
Performance Evaluation
at the Software Architecture Level

Simonetta Balsamo1, Marco Bernardo2, and Marta Simeoni1

1 Università ”Ca’ Foscari” di Venezia
Dipartimento di Informatica

Via Torino 155, 30172 Mestre, Italy
{balsamo, simeoni}@dsi.unive.it
2 Università di Urbino ”Carlo Bo”

Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy

bernardo@sti.uniurb.it

Abstract. When tackling the construction of a software system, at the
software architecture design level there are two main issues related to
the system performance. First, the designer may need to choose among
several alternative software architectures for the system, with the choice
being driven especially by performance considerations. Second, for a spe-
cific software architecture of the system, the designer may want to un-
derstand whether its performance can be improved and, if so, it would
be desirable for the designer to have some diagnostic information that
guide the modification of the software architecture itself. In this paper
we show how these two issues can be addressed in practice by employing
a methodology relying on the combined use of Æmilia — an architec-
tural description language based on stochastic process algebra — and
queueing networks — structured performance models equipped with fast
solution algorithms — which allows for a quick prediction, improvement,
and comparison of the performance of different software architectures for
a given system. The methodology is illustrated through a case study in
which a sequential architecture, a pipeline architecture, and a concurrent
architecture for a compiler system are compared on the basis of typical
average performance indices.

1 Introduction

Software architecture (SA) is an emerging discipline within software engineering,
aiming at describing the structure and the behavior of the software systems at a
high level of abstraction [43, 46]. A SA represents the structure and the behavior
of a software system in an early stage of the development cycle, the phase in
which basic design choices of components and interactions among components
are made and clearly influence the subsequent development and deployment
phases. Appropriate languages and tools are required to give precise descriptions
of SAs and to support the efficient analysis of their properties in a way that

provides component-oriented diagnostic information in case of malfunctioning
detection.

A crucial issue in the software development cycle is that of integrating the
analysis of nonfunctional system properties since the early stages, where per-
formance is one of the most influential factors that drive the design choices. To
this purpose, in the formal method research field several description and analysis
techniques have been proposed in the past twenty years, like stochastic Petri nets
(SPN; see, e.g., [39, 1]) and stochastic process algebras (SPA; see, e.g., [29, 31,
30, 14]). On the side of the system performance evaluation research field, various
models and methods have been proposed for the quantitative evaluation of hard-
ware and sofware systems, which were traditionally based mostly on queueing
networks (QN; see, e.g., [34, 35, 37, 33, 42, 50, 8]). However, only more recently
some research has been truly focused on the integration of specific performance
models in the software development cycle (see, e.g., [47, 52, 3]).

In this paper, which is a full and revised version of [7] that builds on material
in [16, 3], we propose a methodology to evaluate the performance of SAs, which
combines formalisms and techniques developed in the two different communities
in a way that can be integrated in the software development cycle. More precisely,
the methodology is based on both SPA modeling and QN analysis and is realized
through a transformation of SPA specifications into QN models.

On the modeling side, we choose SPAs because they are compositional lan-
guages permitting the description of functional and performance aspects, which
can be enhanced to act as fully fledged architectural description languages (ADL)
that elucidate the architectural notions of component and interaction and sup-
port the detection of architectural mismatches arising when assembling several
components together. The specific ADL that we consider is Æmilia [16], which
is based on the stochastic process algebra EMPAgr [14]. Æmilia is illustrated in
Sect. 2.

On the analysis side, we choose QNs for several reasons. First, QNs are
structured performance models, therefore they should support the possibility of
keeping track of the correspondence between their constituent service centers
and the components of the architectural specifications. Second, typical perfor-
mance measures can be computed both at the level of the overall QNs and at
the level of their constituent service centers. Such global and local performance
indicators can then be interpreted back at the level of the overall architectural
specifications and at the level of their constituent components, respectively, so
that useful diagnostic information can be obtained in the case of poor global
performance. Third, QNs are equipped with efficient solution techniques that
do not require the construction of the underlying state space, so that scalabil-
ity with respect to the number of components in the architectural specifications
should be achieved. Fourth, the solution of the QNs can be expressed symbol-
ically in the case of simple open topologies, and can be approximated through
an asymptotic bound analysis. This feature is useful in the early stages of the
software development cycle, since the actual values of the system parameters, as

well as its complete behavior, may be unknown. The basic concepts and results
about QNs are recalled in Sect. 3.

The translation of Æmilia specifications into QN models is not straightfor-
ward, because the two formalisms are quite different from each other. On the
one hand, Æmilia is a component-oriented language for handling both functional
and performance characteristics, in which all the details must be expressed in
an action-based way. On the other hand, QNs result in a queue-oriented graph-
ical notation for performance modeling purposes only, in which some details —
notably the queueing disciplines — are described in natural language. In ad-
dition to that, the components of the Æmilia specifications cannot be mapped
to QN service centers, but on finer parts that we call QN basic elements. As a
consequence, the translation can be applied only to a (reasonably wide) class
of Æmilia specifications that satisfy certain syntax restrictions, which ensure
that each component in such specifications is a QN basic element, i.e. an ar-
rival process, a buffer, a fork process, a join process, or a service process. The
translation, whose complexity is linear in the number of components declared
in the Æmilia specifications, leads to the generation of open, closed or mixed
QN models with phase-type interarrival and service time distributions, queueing
disciplines with noninterruptable service, fork and join nodes for handling par-
allelism and synchronization, and arbitrary topologies. Depending on the type
of QN model, various solution algorithms, either exact or approximate, can be
applied to efficiently evaluate some average performance indices that are eventu-
ally interpreted back at the Æmilia specification level. The translation is defined
in Sect. 4.

Based on the above translation of Æmilia specifications into QN models,
we develop a practical multi-phase methodology to quickly predict, improve,
and compare the performance of different architectures for the same software
system. In the proposed methodology, the first step is to model with Æmilia all
the architectural alternatives devised by a designer for the same system. Such
Æmilia specifications may then need to be manipulated in such a way that they
satisfy the syntax restrictions that make it possible to derive QN models out
of them. Once the QN models for the architectural alternatives are obtained by
applying the above translation, they are in turn manipulated so that some typical
average performance measures can efficiently be computed in several scenarios of
interest. The previous approximations, both at the Æmilia level and at the QN
level, are justified at the architectural level of abstraction by the fact that we are
more interested in rapidly getting an indication about the performance of the
architectural alternatives, rather than in their precise evaluation. On the basis
of the computed average performance measures, the designer gets a feedback
that can be used to guide the modification of the Æmilia specifications of some
architectural alternatives in order to ameliorate their performance. Once the
predict-improve cycle is terminated, the architectural alternatives are compared
on the basis of the values of the average performance measures obtained in
the considered scenarios, in order to single out the best one. Because of the
approximations that might have been performed in the previous phases, and

the fact that the considered average performance measures are not necessarily
related to the performance requirements of the system under study, the exact
Æmilia specification of the selected architectural design is finally checked against
the specific performance requirements. The methodology is presented in Sect. 5.

The application of the methodology and the translation of Æmilia specifica-
tions into QN models are clarified in Sect. 6 by means of a case study in which
three different architectures — a sequential one, a pipeline one, and a concurrent
one — for a compiler system are compared in different scenarios on the basis
of average performance indices like the mean number of programs compiled per
unit of time, the mean fraction of time during which the compiler is being used,
the mean number of programs in the compiler system, and the mean compilation
time.

Finally, in Sect. 7 we report some concluding remarks about future perspec-
tives.

2 Æmilia: A SPA-Based ADL

In this section we present the main ingredients of Æmilia [16], a performance-
oriented ADL. Æmilia is the result of the integration of two earlier formalisms:
PADL [15, 17, 18, 2] and EMPAgr [14]. The former is a process-algebra-based
ADL, which is equipped with some architectural checks for the detection of
deadlock-related architectural mismatches within families of software systems
called architectural types. The latter is an expressive SPA, which allows for
both the functional verification and the performance evaluation of concurrent
and distributed systems. Below we recall through a running example how PADL
and EMPAgr have been combined together in order to give rise to the syntax,
the semantics, and the analysis support for Æmilia.

2.1 Textual and Graphical Notation

A description in Æmilia represents an architectural type. An architectural type is
an intermediate abstraction between a single SA and an architectural style [46],
which results in a family of software systems sharing certain constraints on the
component observable behavior as well as on the architectural topology [15, 17,
18].

As shown in Table 1, the description of an architectural type starts with the
name of the architectural type and its formal parameters, which can represent
variables as well as exponential rates, priorities, and weights for EMPAgr actions.
Each architectural type is defined as a function of its architectural element types
(AETs) and its architectural topology. An AET, whose description starts with
its name and its formal parameters, is defined as a function of its behavior,
specified either as a list of sequential EMPAgr defining equations or through
an invocation of a previously defined architectural type, and its interactions,
specified as a set of EMPAgr action types occurring in the behavior that act as
interfaces for the AET.

ARCHI TYPE 〈name and formal parameters〉
ARCHI ELEM TYPES 〈architectural element types: behaviors and

interactions〉
ARCHI TOPOLOGY

ARCHI ELEM INSTANCES 〈architectural element instances〉
ARCHI INTERACTIONS 〈architectural interactions〉
ARCHI ATTACHMENTS 〈architectural attachments〉

END

Table 1. Structure of an Æmilia textual description

A sequential EMPAgr defining equation specifies a possibly recursive behav-
ior in the following way:

behavior id(formal parameter list ; local variable list) = sequential term
where a sequential EMPAgr term is written according to the following syntax:

sequential term ::= stop
| <action type, action rate> . sequential term 1
| choice { sequential term 2 list }

sequential term 1 ::= sequential term
| behavior id(actual parameter list)

sequential term 2 ::= sequential term
| cond(boolean guard)−> sequential term

Every behavior is given an identifier, a possibly empty list of comma-separated
formal parameters, and a possibly empty list of comma-separated local vari-
ables. The admitted data types for parameters and variables are boolean, integer,
bounded integer interval, real, list, array, and record. The sequential term stop
cannot execute any action. The sequential term <action type, action rate> .
sequential term 1 can execute an action having a certain type and a certain
rate and then behaves as specified by sequential term 1 , which can be in turn a
sequential term or a behavior invocation with a possibly empty list of comma-
separated actual parameters. The action type can be a simple identifier (un-
structured action), an identifier followed by the symbol ”?” and a list of comma-
separated variables enclosed in parentheses (input action), or an identifier fol-
lowed by the symbol ”!” and a list of comma-separated expressions enclosed in
parentheses (output action). The action rate can be the identifier or the numeric
value for the rate of an exponential distribution (exponentially timed action),
the keyword inf followed by the identifiers or the numeric values of a priority
level and a weight enclosed in parentheses (immediate action), or the symbol
”*” followed by the identifiers or the numeric values of a priority level and
a weight enclosed in parentheses (passive action). Finally, the sequential term
choice { sequential term 2 list } expresses a choice among at least two comma-
separated alternatives, each of which may be subject to a boolean guard. If all
the alternatives with a true guard start with an exponentially timed action, then
the race policy applies: each involved action is selected with a probability pro-
portional to its rate. If some of the alternatives with a true guard start with an

immediate action, then such immediate actions take precedence over the expo-
nentially timed ones and the generative preselection policy applies: each involved
immediate action with the highest priority level is selected with a probability
proportional to its weight. If some of the alternatives with a true guard start
with a passive action, then the reactive preselection policy applies to them: for
every action type, each involved passive action of that type with the highest
priority level is selected with a probability proportional to its weight (the choice
among passive actions of different types is nondeterministic).

