all 4 �gures, while one 
method (the Contrast) always stayed in the bottom area. �erefore, 16 normalization methods could be cate-
gorized into 3 groups (A, B and C) by comprehensively considering their performances across all 4 benchmark 
datasets.

As illustrated by Fig. 4, normalization methods in group A (the VSN, the Log Transformation and the PQN) 
demonstrated the best performance among all 16 methods, which made group A (G-A) the Superior Performance 

Figure 2. Normalization performance of 16 methods measured by receiver operating characteristic (ROC) 
curves based on four benchmark datasets: (a) MTBLS28 ESI+ , (b) MTBLS28 ESI− , (c) MTBLS17 ESI+  and 
(d) MTBLS17 ESI− . �e training dataset of (a) and (b) composed of 900 samples (400 lung cancer patients and 
500 healthy individuals), and that of (c) and (d) consisted of 170 samples (50 HCC patients and 120 people with 
cirrhosis). �e grey diagonal represented an invalid model with the corresponding area under the curve (AUC) 
value equaled to 0.5. All lines were generated by the LOESS regression.
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Group. �e VSN and the PQN had been discovered as robust and well-performed methods in metabolomics for 
various dilutions of biological samples37,96. �e Log Transformation was reported to be a powerful tool for mak-
ing skewed distributions symmetric12, it was therefore a very suitable method for treating metabolomics data 
(the distribution of which was right-skewed)23. Moreover, some methods (e.g., the VSN) in G-A was also found 
to be the most capable one in reducing variation between technical replicates in proteomics, and consistently 
well-performed in identifying di�erential expression pro�les97. �e Contrast was the only one method in group C 
(G-C, the Poor Performance Group), the performance of which was consistently the worst across 10 sub-datasets 
among all 16 methods. As reported by Kohl et al.21, the Contrast hardly reduced bias at all and could not improve 
comparability among samples21.

Moreover, the remaining 12 methods in group B (Good Performance Group) could be further divided into 
G-B1 (including 6 methods occasionally classi�ed to the top area of Fig. 3) and G-B2 (including 6 methods 
consistently staying in the middle area of Fig. 3). As illustrated in Fig. 4, although slightly underperformed 
comparing to G-A, methods in G-B1 showed good normalization performances across 10 sub-datasets of 
various sample size. Furthermore, the majority of the methods in G-B2 followed a similar �uctuation trends 
across various sample sizes, with the Li-Wong distinguished as an outlier. �e Li-Wong performed the worst 
among other assessed methods in reducing within- and between-group variations96, and could hardly reduce 
the biases among samples at all21.

Similar to the Manhattan metric (Fig. 3), 16 methods could also be re-categorized with the Euclidean metric. 
As illustrated in Supplementary Figure S1, the categorization generated based on the Euclidean metric identi�ed 
3 groups with exactly the same methods in each group as that of the Manhattan metric, which re�ected the inde-
pendent nature of method categorization on di�erent distance metrics. Moreover, in Supplementary Figure S1d, 

Figure 3. Cluster analysis of 16 normalization methods according to their AUC values (across 10 various 
sample sizes) calculated based on four benchmark datasets: (a) MTBLS28 ESI+ , (b) MTBLS28 ESI− ,  
(c) MTBLS17 ESI+  and (d) MTBLS17 ESI− . �e data were presented in matrix format in which columns 
represent speci�c training dataset of various sample size and rows represent each normalization method. Each 
cell in heat map represents AUC value of a normalization method trained on one speci�c training sample. �e 
cell of the highest AUC value was set as exact blue with those lower AUC values gradually fading towards red 
(the lowest AUC value). Hierarchical clustering analyses were conducted using Manhattan metric and Ward’s 
minimum variance algorithm.
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the Li-Wong was clustered into the bottom area (magenta) together with the Contrast, which again re�ected its 
unsuitability in analyzing LC/MS based metabolomics data21,96.

Online interactive analysis tool for normalizing LC/MS based metabolomics data. With R pack-
age Shiny (http://shiny.rstudio.com/), an interactive web tool, named MetaPre, was developed in this study and 
hosted at http://server.idrb.cqu.edu.cn/MetaPre/. �e MetaPre constructed to normalize LC/MS based metab-
olomics data could be easily accessed by modern web browsers such as Chrome, Fox�re, IE, Safari, and so on. 
Meanwhile, the local version of MetaPre was freely provide in this study and could also be readily downloaded 
from https://github.com/libcell/MetaPre in Github. �e procedure for using online version of the MetaPre was 
provided in Fig. 5, which included 4 steps: (1) uploading the dataset; (2) data pre-processing; (3) data normaliza-
tion; (4) performance evaluation.

Figure 4. Method groups categorized according to the normalization performances across various sample  
sizes based on four benchmark datasets: (a) MTBLS28 ESI+ , (b) MTBLS28 ESI− , (c) MTBLS17 ESI+  and  
(d) MTBLS17 ESI− . (G–A) superior performance group; (G-B1) good performance group including methods 
occasionally classi�ed to top green area of Fig. 3; (G-B2) good performance group including methods 
consistently staying in middle blue area of Fig. 3; (C) poor performance group. All lines were generated by the 
LOESS regression.

http://shiny.rstudio.com/
http://server.idrb.cqu.edu.cn/MetaPre/
https://github.com/libcell/MetaPre
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Uploading the dataset provided the option to upload data with or without QC samples. In large-scale metabo-
lomics study (especially the LC/MS based one), not all samples can be analyzed in the same experimental batch61. 
To cope with these di�culties, QC samples were frequently applied58,61. In the MetaPre, batch correction based 
on QC samples was provided, which made this tool one of the few currently available online servers51,98 o�ering 
such kind of function.

Data pre-processing o�ered the function to correct metabolic features and impute missing signals. For data 
with QC samples, the MetaPre �rstly applied within-block signal correction61 to correct metabolic features. �en, 
multiple popular imputing algorithms were provided to �ll missing signals. For data without QC samples, only 
the process of missing signal imputing was implemented.

Data normalization integrated 16 normalization methods discussed in this study to remove the unwanted 
biological variations. A�er selecting any of these methods, the normalized data matrix was displayed on the web 
page and a corresponding csv �le could be downloaded directly. Moreover, two box plots used to visualizing the 
distributions of data before and a�er normalization were illustrated on the web page.

Performance evaluation was quanti�ed based on AUC values of the constructed SVM models. Firstly, the 
di�erential metabolic features were identi�ed by VIP value (>1) of PLS-DA model. �en, SVM models were 
constructed based on these identi�ed di�erential features. A�er k-folds cross validation, ROC curve together with 
its AUC value were calculated and displayed on the web page.

MetaPre is valuable online tool to select suitable methods for normalizing LC/MS based metabolomics data, 
and is a useful complement to the currently available tools in modern metabolomics analysis.

Conclusion
Based on the 4 datasets tested in this work, 16 methods for normalizing LC/MS based metabolomics data were 
categorized into three groups based on their normalization performances across various sample sizes, which 
included the superior (3 methods), good (12 methods) and poor (1 method) performance groups. �e VSN, the 
Log Transformation and the PQN were identi�ed as methods of the best normalization performance, while the 
Contrast consistently underperformed across all sub-datasets of di�erent benchmark data among those 16 meth-
ods. Moreover, an interactive web tool comprehensively evaluating the performance of all 16 methods for normal-
izing LC/MS based metabolomics data was constructed and hosted at http://server.idrb.cqu.edu.cn/MetaPre/. In 
sum, this study could serve as guidance to the selection of suitable normalization methods in analyzing the LC/
MS based metabolomics data.
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