. . .

. . .

(a) uni-uni (b) uni-and (c) uni-or

Fig. 1. Legal attachments

The architectural topology is specified through the declaration of a set of
architectural element instances (AEIs) representing the system components, a
set of architectural (as opposed to local) interactions given by some interac-
tions of the AEIs that act as interfaces for the whole architectural type, and a
set of directed architectural attachments among the interactions of the AEIs.
Alternatively, the architectural topology can be specified through the Æmilia
graphical notation inspired by flow graphs [38], in which the boxes denote the
AEIs, the black circles denote the local interactions, the white squares denote
the architectural interactions, and the directed edges denote the attachments.

Every interaction is declared to be an input interaction or an output interac-
tion and every attachment must go from an output interaction to an input inter-
action of two different AEIs. In addition, every interaction is declared to be a uni-
interaction, an and-interaction, or an or-interaction. As shown in Fig. 1, the only
legal attachments are those between two uni-interactions, an and-interaction and
a uni-interaction, and an or-interaction and a uni-interaction. An and-interaction
and an or-interaction can be attached to several uni-interactions. In the case of
execution of an and-interaction, it synchronizes with all the uni-interactions
attached to it. In the case of execution of an or-interaction, instead, it synchro-
nizes with only one of the uni-interactions attached to it. An AEI can have
different types of interactions (input/output, uni/and/or, local/architectural).
Every local interaction must be involved in at least one attachment, while every
architectural interaction must not be involved in any attachment. No isolated
groups of AEIs are admitted in the architectural topology. On the performance
side, we have two additional requirements. For the sake of modeling consistency,
all the occurrences of an action type in the behavior of an AET must have the

same kind of rate (exponential, or infinite with the same priority level, or passive
with the same priority level). In order to comply with the generative-reactive
synchronization discipline of EMPAgr, which establishes that two nonpassive ac-
tions cannot synchronize, every set of attached interactions must contain at most
one interaction whose associated rate is exponential or infinite.

get_prog2
1get_prog

put_prog2

put_prog1
PG1

PG2

PB

deliver_prog

deliver_prog

SC

select_prog

select_prog1

2

Fig. 2. Graphical description of SeqCompSys

As an example, we show in Table 2 an Æmilia textual description for an
architectural type representing a compiler system. The compiler we consider is
a sequential monolithic compiler that carries out all the phases (lexical analy-
sis, parsing, type checking, code optimization, and code generation), with each
phase introducing an exponentially distributed delay. For the sake of perfor-
mance evaluation, the description of the compiler system comprises a generator
of programs to be compiled, where the program interarrival times are assumed
to follow an exponential distribution, as well as un unbounded buffer in which
such programs wait before being compiled one at a time. We suppose that there
are two different classes of programs: those whose code must be optimized and
those whose code must not. As can be noted, the description of the architectural
type SeqCompSys is parametrized with respect to the arrival rates of the two
classes of programs (λ1, λ2) and the service rates of the five compilation phases
(µl, µp, µc, µo, µg). The omitted values for the priority levels and the weights of
the infinite and passive rates in the specification are taken to be 1. The same
sequential compiler system is depicted in Fig. 2 through the Æmilia graphical
notation.

2.2 Formal Semantics and Analysis Support

The semantics of an Æmilia specification is given by translation into EMPAgr.
This translation is carried out in two steps. In the first step, the semantics of
each AEI is defined to be the behavior of the corresponding AET — in which
the formal rates, priority levels, and weights are replaced by the corresponding
actual ones — projected onto its interactions. Such a projected behavior is ob-
tained from the list of sequential EMPAgr defining equations representing the
behavior of the AET by applying a hiding operator on all the actions that are
not interactions. In this way, we abstract from all the internal details of the

ARCHI TYPE SeqCompSys(rate λ1, λ2, µl, µp, µc, µo, µg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE ProgBufferT(integer h1, h2)
BEHAVIOR ProgBuffer(integer h1, h2; void) =

choice

{
<get prog1, ∗>.ProgBuffer(h1 + 1, h2),
<get prog2, ∗>.ProgBuffer(h1, h2 + 1),
cond(h1 > 0)−> <put prog1, ∗>.ProgBuffer(h1 − 1, h2),
cond(h2 > 0)−> <put prog2, ∗>.ProgBuffer(h1, h2 − 1)

}
INPUT INTERACTIONS UNI get prog1; get prog2
OUTPUT INTERACTIONS UNI put prog1; put prog2

ELEM TYPE SeqCompT(rate µl, µp, µc, µo, µg)
BEHAVIOR SeqComp(void; void) =

choice

{
<select prog1, inf>.<recognize tokens, µl>.

<parse phrases, µp>.<check phrases, µc>.
<optimize code, µo>.<generate code, µg>.SeqComp(),

<select prog2, inf>.<recognize tokens, µl>.
<parse phrases, µp>.<check phrases, µc>.
<generate code, µg>.SeqComp()

}
INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
PB : ProgBufferT(0, 0);
SC : SeqCompT(µl, µp, µc, µo, µg)

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO PB.get prog1;
FROM PG2.deliver prog TO PB.get prog2;
FROM PB.put prog1 TO SC.select prog1;
FROM PB.put prog2 TO SC.select prog2

END

Table 2. Textual description of SeqCompSys

behavior of the AEI. In addition, the projected behavior must reflect the fact
that an or-interaction can result in several distinct synchronizations. Therefore,
every or-interaction is rewritten as a choice among as many indexed instances of
uni-interactions as there are attachments involving the or-interaction. Recalled
that in EMPAgr the hiding operator is denoted by the symbol ”/”, for our com-
piler system example we have:

[[PG1]] = ProgGen1 / {generate prog}
[[PG2]] = ProgGen2 / {generate prog}
[[PB]] = ProgBuffer(0, 0)
[[SC]] = SeqComp / {recognize tokens, parse phrases, check phrases,

optimize code, generate code}
where ProgGen1 (resp. ProgGen2) is obtained from ProgGen by replacing each
occurrence of λ with λ1 (resp. λ2).

In the second step, the semantics of an architectural type is obtained by
composing in parallel the semantics of its AEIs according to the specified at-
tachments, after relabeling to the same fresh action type all the interactions
attached to each other. This relabeling is required by the synchronization mech-
anism of EMPAgr, which establishes that only actions with the same type can
synchronize. Recalled that in EMPAgr the relabeling operator is denoted by the
symbols ”[” and ”]” and that the left-associative parallel composition operator
is denoted by the symbol ”‖S” where S is the set of action types on which the
synchronization is enforced, for our compiler system example we have:

[[SeqCompSys]] = [[PG1]][deliver prog 7→ a1] ‖∅
[[PG2]][deliver prog 7→ a2] ‖{a1,a2}

[[PB]][get program1 7→ a1, get program2 7→ a2,
put program1 7→ b1, put program2 7→ b2] ‖{b1,b2}

[[SC]][select prog1 7→ b1, select prog2 7→ b2]
Given the translation above, Æmilia inherits the semantic models of EMPAgr.

More precisely, the semantics of an Æmilia specification is a state-transition
graph called the integrated semantic model, whose states are represented by
EMPAgr terms and whose transitions are labeled with EMPAgr actions together
with the related guards arising from the use of the choice operator. This graph
is finite state and finitely branching unless variables taking values from infinite
domains are used (like in the buffer of the compiler system example), in which
case a symbolic representation of the state space is employed in accordance
with [13]. After pruning the lower priority transitions from the integrated se-
mantic model, it is possible to derive a functional semantic model, by removing
the action rates from the transitions, and a performance semantic model, by re-
moving the action types from the transitions. The performance semantic model,
which is defined only if the integrated semantic model has neither passive tran-
sitions nor transitions with a guard different from true, is a continuous-time or
a discrete-time Markov chain [48] depending on whether the integrated semantic
model has exponentially timed transitions or not.

On the analysis side, Æmilia inherits from EMPAgr standard techniques to
assess functional properties as well as performance measures. Among such tech-
niques we mention model checking [23], equivalence checking [24], Markovian

analysis [48] based on rewards [32] as described in [14], and discrete event simu-
lation [51], all of which are available in the Æmilia-based software tool TwoTow-
ers 3.0 [12]. In addition to these capabilities, Æmilia comes equipped with some
specific checks for the detection of architectural mismatches — and the provi-
sion of related diagnostic information — that may arise when assembling the
components together. The first group of checks ensures that deadlock freedom
is preserved when building a system from deadlock-free components [15, 2]. The
second group of checks makes sure that assembling components with partially
specified performance details (i.e., with passive actions occurring in their behav-
iors) results in a system with fully specified performance aspects [16]. Finally,
the third group of checks comes into play in case of hierarchical modeling, i.e.
whenever the description of a component behavior contains an architectural type
invocation. Such checks guarantee that the actual parameters of an invocation
of an architectural type conform to the formal parameters of the definition of
the architectural type, in the sense that the actual components have the same
observable behavior as the corresponding formal components [15] and that the
actual topology is a legal extension of the formal topology [17, 18].

3 Queueing Networks

QN models have been widely applied as system performance models to repre-
sent and analyze resource sharing systems [34, 35, 37, 33, 42, 50, 8]. In essence,
a QN model is a collection of interacting service centers, representing system
resources, and a set of customers, representing the users sharing the resources.
The customers’ competition for the resource service corresponds to queueing
into the service centers. The popularity of QN models for system performance
evaluation is due to their relatively high accuracy in performance results and
their efficiency in model analysis and evaluation. In this section we briefly recall
the basic notions and properties of QN models. In particular, we shall focus on
the class of product form QNs, which admit fast solution techniques.

3.1 Queueing Systems

As depicted in Fig. 3(a), the simplest case of QN is the one in which there is
a single service center together with a source of arrivals, which is referred to
as a queueing system (QS). Every QS is completely described by the customer
interarrival time distribution, the customer service time distribution, the number
of independent servers, the queue capacity, the customer population size, and
the queueing discipline. The first five parameters are summarized by using the
Kendall’s notation A/B/m/c/p, with A and B ranging over a set of probability
distributions — ’M’ for memoryless distributions, ’D’ for deterministic values,
’PH’ for phase-type distributions, and ’G’ for general distributions — and m, c,
and p being natural numbers. If c and p are unspecified, they are assumed to
be ∞, i.e. to describe an unlimited queue capacity and an unlimited population.

Every customer needing a certain service arrives at the QS, waits in the queue
for a while, is served by one of the servers, and finally leaves the QS.

The queueing discipline is an algorithm that determines the order in which
the customers in the queue are served. Such a scheduling algorithm may depend
on the order in which the customers arrive at the QS, the priorities assigned
to the customers, or the amounts of service already provided to the customers.
Here are some commonly adopted queueing disciplines:

– First come first served (FCFS): the customers are served in the order of their
arrival.

– Last come first served (LCFS): the customers are served in the reverse order
of their arrival.

– Service in random order (SIRO): the next customer to be served is chosen
probabilistically, with equal probabilities assigned to all the waiting cus-
tomers.

– Nonpreemptive priority (NP): the customers are assigned fixed priorities; the
waiting customer with the highest priority is served first; if several waiting
customers have the same highest priority, they are served in the order of
their arrival; once begun, a service cannot be interrupted by the arrival of a
higher priority customer.

– Preemptive priority (PP): same as NP, but each arriving higher priority
customer interrupts the current service, if any, and begins to be served;
a customer whose service was interrupted resumes service at the point of
interruption when there are no higher priority customers to be served.

– Last come first served preemptive resume (LCFS-PR): same as LCFS, but
each arriving customer interrupts the current service, if any, and begins to
be served; the interrupted service of a customer is resumed when all the
customers that arrived later than that customer have departed.

– Round robin (RR): each customer is given continuous service for a maximum
interval of time called a quantum; if the customer’s service demand is not
satisfied during the quantum, the customer reenters the queue and waits
to receive an additional quantum, repeating this process until its service
demand is satisfied; the waiting customers are served in the order in which
they last entered the queue.

– Processor sharing (PS): all the waiting customers receive service simultane-
ously with equal shares of the service rate.

– Infinite server (IS): no queueing takes place as each arriving customer always
find an available server.

If the queueing discipline is omitted in the QS notation, it is assumed to be
FCFS.

The QS behavior can be analyzed either during a given time interval (tran-
sient analysis) or by assuming that it reaches a stationary condition (steady-state
analysis). The analysis of the QS is based on the definition of an underlying
continuous-time Markov chain. The QS steady-state analysis usually evaluates
a set of four average performance indices after computing the queue length dis-
tribution, i.e. the distribution of the number of customers in the QS. The four

queue

server
arrivals departures

(a) A QS (b) A simple closed QN

Fig. 3. QN graphical representation

average performance indices are the throughput (mean number of customers
leaving the system per unit of time), the utilization (average fraction of time
during which the servers are used), the mean number of customers in the QS,
and the mean response time experienced by the customers visiting the QS.

For instance, let us consider the simplest case of QS M/M/1 with arrival
rate λ and service rate µ [34]. Although the stochastic process underlying the
QS M/M/1 is an infinite-state continuous-time Markov chain, where each state
represents the number of customers in the system, the particular structure of this
Markov chain allows us to easily derive that the distribution of the number N1 of
customers in the system — on the basis of which the four average measures above
are defined — is geometrical with parameter given by the traffic intensity ρ1 =
λ/µ. The steady-state analysis of this QS requires that the stability condition
ρ1 < 1 holds, i.e., that the customer arrival rate is less than the service rate. In
this case we can easily derive the four average perfomance indices as follows:

– The throughput is given by the probability that there is at least one customer
in the system multiplied by the service rate, i.e. X1 = Pr{N1 > 0} · µ =
ρ1 · µ = λ.

– The utilization is given by the probability that there is at least one customer
in the system, i.e. U1 = Pr{N1 > 0} = ρ1.

– The mean number of customers in the system is the expected value of the
geometrical distribution describing the number of customers in the system,
i.e. N1 = ρ1/(1− ρ1).

– The mean response time is obtained from Little’s law as the ratio of the mean
number of customers in the system to the arrival rate, i.e. R1 = N1/λ =
1/[µ · (1− ρ1)].

It can be shown that all the queueing disciplines with noninterruptable, nonpri-
oritized service — like FCFS, LCFS, and SIRO — together with PS — which
is a good approximation of RR — and LCFS-PR are equivalent with respect to
the four average performance measures above for a QS M/M/1.

In the more general case of a QS M/M/m with arrival rate λ, which has m
identical servers that operate independently and in parallel each with service
rate µ, the traffic intensity is defined by ρm = λ/(m ·µ) and, under the stability
condition ρm < 1, the four average performance indices are given by:

Xm =
m−1∑
i=1

i · µ · Pr{Nm = i}+
∞∑

i=m

m · µ · Pr{Nm = i} = λ

Um = 1− Pr{Nm = 0}
Nm = m · ρm + Pr{Nm=0}·ρm·(m·ρm)m

m!·(1−ρm)2

Rm = 1
µ ·

(
1 + Pr{Nm=0}·ρm·(m·ρm)m−1

m!·(1−ρm)2

)

where:

Pr{Nm = 0} =

(
m−1∑

i=0

(m · ρm)i

i!
+

(m · ρm)m

m! · (1− ρm)

)−1

3.2 Networks of Queueing Systems

A QN is composed of a set of interconnected service centers. When describing
a QN, which can be represented — as shown in Fig. 3(b) — through a directed
graph whose nodes are the service centers and whose edges represent the behavior
of the customers’ service requests, it is necessary to specify for each service
center the service time distribution, the number of servers, the queue capacity,
the queueing discipline, and the routing probabilities for the customers leaving
the service center. A QN can be open or closed, depending on whether external
arrivals and departures are allowed or not, or mixed. In an open QN, a customer
that completes service at a service center immediately enters another service
center, reenters the same service center, or departs from the network. In a closed
QN, instead, a fixed number of customers circulate indefinitely among the service
centers.

1s
2s

s3
fclass

class e

class
class

class

b
a
c

dclass

closed chain

open chain

Fig. 4. A mixed network with three service centers, an open chain with classes a, b, e,
and a closed chain with classes c, d, f .

Different types of customers in the QN model can be used to represent dif-
ferent behaviors. This in fact allows various types of external arrival process,
different service demands, and different types of network routing to be modeled.
A chain gathers the customers of the same type. A chain consists then of a set
of classes that represent different phases of processing in the system for a given
type of customers. Classes are partitioned within the service centers and each
customer in a chain moves between the classes. A chain can be used to represent

a customer routing behavior dependent on the past history. For example, two
classes of the same chain in a service center can represent the customer require-
ment of two successive services. Each chain can be open or closed depending
on whether external arrivals and departures are allowed or not. Multiclass or
multichain networks can be open or closed if all the chains are open or closed,
respectively. A mixed network has both open and closed chains. Fig. 4 shows an
example of a multiclass network with two chains and six classes. The open chain
describes the routing behavior of the type 1 customers: two successive visits to
the service center s1 followed by a visit to service center s3. Chain 2 is closed
and there is a constant number of type 2 customers circulating between service
centers s1, s2, and s3.

Evaluating a QN model means obtaining a quantitative description of its
behavior by computing a set of figures of merit, such as the four average perfor-
mance indices considered for a single QS. The analysis of a QN model provides
information both on the local and on the global performance, i.e. the performance
of each service center and the overall system performance. A QN can be analyzed
by defining and solving the underlying stochastic process, which under general
assumptions is a countinous-time Markov chain. Unfortunately, its solution can
often become unfeasible since its state space size grows exponentially with the
number of components of the QN model. However, some efficient solution algo-
rithms can be defined for the special subclass of product form QNs, which we
briefly introduce in the next section. Such algorithms provide a powerful tool for
performance analysis based on QNs.

3.3 Product Form QNs

Product form QNs (see [6] for a complete survey) avoids the state space explosion
problem because they can be solved compositionally. Given that the state of a QN
is a tuple consisting of the number of customers in the various service centers, the
probability of a product form QN state is simply obtained as the product of the
probabilities of its constituent service center states, up to a normalizing constant
in the case of closed QNs. An important characterization of product form QNs is
given by the BCMP theorem [10], which defines the BCMP class of product form
open, closed and mixed QNs with multiple classes of customers, Poisson arrivals
(i.e. exponentially distributed interarrival times) with rates possibly depending
on the total population of the QN or on the population of a chain, and arbitrary
Markovian routing. According to the BCMP theorem, each multiclass service
center can have one combination of the following queueing disciplines and service
time distributions:

– FCFS with exponentially distributed service times, with the same rate for
all the classes of customers;

– PS, LCFS-PR, or IS with phase-type distributed service times, possibly dif-
ferent for the various classes of customers.

In the second case, only the expected values of the phase-type service time
distributions affect the QN solution in terms of the four average performance

indices, so when computing such indices the phase-type distributions can be
replaced with exponential distributions having the same expected values.

In the case of an open product form QN, the four average performance mea-
sures can easily be obtained at the global level and at the local level from the
analysis of the constituent service centers, when considered as isolated QSs with
Poisson arrivals, by exploiting the two groups of formulas at the end of Sect. 3.1.
The arrival rates are derived by solving the linear system of the traffic equa-
tions defined by the routing probabilities among the service centers. The same
average indices can be obtained at the global level and at the local level for a
closed or mixed product form QN by applying one of the following algorithms:
the convolution algorithm [19], the mean-value analysis algorithm (MVA) [44],
the local balance algorithm for normalizing constants (LBANC) [20], and the
recursion-by-chain algorithm (RECAL) [25]. These algorithms also provide the
basis for most approximate analytical methods that need to be applied whenever
the QN model under consideration does not belong to the class of product form
QNs (see, e.g., [36]).

An important property of product form QNs is exact aggregation, which al-
lows replacing a subnetwork with a single service center, in such a way that the
new aggregated QN has the same behavior in terms of the four average perfor-
mance indices. Thus, exact aggregation can be used to represent and evaluate a
system at different levels of abstraction. Moreover, exact aggregation for prod-
uct form QNs provides a basis for approximate solution methods of more general
QNs that are not product form (see, e.g., [36]).

Various extensions of the class of BCMP product form QNs have been de-
rived. They include QNs with other queueing disciplines, QNs with state depen-
dent routing, some special cases of QNs with finite capacity queues, subnetwork
popolation constraints, and blocking, and QNs with batch arrivals and batch
services. Another extension of QNs networks with product form is the class of
G-networks [28], which comprise both positive and negative customers.

3.4 QN Extensions

Extensions of classical QN models, named extended QN (EQN) models, have
been introduced in order to represent several interesting features of real systems,
such as synchronization and concurrency constraints, finite capacity queues,
memory constraints, and simultaneous resource possession.

In particular, concurrency and synchronization among tasks are represented
in an EQN model by fork and join nodes. A fork node starts the parallel execution
on distinct service centers of the different tasks in which a customer’s request can
be split, while a join node represents a synchronization point for the termination
of all such tasks. A few cases of QNs with forks and joins have been solved with
exact and approximate analytical techniques (see, e.g., [40, 4, 9]).

QNs with finite capacity queues and blocking have been introduced as more
realistic models of systems with finite resources and population constraints.
When a customer arrives at a finite capacity queue that is full, the customer
cannot enter the queue and it is blocked. Various blocking mechanisms can be

defined — like blocking after or before service and repetitive service — that
specify the behavior of the customers blocked in the network. Except for a few
cases that admit product form solutions, QNs with blocking are solved through
approximate techniques (see, e.g., [42, 8]).

Another extension of the QN model is given by the layered queueing network
(LQN) model, which allows client-server communication patterns to be modeled
in concurrent and/or distributed software systems. LQN models can be solved
by analytic approximation methods based on standard methods for EQNs with
simultaneous resource possession and MVA (see, e.g., [45, 52, 27]).

The exact and approximate analytical methods for solving EQNs require that
a set of assumptions and constraints are satisfied. Should this not be the case,
EQN models can be analyzed via simulation, at the cost of higher development
and computational times to obtain accurate results.

Examples of performance evaluation tools based on QNs and their extensions
are RESQ [21], QNAP2 [49], HIT [11], and LQNS [26].

4 Translating Æmilia Specifications into QN Models

In this section we provide a translation that maps an Æmilia specification into
a QN model to be used to predict and improve the performance of the described
SA. As mentioned in Sect. 1, there are several good reasons for resorting to
QN models at the SA level of design, instead of the flat state-transition graphs
used as semantic models for Æmilia. First, QNs are structured performance
models whose constituent service centers can be put in correspondence with
groups of AEIs of the Æmilia specifications. Second, typical average performance
measures can be computed at the level of the overall QNs and interpreted at the
level of the groups of AEIs of the Æmilia specifications corresponding to their
constituent service centers, thus providing a useful feedback. Third, QNs do not
suffer from the state space explosion problem, as they are equipped with efficient
solution techniques that avoid the construction of the state space. Finally, QNs
can sometimes be solved symbolically, without having to instantiate the values
of the corresponding parameters in the Æmilia specifications.

To carry out the translation, first of all we observe that the two formalisms
that we are considering are quite different from each other. On the one hand,
Æmilia is a component-oriented language for handling both functional and per-
formance characteristics, in which all the details must be expressed in an action-
based way. On the other hand, QNs result in a queue-oriented graphical notation
for performance modeling purposes only, in which some details — notably the
queueing disciplines — are described in natural language. As a consequence,
there will be Æmilia specifications that cannot be converted into QN models,
either because they do not follow a queue-oriented pattern, or because it is hard
to understand — by looking at their process algebraic defining equations — the
queueing disciplines that they encode. Therefore, we shall impose some general
syntax restrictions that single out a reasonably wide class of Æmilia specifica-
tions for which a QN model may be derived.

Within the class of Æmilia specifications that obey the general syntax re-
strictions, given a specification we try to map each of its constituent AEIs into a
part of a QN model. In principle, it would seem to be natural to map each AEI
into a QS PH/PH/m/c/p. However, this is not always possible because the AEIs
are usually finer than the QSs. As a consequence, we identify five classes of QN
basic elements — which we call arrival processes, buffers, fork processes, join
processes, and service processes, respectively, and graphically represent through
an extension of the traditional notation used for QNs — and we impose some
further specific syntax restrictions to single out those AEIs that fall into one
of the five classes. For each Æmilia specification obeying both the general and
the specific syntax restrictions, the translation is accomplished by first mapping
each of its constituent AEIs into the corresponding QN basic element and then
composing the previously obtained QN basic elements according to the attach-
ments declared in the Æmilia specification. The translation will be illustrated
by means of the sequential compiler system example introduced in Sect. 2.

4.1 General Syntax Restrictions: Benefits and Limitations

The general syntax restrictions helps identifying the Æmilia specifications for
which it is possible to derive an open, closed or mixed QN model comprising ar-
rival processes, buffers, fork processes, join processes, and service processes. The
general restrictions are mainly based on the observation that an AEI describes
a sequential software component, which thus runs on a single computational
resource.

The first general restriction is that every AEI of an Æmilia specification
must be an arrival process, a buffer, a fork process, a join process, or a service
process, and must be properly connected to the other AEIs in order to obtain a
well-formed QN. This is achieved through specific syntax restrictions depending
on the particular QN basic element, which will be introduced in the next sections.

The second general restriction aims at easing the identification of those AETs
that represent arrival or service processes, which are built around exponentially
timed actions describing the relevant delays. The second general restriction es-
tablishes that the interactions of an Æmilia specification cannot be exponentially
timed, i.e. they must be immediate or passive.

The third general restriction aims at avoiding the unnatural application of
the race policy to several distinct activities within the same (sequential) AEI,
thus causing the various arrival and service processes to be modeled separately
with different AEIs. The third general restriction establishes that, within the
behavior of the AETs of an Æmilia specification, no exponentially timed action
can be alternative to another exponentially timed action.

The fourth general restriction aims at allowing interarrival and service times
to be characterized through precisely defined phase-type distributions. The fourth
general restriction establishes that, within the behavior of the AETs of an Æmilia
specification, no exponentially timed action can be alternative to an immediate
or passive action, no immediate action can be alternative to a passive action,
and no interaction can be alternative to a local action.

The last three general restrictions, as well as the specific restrictions illus-
trated in the next sections that implement the first general restriction, can au-
tomatically be checked at the syntax level, without constructing the underlying
state space of the entire Æmilia specification. They preserve much of the mod-
eling power that Æmilia inherits from EMPAgr, without hampering the descrip-
tion of typical situations like parallel executions, synchronization constraints,
probabilistic/prioritized choices, and activities whose duration is or can be ap-
proximated with a phase-type distribution. It is straightforward to verify that
SeqCompSys defined in Table 2 satisfies the last three general restrictions.

The four general restrictions, together with the specific syntax restrictions
accompanying the first general one, introduce two main limitations. First, due
to the fourth general restriction, the Æmilia specifications modeling preemption
cannot be dealt with, as it is not possible to express the fact that the service of a
customer of a certain class is interrupted by the arrival of a customer of another
class having higher service priority. Second, as we shall see when presenting the
specific syntax restrictions for the buffers, we only address queueing disciplines
with noninterruptable service for a fixed number of servers, like FCFS, LCFS,
SIRO, and NP, thus excluding those policies in which the service of a customer
can be interrupted (PP, LCFS-PR) or divided into several rounds (RR, PS),
as well as those policies in which no queueing takes place as every incoming
customer always finds an available server (IS).

4.2 Modeling Phase-Type Distributions

Since the interarrival times and the service times are allowed to follow phase-
type distributions, before proceeding with the translation it is worth recalling
how the phase-type distributions can be modeled in a language like Æmilia,
where only exponentially distributed delays can directly be specified. A continu-
ous phase-type distribution [41] describes the time to absorption in a finite-state
continuous-time Markov chain having exactly one absorbing state. Well known
examples of phase-type distributions are the exponential distribution, the hypo-
exponential distribution, the hyperexponential distribution, and combinations
thereof, which are characterized in terms of time to absorption in a finite-state
continuous-time Markov chain with one absorbing state as depicted in Fig. 5,
where the numbers labeling the states describe the initial state probability func-
tions.

Observed that an absorbing state can be modeled by term stop, the three
phase-type distributions above can easily be modeled through a suitable inter-
play of exponentially timed actions and immediate actions as follows. An expo-
nential distribution with rate λ can be modeled through the following equation:

Expλ(void; void) = <phase, λ>.stop

An n-stage hypoexponential distribution with rates λ1, . . . , λn can be modeled
through the following equation:

Hypoexpλ1,...,λm
(void; void) = <phase, λ1>.<phase, λn>.stop

An n-stage hyperexponential distribution with rates λ1, . . . , λn and branching

λ
1

(a) Exponential distribution
λ2

p1

λ1

λn

p2

pn

(c) Hyperexponential distribution

...
...

λ2λ1 λn
1

(b) Hypoexponential distribution

......

Fig. 5. Typical phase-type distributions

probabilities p1, . . . , pn can be modeled through the following equation:
Hyperexpλ1,...,λn,p1,...,pn(void; void) =

choice
{

<branch, inf(1, p1)>.<phase, λ1>.stop,
...
<branch, inf(1, pn)>.<phase, λn>.stop

}
In the arrival processes and in the service processes with phase-type dis-

tributed delays, the occurrences of stop will be replaced by suitable invocations
of the behaviors that must take place after the delays have elapsed.

4.3 Arrival Processes

An arrival process is a generator of arrivals of customers of a certain class,
whose interarrival times follow a phase-type distribution. As depicted in Fig. 6,
we distinguish between two different kinds of arrival processes depending on
whether the related customer population is unbounded or finite.

1deliver ,inf

ndeliver ,inf

1

n

rp

rp

1

n

rp

rp

(a) Arrival process for unbounded population (b) Arrival process for single customer of finite population

return ,*1

return ,*mndeliver ,inf

1deliver ,inf

int_arr_time int_arr_time

Fig. 6. Graphical representation of the arrival processes

In the case of an unbounded customer population, the customer interarrival
time distribution refers to the whole population, so there is no need to explicitly
model the return of a customer after its service termination. As an example,
the behavior of an AEI, which acts as an arrival process for an unbounded pop-
ulation of customers whose interarrival time is exponentially distributed with

rate λ, where each customer has a set of n different forks or service centers as
destinations chosen according to the intraclass routing probabilities rp1, . . . , rpn,
must be equivalent 3 to the following one:

UnboundedPopArrProc(void; void) =
<generate, λ>.UnboundedPopArrProc′()

UnboundedPopArrProc′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<deliver1, inf>.UnboundedPopArrProc(),
...
<choosen, inf(1, rpn)>.<delivern, inf>.UnboundedPopArrProc()

}

with deliver1, . . . , delivern being output interactions attached to input inter-
actions of buffers (not related to join processes), fork processes with no buffer,
or service processes with no buffer. The specific syntax restriction requires that,
in order for an AEI to be classified as an arrival process for an unbounded popu-
lation of customers, its behavior and interactions must be equivalent to the pre-
vious ones, with: the exponentially timed action possibly replaced by a term de-
scribing a more general phase-type distribution where UnboundedPopArrProc’()
is substituted for each occurrence of stop; the destination choice actions omit-
ted if there is only one possible destination; the delivery actions possibly having
specific priority levels and specific weights if the related destinations are service
processes with no buffer.

If the customer population is finite, instead, then the customer interarrival
time distribution for the whole population varies proportionally to the number
of customers that are not requesting any service, hence the return of a customer
after its service termination must explicitly be modeled. In this case, the cus-
tomers are represented separately through independent instances of the same
AET with the same individual interarrival time distribution, in order to easily
achieve the global interarrival time distribution scaling. For instance, the behav-
ior of an AEI, which acts as an arrival process for a single customer belonging to
a finite population of customers whose individual interarrival time is exponen-
tially distributed with rate λ, where the customer has a set of n different forks or
service centers as destinations chosen according to the intraclass routing prob-
abilities rp1, . . . , rpn and can return from m distinct joins or service processes,
must be equivalent to the following one:

3 In our framework, equivalence can formally be checked on the basis of the notion of
strong extended Markovian bisimulation [14].

SingleCustArrProc(void; void) =
<generate, λ>.SingleCustArrProc′()

SingleCustArrProc′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<deliver1, inf>.SingleCustArrProc′′(),
...
<choosen, inf(1, rpn)>.<delivern, inf>.SingleCustArrProc′′()

}
SingleCustArrProc′′(void; void) =

choice
{

<return1, ∗>.SingleCustArrProc(),
...
<returnm, ∗>.SingleCustArrProc()

}
with: deliver1, . . . , delivern being output interactions attached to input or-
interactions of buffers (not related to join processes), fork processes with no
buffer, or service processes with no buffer; return1, . . . , returnm being input
interactions attached to output or-interactions of join processes or service pro-
cesses. The specific syntax restriction requires that, in order for an AEI to be
classified as an arrival process for a single customer belonging to a finite pop-
ulation of customers, its behavior and interactions must be equivalent to the
previous ones, with the remaining constraints similar to those for the arrival
processes for unbounded populations. In addition, all the AEIs modeling the
customers of the same finite population must be instances of the same AET
characterized by the same individual interarrival time distribution and must be
attached to the same input or-interactions of buffers (not related to join pro-
cesses), fork processes with no buffer, or service processes with no buffer as well
as to the same output or-interactions of join processes or service processes.

To conclude, for the sequential compiler system of Sect. 2 we observe that
PG1 and PG2 are arrival processes for unbounded populations of customers of two
different classes, each having a single destination.

4.4 Buffers

A buffer is a repository of customers of different classes that are waiting to
be served. As depicted in Fig. 7, we distinguish between two different kinds of
buffers depending on their capacity.

In the case of an unbounded buffer, the incoming customers can always be
accommodated within the buffer. The specific syntax restriction requires that,
in order for an AEI to be classified as an unbounded buffer for n classes of cus-
tomers, it must have a behavior equivalent to the following one:

(a) Unbounded buffer

1

(b) Finite capacity buffer

get ,*

get ,*n

1 put ,*1

put ,*n

get ,*1

get ,*n

put ,*

put ,*

1

n

N ,...,Nn

Fig. 7. Graphical representation of the buffers

UnboundedBuffer(integer h1, . . . , hn; void) =
choice
{

<get1, ∗>.UnboundedBuffer(h1 + 1, . . . , hn),
...
<getn, ∗>.UnboundedBuffer(h1, . . . , hn + 1),
cond(h1 > 0)−> <put1, ∗>.UnboundedBuffer(h1 − 1, . . . , hn),
...
cond(hn > 0)−> <putn, ∗>.UnboundedBuffer(h1, . . . , hn − 1)

}
with: h1, . . . , hn initially set to nonnegative integers; get1, . . . , getn being input
interactions attached to output interactions of arrival processes, fork processes,
join processes, or service processes; put1, . . . , putn being output interactions at-
tached to input interactions of fork processes with buffer, join processes with
buffers, or service processes with buffer; geti being an input or-interaction if
the customers of class i belong to a finite population and come directly from
their arrival processes.

If the buffer capacity is finite, instead, then the incoming customers can be
accommodated only if the buffer capacity is not exceeded. The specific syntax
restriction requires that, in order for an AEI to be classified as a finite capacity
buffer for n classes of customers, where the customers of class i can occupy up to
Ni positions in the buffer, it must have a behavior equivalent to the following one:

FiniteCapBuffer(integer(0..N1) h1, . . . , integer(0..Nn) hn; void) =
choice
{

cond(h1 < N1)−> <get1, ∗>.FiniteCapBuffer(h1 + 1, . . . , hn),
...
cond(hn < Nn)−> <getn, ∗>.FiniteCapBuffer(h1, . . . , hn + 1),
cond(h1 > 0)−> <put1, ∗>.FiniteCapBuffer(h1 − 1, . . . , hn),
...
cond(hn > 0)−> <putn, ∗>.FiniteCapBuffer(h1, . . . , hn − 1)

}
with the remaining constraints equal to those for the unbounded buffers, except
for the fact that now the initial values of h1, . . . , hn cannot exceed the corre-
sponding capacities.

It is worth observing that the buffers outlined above do not make any as-
sumption about the order in which the customers of the same class are taken
from the buffer with respect to the order in which they arrive at the buffer.
Therefore, from the point of view of the four average performance indices intro-
duced in Sect. 3.1, such buffers can be used to support any queueing discipline
with noninterruptable service, like FCFS, LCFS, SIRO, and NP. On the con-
trary, the buffers above cannot be used to describe those queueing disciplines in
which the service of a customer can be interrupted (PP, LCFS-PR), or can be
divided into several rounds (RR, PS), or can immediately take place (IS).

To conclude, for the sequential compiler system of Sect. 2 we observe that
PB is an unbounded buffer for two classes of customers.

4.5 Fork Processes

A fork process handles the splitting of each request of the customers of a certain
class into several subrequests to be served in parallel by different service centers.
As depicted in Fig. 8, we distinguish between two different kinds of fork processes
depending on the presence or the absence of a buffer — modeled by another AEI
— where the customers can wait before being split.

0
select,inf arrive,*

(a) Fork process with buffer (b) Fork process with no buffer

fork ,inf

fork ,infn

1 fork ,inf1

fork ,infn

Fig. 8. Graphical representation of the fork processes

In the case of a fork process equipped with a buffer, the description of the
fork process starts with the selection of the next customer to be split from the
buffer. The specific syntax restriction requires that, in order for an AEI to be
classified as a fork process equipped with a buffer, where the subrequests are
forwarded to n different forks or service centers, it must have a behavior equiv-
alent to the following one:
ForkProcWithBuffer(void; void) =

<select, inf>.<fork1, inf>.<forkn, inf>.ForkProcWithBuffer()
with: select being an input interaction attached to the output interaction of a
buffer; fork1, . . . , forkn being output interactions attached to input interactions
of buffers (not related to join processes), fork processes with no buffer, or service
processes with no buffer; the fork actions possibly having specific priority levels
and specific weights if the related destinations are service processes with no
buffer.

In the case of a fork process with no buffer, instead, the description of the
fork process starts with the arrival of the next customer to be split directly from

an arrival process, a fork, a join, or a service center. The specific syntax restric-
tion requires that, in order for an AEI to be classified as a fork process with
no buffer, where the subrequests are forwarded to n different forks or service
centers, it must have a behavior equivalent to the following one:

ForkProcNoBuffer(void; void) =
<arrive, ∗>.<fork1, inf>.<forkn, inf>.ForkProcNoBuffer()

with arrive being an input interaction — or an input or-interaction if the
customers belong to a finite population and come directly from their arrival pro-
cesses — attached to an output interaction of an arrival process, a fork process,
a join process, or a service process and the remaining constraints equal to those
for the fork processes equipped with a buffer.

4.6 Join Processes

A join process handles the merging of the subrequests of the customers of a
certain class after they have been served in parallel by different service centers.
As depicted in Fig. 9, we distinguish between two different kinds of join processes
depending on the presence or the absence of buffers — modeled by other AEIs
— where the subrequests can wait before being merged.

1

n

rp

rp

leave ,inf1

leave ,infn

1

n

rp

rp

leave ,inf1

leave ,infn

0

(a) Join process with buffers (b) Join process with no buffers

join,inf

join,inf

join,*

join,*

Fig. 9. Graphical representation of the join processes

In the case of a join process equipped with buffers, the description of the join
process starts with the selection of the next subrequests to be merged from the
buffers. The specific syntax restriction requires that, in order for an AEI to be
classified as a join process equipped with buffers, where the subrequests are for-
warded by several different joins or service centers and the result of the merging
has a set of n different finite population arrival processes, forks, joins, or service
centers as destinations chosen according to the intraclass routing probabilities
rp1, . . . , rpn, it must have a behavior equivalent to the following one:

JoinProcWithBuffer(void; void) =
<join, inf>.JoinProcWithBuffer′()

JoinProcWithBuffer′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<leave1, inf>.JoinProcWithBuffer(),
...
<choosen, inf(1, rpn)>.<leaven, inf>.JoinProcWithBuffer()

}

with: join being an input and-interaction attached to the output interaction
of each buffer; leave1, . . . , leaven being output interactions attached to input
interactions of arrival processes for finite populations, buffers, fork processes with
no buffer, join processes with no buffers, or service processes with no buffer; the
destination choice actions omitted if there is only one possible destination; the
departure actions possibly having specific priority levels and specific weights
if the related destinations are service processes with no buffer; the departure
actions omitted if the related destinations are arrival processes for unbounded
populations; leavei being an output or-interaction if destination i is an arrival
process for a finite population.

In the case of a join process with no buffers, instead, the description of the
join process starts with the arrival of the subrequests to be merged directly from
a join or a service center. The specific syntax restriction requires that, in order
for an AEI to be classified as a join process with no buffers, with the same char-
acteristics as in the previous example, it must have a behavior equivalent to the
following one:

JoinProcNoBuffer(void; void) =
<join, ∗>.JoinProcNoBuffer′()

JoinProcNoBuffer′(void; void) =
choice
{

<choose1, inf(1, rp1)>.<leave1, inf>.JoinProcNoBuffer(),
...
<choosen, inf(1, rpn)>.<leaven, inf>.JoinProcNoBuffer()

}
with join being an input and-interaction attached to output interactions of join
processes or service processes and the remaining constraints equal to those for
the join processes equipped with buffers.

4.7 Service Processes

A service process is a server for customers of different classes, whose service
times follow a phase-type distribution. As depicted in Fig. 10, we distinguish
between two different kinds of service processes depending on the presence or
the absence of a buffer — modeled by another AEI — where the customers can
wait before being served.

In the case of a service process equipped with a buffer, the description of
the service process starts with the selection of the next customer to be served
from the buffer. As an example, the behavior of an AEI, which acts as a service
process equipped with a buffer that serves customers of n different classes, where
each class i has priority prioi to be selected, probability probi to be selected
among the classes with the same priority, exponentially distributed service time
with rate µi, and a set of di different finite population arrival processes, forks,
joins, or service centers as destinations chosen according to the intraclass routing
probabilities rpi,1, . . . , rpi,di , respectively, must be equivalent to the following

select ,infn

1select ,inf

leave ,inf

leave ,inf
n,1 n,1

n,dn

rp

rp

leave ,inf

leave ,infrp

rp
1,1 1,1

1,d1
1,d1

nn,d leave ,inf

leave ,inf
n,1 n,1

n,dn

rp

rp

leave ,inf

leave ,infrp

rp
1,1 1,1

1,d1
1,d1

nn,d

serv_time

0

serv_time

arrive ,*1

arrive ,*n

(a) Service process with buffer (b) Service process with no buffer

Fig. 10. Graphical representation of the service processes

one:
ServProcWithBuffer(void; void) =

choice
{

<select1, inf(prio1, prob1)>.ServProcWithBuffer′1(),
...
<selectn, inf(prion, probn)>.ServProcWithBuffer′n()

}
ServProcWithBuffer′i(void; void) =

<servei, µi>.ServProcWithBuffer′′i ()
ServProcWithBuffer′′i (void; void) =

choice
{

<choosei, inf(1, rpi,1)>.<leavei,1, inf>.ServProcWithBuffer(),
...
<choosei, inf(1, rpi,di)>.<leavei,di , inf>.ServProcWithBuffer()

}
with: select1, . . . , selectn being input interactions attached to the output in-
teractions of a buffer; leave1,1, . . . , leaven,dn being output interactions attached
to input interactions of arrival processes for finite populations, buffers, fork pro-
cesses with no buffer, join processes with no buffers, or service processes with
no buffer. The specific syntax restriction requires that, in order for an AEI to
be classified as a service process equipped with a buffer, its behavior and inter-
actions must be equivalent to the previous ones, with: the exponentially timed
actions possibly replaced for certain classes of customers by terms describing
more general phase-type distributions where ServProcWithBuffer′′i () is substi-
tuted for each occurrence of stop; the destination choice actions omitted for
those classes of customers for which there is only one possible destination; the
departure actions possibly having specific priority levels and specific weights
if the related destinations are service processes with no buffer; the departure
actions omitted if the related destinations are arrival processes for unbounded
populations; the departure actions being output or-interactions if the related
destinations are arrival processes for finite populations.

In the case of a service process with no buffer, instead, the description of
the service process starts with the arrival of the next customer to be served di-

rectly from arrival processes, forks, joins, or service centers. As an example, the
behavior of an AEI, which acts as a service process with no buffer that serves
customers of n different classes, where each class i has the same characteristics
as in the previous example, must be equivalent to the following one:

ServProcNoBuffer(void; void) =
choice
{

<arrive1, ∗>.ServProcNoBuffer′1(),
...
<arriven, ∗>.ServProcNoBuffer′n()

}
ServProcNoBuffer′i(void; void) =

<servei, µi>.ServProcNoBuffer′′i ()
ServProcNoBuffer′′i (void; void) =

choice
{

<choosei, inf(1, rpi,1)>.<leavei,1, inf>.ServProcNoBuffer(),
...
<choosei, inf(1, rpi,di)>.<leavei,di , inf>.ServProcNoBuffer()

}
with: arrive1, . . . , arriven being input interactions attached to output inter-
actions of arrival processes, fork processes, join processes, or service processes;
leave1,1, . . . , leaven,dn being output interactions attached to input interactions
of arrival processes for finite populations, buffers, fork processes with no buffer,
join processes with no buffers, or service processes with no buffer. The specific
syntax restriction requires that, in order for an AEI to be classified as a service
process with no buffer, its behavior and interactions must be equivalent to the
previous ones, with the arrival actions being input or-interactions if the related
customers belong to a finite population and come directly from their arrival pro-
cesses, and the remaining constraints similar to those for the service processes
equipped with a buffer.

It is worth observing that the service processes above allow for classes of cus-
tomers with different service priorities (NP) and with specific service frequencies
among classes with the same service priority (variants of SIRO). This is realized
in two different ways for the two kinds of service processes. For the service pro-
cesses equipped with a buffer, the service priorities and the service frequencies
are expressed through the priority levels and the weights associated with the im-
mediate selection actions. This is not possible in the case of the service processes
with no buffer, because the arrival actions are passive, hence their priority levels
and weights are reactive, i.e. their scope is limited to passive actions of the same
type, whereas the arrival actions for different classes of customers have different
types. This drawback is overcome by expressing the service priorities and the
service frequencies through the priority levels and the weigths of the immediate
output interactions of the arrival processes, fork processes, join processes, and
service processes that forward customers to the service processes without buffer.

The case of a service center composed of several identical and independent
servers is regulated by an additional specific syntax restriction. It requires first
of all that the service processes constituting the multi-server service center are
instances of the same AET with the same individual service time distribution
and the interactions attached to the same AEIs. Three cases then arise. In the
first case, the service processes share a buffer, from which they take all of their
customers. In this case, the put1, . . . , putn actions of the buffer must be out-
put or-interactions. In the second case, the service processes have no buffer and
receive some of their customers directly from arrival processes for unbounded
populations, fork processes, join processes, or service processes. Similarly to the
previous case, the output interactions of the upstream arrival processes for un-
bounded populations, fork processes, join processes, or service processes that
are related to the multi-server service center, must be output or-interactions.
In the third case, the service processes have no buffer and receive some of their
customers from arrival processes for finite populations. For each such upstream
arrival process, the action among deliver1, . . . , delivern that is related to the
multi-server service center must be replaced in the specification of the arrival
process by as many alternative copies of it as there are service processes in the
multi-server service center.

To conclude, for the sequential compiler system of Sect. 2 we observe that
SC is a service process equipped with a buffer, which serves two different classes
of customers — returning to the unbounded populations to which they belong
— according to two different hypoexponential distributions.

4.8 Translating AEIs into QN Basic Elements

Given an Æmilia specification that satisfies both the general and the specific
syntax restrictions introduced in the previous sections, the translation of its
constituent AEIs into their corresponding QN basic elements is carried out by
applying a set of functions that provide the attributes that label the resulting
QN basic elements, as depicted in Fig. 6, 7, 8, 9, and 10.

There are two groups of functions. The functions of the first group play a
documental role and are subsequently used to assemble the QN basic elements
according to the attachments declared in the Æmilia specification. The functions
of the first group are qnbe, name, input , and output . When applied to an AEI,
qnbe determines whether it is an arrival process for an unbounded population
or a single customer belonging to a finite population, a buffer with unlimited
or finite capacity, a fork process with or without buffer, a join process with or
without buffers, or a service process with or without buffer. As an example, for
the sequential compiler system of Sect. 2 we have:

qnbe(PG1) = arrival process for an unbounded population
qnbe(PG2) = arrival process for an unbounded population
qnbe(PB) = unbounded buffer
qnbe(SC) = service process equipped with a buffer

The other three functions, instead, associate the name of the AEI with the corre-
sponding QN basic element and label the incoming and outgoing arrow-headed

arcs of the QN basic element with the corresponding input and output interac-
tions of the AEI, respectively. As an example:

name(PG1) = PG1
name(PG2) = PG2
name(PB) = PB
name(SC) = SC
input(PG1) = ∅
input(PG2) = ∅
input(PB) = {<get prog1, ∗>,<get prog2, ∗>}
input(SC) = {<select prog1, inf>, <select prog2, inf>}

output(PG1) = {<deliver prog, inf>}
output(PG2) = {<deliver prog, inf>}
output(PB) = {<put prog1, ∗>,<put prog2, ∗>}
output(SC) = ∅

pt distr(stop) = ∅
pt distr(<phase, λ>.E) = hypoexp(exp(λ), pt distr(E))

pt distr(choice
{

<branch1, inf(1, w1)>.E1,
...

<branchn, inf(l, wn)>.En
}) = hyperexp(w1

w1+...+wn
, pt distr(E1);
...

wn
w1+...+wn

, pt distr(En))

pt distr(A(e)) = pt distr(E) if A(x; y) = E

Table 3. Recursive definition of function pt distr

The functions of the second group are int arr time, capacity , queueing disc,
serv time, and intra routing prob:

– Function int arr time indicates the phase-type distribution governing the
interarrival times of the arrival processes. In the case of an AEI acting as
an arrival process for an unbounded population of customers (resp. for a
single customer belonging to a finite population), int arr time is the re-
sult of the application of function pt distr of Table 3 to the term equivalent
to UnboundedPopArrProc() (resp. SingleCustArrProc()), with each occur-
rence of the term equivalent to UnboundedPopArrProc’() (resp.
SingleCustArrProc’()) replaced by stop. As an example:

int arr time(PG1) = exp(λ1)
int arr time(PG2) = exp(λ2)

– Function capacity determines the capacity of the buffers. In the case of an
AEI acting as an unbounded buffer, the application of capacity yields ∞. In
the case of an AEI acting as a finite capacity buffer for n classes of customers,
where the customers of class i can occupy up to Ni positions in the buffer as
specified by the parameters of the AEI behavior, the application of capacity
yields N1, . . . , Nn. As an example:

capacity(PB) = ∞

– Function queueing disc defines the queueing discipline of the buffers based
on the priority levels of the input interactions of the service processes to
which the buffers are attached. If all the input interactions of the service
process to which a buffer is attached have the same priority level, then the
application of queueing disc to the buffer yields FCFS, otherwise NP. As an
example:

queueing disc(PB) = FCFS

– Function serv time establishes the phase-type distribution governing the ser-
vice times of the service processes. In the case of an AEI acting as a ser-
vice process equipped with a buffer (resp. with no buffer) for n classes of
customers, serv time for class i is the result of the application of func-
tion pt distr of Table 3 to the term equivalent to ServProcWithBuffer′i()
(resp. ServProcNoBuffer′i()), with each occurrence of the term equivalent
to ServProcWithBuffer′′i () (resp. ServProcNoBuffer′′i ()) replaced by stop.
As an example:

serv time(SC, 1) = hypoexp(exp(µl), exp(µp), exp(µc), exp(µo), exp(µg))
serv time(SC, 2) = hypoexp(exp(µl), exp(µp), exp(µc), exp(µg))

– Function intra routing prob reports the intraclass routing probabilities for
the customers of a certain class leaving an arrival process, a join process,
or a service process. It is simply derived from the weights of the choice ac-
tions of the QN basic element from which the customers of the considered
class depart. It is worth observing that, in the case of a join process or a
service process, this function returns a value also for a destination given by
an arrival process for an unbounded customer population, and that, for a
complete graphical representation of the considered QN basic element, such
a value must label the join process or service process despite of the absence
of the related outgoing arrow-headed arc. As an example:

intra routing prob(PG1, 1, PB) = 1
intra routing prob(PG2, 2, PB) = 1
intra routing prob(SC, 1,−) = 1
intra routing prob(SC, 2,−) = 1

We conclude by showing in Fig. 11 the QN basic elements associated with
the AEIs constituting the sequential compiler system.

PG1

deliver_prog,inf
λ

PG2

2

deliver_prog,inf
λ1

PB

SC

SC,1
SC,2serv_time()

serv_time()

FCFS

get_prog ,*1

get_prog ,*2

put_prog ,*1

put_prog ,*2

select_prog ,inf

select_prog ,inf2

1

1

1
1

1
exp()

exp()

Fig. 11. QN basic elements of SeqCompSys

4.9 Attachment Driven Composition of QN Basic Elements

Given an Æmilia specification that satisfies both the general and the specific syn-
tax restrictions introduced in the previous sections, once each of its constituent
AEIs has been mapped to its corresponding QN basic element, the translation
is completed by connecting the resulting QN basic elements according to the
attachments declared in the Æmilia specification. Graphically, this amounts to
superposing the arrow-headed arcs of the QN basic elements corresponding to
interactions attached to each other. The obtained QN is closed if there are no
arrival processes, in which case the QN population is given by the summation
of the initial number of customers in each buffer.

It is worth observing that the specific syntax restrictions ensure the correct
composition of the QN basic elements obtained from the translation of the AEIs
declared in the Æmilia specification, because the restrictions impose that:

– The input interactions of an arrival process for a finite population cannot be
attached to output interactions of other arrival processes, buffers, and fork
processes.

– The output interactions of an arrival process cannot be attached to input
interactions of other arrival processes for finite populations, buffers related
to join processes, and join processes with no buffers.

– The input interactions of a buffer cannot be attached to output interactions
of other buffers.

– The output interactions of a buffer cannot be attached to input interactions
of arrival processes for finite populations and other buffers.

– The output interactions of a fork process cannot be attached to input in-
teractions of arrival processes for finite populations, buffers related to join
processes, and join processes with no buffers.

– The input interactions of a join process cannot be attached to output inter-
actions of arrival processes and fork processes.

– Suitable or-interactions are used in the case of arrival processes for finite
populations as well as multi-server service centers.

– Suitable and-interactions are used in the case of join processes.

We conclude by showing in Fig. 12 the QN associated with the Æmilia spec-
ification of the sequential compiler system of Sect. 2.

λ2

λ1

deliver_prog,inf

deliver_prog,inf

SC,1
SC,2serv_time()

serv_time()

SeqCompSys

FCFS

get_prog ,*1

get_prog ,*2

select_prog ,inf1

put_prog ,*1

put_prog ,*2

select_prog ,inf2

1

1

1

1exp()

exp()

Fig. 12. QN associated with SeqCompSys

5 A Practical Methodology

When tackling the construction of a software system, at the SA design level there
are two main issues related to the system performance. First, the designer may
need to choose among several alternative SAs for the system under study, with
the choice being driven especially by performance considerations. Second, for a
specific SA of the system under study, the designer may want to understand
whether its performance can be improved and, if so, it would be desirable for
the designer to have some diagnostic information that guide the modification
of the SA itself. In this section we show how these two issues can be addressed
in practice by employing a methodology based on the translation of Æmilia
specifications into QN models, which allows for a quick prediction, improvement,
and comparison of the performance of different SAs for the system under study.

Before illustrating the methodology, it is worth recalling that the use of
an ADL like Æmilia in the methodology is due to the fact that Æmilia comes
equipped with an analysis machinery that supports both functional verification
and performance evaluation, together with some SA level checks. On the other
hand, the use of QNs in the methodology is motivated by their capability of
providing performance indices both at their constituent service center level and
at the overall network level. Another advantage is that the local performance
indices can be interpreted back on the components of the architectural specifica-
tion and used as a feedback to ameliorate the performance of the architectural
specification.

The methodology focuses on the four average performance measures men-
tioned in Sect. 3.1, which will be computed for groups of software components
forming a QN service center:

– The throughput is a measure of the productivity of the service centers, so it
can provide information about those components that are bottlenecks, i.e.
those components that are responsible for degrading the system performance.

– The utilization is the fraction of time during which a service center is being
used. In software component terms, this amounts to the fraction of time
during which the code of a group of components is being executed, so it
supplies useful information, which may be exploited at deployment time,
about the relative usage of computational resources by different software
components.

– The mean number of customers present in a service center is an indicator
to be used for a reasonable dimensioning of buffers and data repositories in
general, in order to avoid performance degradation due to code execution
blocking (under-sized buffers) and waste of memory (over-sized buffers).

– The mean response time is the time spent on average by a customer within
a service center. In software component terms, this essentially amounts to
the expected running time of a group of software components for a complete
execution of their code. In other terms, it is a measure of the quality of
service perceived by a generic user of the software system.

The four average performance measures considered above, although generally
useful for the feedback they quickly provide, are not necessarily connected in
a specific way to the performance requirements of the system under study. In
addition to that, as we shall see they are usually computed after applying some
approximations at the Æmilia specification level or at the QN level. As a con-
sequence, the methodology must be complemented by an additional phase, in
which the exact Æmilia specification of the chosen SA is checked against the
specific performance requirements.

The various phases of the methodology are depicted in Fig 13. Given a set of
(functional and performance) requirements characterizing the software system
under study, the designer can devise multiple alternative SAs that should meet
the requirements. Such SAs are typically expressed in an informal way, e.g. in
natural language or through box-and-line diagrams (phase 1). Then the designer
works on each SA separately.

First of all, since the SA must be analyzed, its informal description must be
converted by the designer into a component-oriented formal representation sup-
porting both functional verification and performance evaluation. This is carried
out by the designer using Æmilia (phase 2).

The Æmilia specification produced for the SA does not necessarily satisfy the
syntax restrictions that make it possible to translate the specification into a QN
model. In such a case, the original Æmilia specification must be approximated
with another Æmilia specification that meets both the general restrictions and
the specific restrictions, so that it can be converted into a QN (phase 3). The
approximation must be conducted in a way that every original AEI becomes
an arrival process, a buffer with a noninterruptable queueing discipline, a fork
process, a join process, or a service process, with the appropriate attachments.
This may require that the behavior of some AEI is modified. This happens
e.g. when some scheduling algorithm based on PP, LCFS-PR, RR, PS, or IS
is adopted within an AEI, which needs to be approximated with a noninter-
ruptable discipline. 4 In addition, the approximation may require adding new
AEIs or deleting existing AEIs. This is the case e.g. when an AEI contains sev-
eral alternative exponentially timed actions, which means that the AEI is the
combination of several components running in parallel that must therefore be

4 According to the results mentioned at the end of Sect. 3.1, this approximation may
be exact with respect to the four average performance indices of interest.

specification
AEmilia

1

QN
model1

begin

requirements
system

think

end

architecture
software

1

model1

scenario based
measures1

architecture
software

model

scenario based
measures

architecture
software

model

scenario based
measures

2

specification
AEmilia

specification

2

2

QN
model2

2

2

specification
AEmilia

specification

QN
model

n

n

n

n

n

n

architecture
selected

phase 1

phase 2

phase 3

phase 4

phase 5

phase 6

phase 7

phase 8

phase 9

specification1

appr. AEmilia appr. AEmilia appr. AEmilia

appr. QN appr. QN appr. QN

translate translate translate

approximate approximate approximate

translate translate translate

approximate approximate approximate

evaluate evaluate evaluate

interpret interpret interpret

compare

check

Fig. 13. Phases of the methodology

represented separately. The approximation is justified at this level of abstraction
by the fact that we are more interested in getting a quick indication about the
performance of the SA, rather than in its precise evaluation.

The Æmilia specification is then automatically translated into a QN based
performance model, in accordance with the guidelines provided in Sect. 3.1
(phase 4).

The QN model obtained for the SA is not necessarily product form, which
may hamper a quick computation of the four average performance measures of
interest at the component level as well as at the overall system level. In such
a case, the original QN model must be approximated with another QN model
that hopefully is product form, with the approximation aiming at transforming
every service center of the QN into a QS M/M/1 or a QS M/M/m with possibly
variable arrival rates (phase 5):

– Finite, nonzero capacity buffers must be transformed into unbounded buffers,
and similarly NP must be transformed into FCFS. This is not a problem at
this stage as we are more interested in finding a reasonable size and queueing
discipline for the buffers, rather than working with a size and a queueing dis-
cipline fixed a priori. However, zero capacity buffers cannot be approximated
as seen before, because their performance would be significantly altered.

– Since we are considering only noninterruptable, nonprioritized queueing dis-
ciplines, phase-type distributed interarrival times and service times must be
approximated with exponentially distributed interarrival times and service
times having the same expected values as the original ones, respectively.

– For each multi-class service center, the classes must be approximated with
a single class whose service time distribution is the convex combination of
the original (exponential) service time distributions, with the coefficients be-
ing given by the interclass routing probabilities of the original classes. The
resulting hyperexponential service time distribution must then be approxi-
mated with an exponential service time distribution with the same expected
value. 5

– As far as the arrival processes are concerned, we recall that the overall arrival
rate for an unbounded customer population (represented by a single arrival
process) is constant, whereas the overall arrival rate for a finite customer
population (represented by several arrival processes) is variable. Such overall
arrival rates convey useful information to be exploited when computing the
interclass routing probabilities needed for the approximation of multi-class
service centers with single-class service centers. We also recall that the total
arrival rate for a service center having several external arrivals is the sum
of the overall arrival rates of the different populations of customers that can
get to the service center.

Although the perturbation of the four average performance measures introduced
by the approximations above cannot easily be quantified, it is worth reminding
5 If all the classes have the same (exponential) service time distribution, then the

overall service time distribution coincides with the original one and no further ap-
proximation is needed.

that, as observed in [37], QN models are in general robust, i.e. their approximate
analysis is in any case useful to get some indications about the performance of
the systems they represent. With respect to the architectural level of abstrac-
tion, the approximations above are justified in the framework of the proposed
methodology by the fact that we are more interested in getting a quick feedback
about how to improve the average performance of a specific SA or making a rapid
comparison of the average performance of architectural alternatives, rather than
in a precise performance evaluation. This is conducted anyhow, but only in the
last phase of the methodology, in order to make sure that the exact Æmilia
specification of the best architectural design, selected with respect to the four
average performance indices possibly after some approximations, actually meets
the specific performance requirements.

The QN model for the SA is subsequently evaluated in order to compute
the throughput, the utilization, the mean number of customers, and the mean
response time for each service center, as well as the corresponding measures for
the overall QN, in different scenarios (phase 6):

– Such an evaluation preliminarily requires the parameterization of the QN
and the characterization of its workload. Since the Æmilia specifications are
already parameterized and their translation into QN models preserves the
parameterization, the QN model for the SA is parameterized by construc-
tion. As far as the characterization of the workload is concerned, we have to
include in the Æmilia specification suitable arrival processes for those ser-
vice centers with external arrivals and to establish the number of customers
initially present in each buffer.

– The evaluation of the QN then proceeds in accordance with some scenarios
of interest, which are derived by playing with the arrival rates and the ser-
vice rates. As an example, the four average performance measures can be
computed under light and heavy load, by making the interrival rates vary
from small values to values close to those of the service rates (without vi-
olating stability), or by changing the numbers of customers initially in the
buffers from small values (close to zero) to large values (close to the buffer
capacities). As another example, it is useful to assess how the four average
performance measures vary in the case in which all the service centers have
service rates of the same order of magnitude, in the case in which there is
one service center whose service rate is some orders of magnitude smaller
than the service rates of the other service centers, and in the more general
case in which the rates of all the service centers range in an interval between
a minimum rate and a maximum rate that are some orders of magnitude
apart.

– The evaluation of the QN can be accomplished on the basis of the selected
scenarios in three different ways. The most convenient way is symbolic anal-
ysis, which is possible only if the QN is open and product form and has a
simple topology. In this case the four average performance measures are ex-
pressed through a suitable combination of the formulas at the end of Sect. 3.1,
which is particularly desirable at the architectural level of design, as usually

the actual values of the arrival rates and the service rates are not known
yet in this early stage. If the QN is product form but it is not open or it
has not a simple topology, then the four average performance measures are
calculated after solving the traffic equations or by applying some algorithm
like MVA, which require the specification of the values of the arrival rates,
the service rates, and the intraclass routing probabilities. In this case, the
specification of the parameter values will be driven by the selected scenarios.
If the QN is not product form, as may happen in the case in which some
buffers have zero capacity or there are forks and joins, then we resort to ap-
proximation algorithms, which again require the scenario driven specification
of the parameter values.

Once the values of the four average performance indices for the SA are avail-
able in the selected scenarios, they are interpreted back on the Æmilia specifica-
tion of the SA at the level of the groups of components forming the QN service
centers (phase 7). On the basis of such a component-oriented feedback, the de-
signer can make some modification on the SA to improve its performance and
return to phase 2, or proceed with the next phase.

When the predict-improve cycle is terminated for every SA devised for the
system under study, all the alternative SAs are compared on the basis of the
four average performance measures in different scenarios, in order to single out
the best one (phase 8). Of course, the scenario driven comparison should be fair,
which means that all the alternative SAs should be given comparable workloads
in each scenario. In addition, we note that the outcomes of the comparison in
different scenarios may be different. In this case, the best SA must be selected
by taking into account the frequency with which every considered scenario can
arise in practice.

Finally, the chosen SA is checked against the specific performance require-
ments of the system under study (phase 9). As explained at the beginning of
this section, this is needed because the four average performance measures used
to choose among the alternative SAs are not necessarily connected in a specific
way to the performance requirements, so we do not know whether the best SA
selected on the basis of the four average performance measures actually meets
the performance requirements. Moreover, we have to take into account that the
Æmilia specification or the QN model of the chosen SA might have been approx-
imated in the previous phases, while now we have to consider the exact Æmilia
specification of the chosen SA. The check of such an exact Æmilia specifica-
tion can be accomplished by formally specifying the performance requirements
through reward structures and temporal logic formulas [14, 22, 5]. If the outcome
of the check is positive, then the application of the methodology terminates, oth-
erwise the designer has to reconsider the performance requirements — as they
may turn out to be impossible to meet — and apply the methodology again.

6 Comparing Three Different Compiler Architectures

The compiler shown in Table 2, whose QN model is reported in Fig. 12, examines
one source program at a time, i.e. it is a completely sequential compiler. In this
section we consider two different architectures realizing a pipeline compiler and
a concurrent compiler, respectively, and we apply the methodology described in
Sect. 5 to compare the three alternative architectures. This requires specifying
the pipeline compiler and the concurrent compiler in Æmilia, building their as-
sociated QN models as described in Sect. 4, and computing the four average
performance measures on the three QN models in some scenarios of interest.

6.1 Æmilia Specification of the Pipeline Compiler

The architecture for the pipeline compiler allows the various compilation phases
to work on different programs. This is achieved by splitting the various phases
into different AETs — one for the lexer, one for the parser, one for the type
checker, one for the code optimizer, and one for the code generator — and by
providing each such AET with its own buffer.

The pipeline compiler system, which includes the arrival sources for the two
classes of programs, is graphically represented in Fig. 14, while its Æmilia spec-
ification is given in Tables 4, 5, and 6. Each compilation phase is modeled by a
specific AET. In addition, there are two further AETs that model unbounded
FCFS buffers accepting one class of programs — for the optimizer — or two
classes of programs — for all the other compilation phases. The declared AEIs
and their attachments ensure that the compilation phases are combined in the
correct order and that each phase is provided with its own buffer, so making
it possible the simultaneous compilation of several programs at different stages.
PipeCompSys is the output of phase 2 of the methodology for the pipeline archi-
tecture. Since it satifies all the syntax restrictions of Sect. 4, it is also the output
of phase 3.

6.2 QN Model of the Pipeline Compiler

In order to carry out phase 4 for the pipeline architecture, we apply the functions
defined in Sect. 4.8 to the AEIs of PipeCompSys, thus obtaining their correspond-
ing QN basic elements. In particular, the service time of each class of programs
within each service process is exponentially distributed as follows:

serv time(L, 1) = serv time(L, 2) = exp(µl)
serv time(P, 1) = serv time(P, 2) = exp(µp)
serv time(C, 1) = serv time(C, 2) = exp(µc)
serv time(O) = exp(µo)
serv time(G, 1) = serv time(G, 2) = exp(µg)

By connecting the QN basic elements according to the attachments, we then
obtain the QN model depicted in Fig. 15, where the actions labeling the arrows
have been omitted for the sake of readability. Note that the QN structure closely
resembles the structure of the graphical description in Fig. 14, making it easier

L

PB

P

CB

C

GB

2

G

LB

PG PG2 1

deliver_prog deliver_prog

2 1

2 1

2

get_item get_item

put_item put_item

get_progget_prog 1

send_tokenssend_tokens 1

2

2

get_itemget_item 1

put_item put_item1

2 get_tokensget_tokens 1

2 send_phrasessend_phrases 1

2 get_itemget_item 1

2 put_itemput_item 1

2

2

2

2

get_phrasesget_phrases 1

send_checked_phrases

get_item

put_item

get_checked_phrases get_optimized_phrases

send_checked_phrases

send_optimized_phrases

OB

O

get_item

put_item

get_checked_phrases

get_item1

put_item1

1

Fig. 14. Graphical description of PipeCompSys

ARCHI TYPE PipeCompSys(rate λ1, λ2, µl, µp, µc, µo, µg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE OneClassBufferT(integer h)
BEHAVIOR OneClassBuffer(integer h; void) =

choice

{
<get item, ∗>.OneClassBuffer(h + 1),
cond(h > 0)−> <put item, ∗>.

OneClassBuffer(h− 1)
}

INPUT INTERACTIONS UNI get item

OUTPUT INTERACTIONS UNI put item

ELEM TYPE TwoClassesBufferT(integer h1, h2)
BEHAVIOR TwoClassesBuffer(integer h1, h2; void) =

choice

{
<get item1, ∗>.TwoClassesBuffer(h1 + 1, h2),
<get item2, ∗>.TwoClassesBuffer(h1, h2 + 1),
cond(h1 > 0)−> <put item1, ∗>.

TwoClassesBuffer(h1 − 1, h2),
cond(h2 > 0)−> <put item2, ∗>.

TwoClassesBuffer(h1, h2 − 1)
}

INPUT INTERACTIONS UNI get item1; get item2
OUTPUT INTERACTIONS UNI put item1; put item2

ELEM TYPE LexerT(rate µl)
BEHAVIOR Lexer(void; void) =

choice

{
<get prog1, inf>.<recognize tokens, µl>.

<send tokens1, inf>.Lexer(),
<get prog2, inf>.<recognize tokens, µl>.

<send tokens2, inf>.Lexer()
}

INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS UNI send tokens1; send tokens2

Table 4. Textual description of PipeCompSys — first part

ELEM TYPE ParserT(rate µp)
BEHAVIOR Parser(void; void) =

choice

{
<get tokens1, inf>.<parse phrases, µp>.

<send phrases1, inf>.Parser(),
<get tokens2, inf>.<parse phrases, µp>.

<send phrases2, inf>.Parser()
}

INPUT INTERACTIONS UNI get tokens1; get tokens2
OUTPUT INTERACTIONS UNI send phrases1; send phrases2

ELEM TYPE CheckerT(rate µc)
BEHAVIOR Checker(void; void) =

choice

{
<get phrases1, inf>.<check phrases, µc>.

<send checked phrases1, inf>.Checker(),
<get phrases2, inf>.<check phrases, µc>.

<send checked phrases2, inf>.Checker()
}

INPUT INTERACTIONS UNI get phrases1; get phrases2
OUTPUT INTERACTIONS UNI send checked phrases1; send checked phrases2

ELEM TYPE OptimizerT(rate µo)
BEHAVIOR Optimizer(void; void) =

<get checked phrases, inf>.
<optimize phrases, µo>.
<send optimized phrases, inf>.Optimizer()

INPUT INTERACTIONS UNI get checked phrases

OUTPUT INTERACTIONS UNI send optimized phrases

ELEM TYPE GeneratorT(rate µg)
BEHAVIOR Generator(void; void) =

choice

{
<get optimized phrases, inf>.

<generate code, µg>.Generator(),
<get checked phrases, inf>.

<generate code, µg>.Generator()
}

INPUT INTERACTIONS UNI get optimized phrases; get checked phrases

OUTPUT INTERACTIONS

Table 5. Textual description of PipeCompSys — second part

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
LB : TwoClassesBufferT(0, 0);
L : LexerT(µl);
PB : TwoClassesBufferT(0, 0);
P : ParserT(µp);
CB : TwoClassesBufferT(0, 0);
C : CheckerT(µc);
OB : OneClassBufferT(0);
O : OptimizerT(µo);
GB : TwoClassesBufferT(0, 0);
G : GeneratorT(µg);

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO LB.get item1;
FROM PG2.deliver prog TO LB.get item2;
FROM LB.put item1 TO L.get prog1;
FROM LB.put item2 TO L.get prog2;
FROM L.send tokens1 TO PB.get item1;
FROM L.send tokens2 TO PB.get item2;
FROM PB.put item1 TO P.get tokens1;
FROM PB.put item2 TO P.get tokens2;
FROM P.send phrases1 TO CB.get item1;
FROM P.send phrases2 TO CB.get item2;
FROM CB.put item1 TO C.get phrases1;
FROM CB.put item2 TO C.get phrases2;
FROM C.send checked phrases1 TO OB.get item;
FROM C.send checked phrases2 TO GB.get item2;
FROM OB.put item TO O.get checked phrases;
FROM O.send optimized phrases TO GB.get item1;
FROM GB.put item1 TO G.get optimized phrases;
FROM GB.put item2 TO G.get checked phrases

END

Table 6. Textual description of PipeCompSys — third part

to interpret at the architectural description level the performance results that
will be obtained at the QN level.

2λ λ1

FCFS

PipeCompSys

L,1
L,2

FCFS

P,2
P,1serv_time()

serv_time()

FCFS

C,1
C,2

serv_time()
serv_time()

Oserv_time()

G,1
G,2

serv_time()
serv_time()

FCFS

FCFS

serv_time()serv_time()serv_time()
serv_time()serv_time()

serv_time()

1 1

1

1

1

1

1

1

1

1

1

exp() exp()

Fig. 15. QN associated with PipeCompSys

6.3 Æmilia Specification of the Concurrent Compiler

The architecture for the concurrent compiler consists of two sequential compilers
operating in parallel and taking the programs from a shared buffer. Its graphical
representation is shown in Fig. 16, while its Æmilia description is reported in
Table 7. The difference with respect to SeqCompSys is that in ConcCompSys there
are two instances of SC and the output interactions of the buffer are declared to
be or-interactions, thus forwarding programs to either of the two instances of SC.
It is easy to see that ConcCompSys satisfies all the syntax restrictions of Sect. 4.

get_prog2
1get_prog

put_prog1

put_prog2

select_prog1

2select_prog

select_prog1

2select_prog

PG1

PG2

PB

deliver_prog

deliver_prog
SC

SC1

2

Fig. 16. Graphical description of ConcCompSys

6.4 QN Model of the Concurrent Compiler

The QN for ConcCompSys is shown in Fig. 17, where once again the action
labeling the arrows have been omitted for simplicity. Differently from the QN
for SeqCompSys, now we have a service center with two servers.

ARCHI TYPE ConcCompSys(rate λ1, λ2, µl, µp, µc, µo, µg)

ARCHI ELEM TYPES

ELEM TYPE ProgGenT(rate λ)
BEHAVIOR ProgGen(void; void) =

<generate prog, λ>.<deliver prog, inf>.ProgGen()
INPUT INTERACTIONS

OUTPUT INTERACTIONS UNI deliver prog

ELEM TYPE ProgBufferT(integer h1, h2)
BEHAVIOR ProgBuffer(integer h1, h2; void) =

choice

{
<get prog1, ∗>.ProgBuffer(h1 + 1, h2),
<get prog2, ∗>.ProgBuffer(h1, h2 + 1),
cond(h1 > 0)−> <put prog1, ∗>.ProgBuffer(h1 − 1, h2),
cond(h2 > 0)−> <put prog2, ∗>.ProgBuffer(h1, h2 − 1)

}
INPUT INTERACTIONS UNI get prog1; get prog2
OUTPUT INTERACTIONS OR put prog1; put prog2

ELEM TYPE SeqCompT(rate µl, µp, µc, µo, µg)
BEHAVIOR SeqComp(void; void) =

choice

{
<select prog1, inf>.<recognize tokens, µl>.

<parse phrases, µp>.<check phrases, µc>.
<optimize code, µo>.<generate code, µg>.SeqComp(),

<select prog2, inf>.<recognize tokens, µl>.
<parse phrases, µp>.<check phrases, µc>.
<generate code, µg>.SeqComp()

}
INPUT INTERACTIONS UNI select prog1; select prog2
OUTPUT INTERACTIONS

ARCHI TOPOLOGY

ARCHI ELEM INSTANCES PG1 : ProgGenT(λ1);
PG2 : ProgGenT(λ2);
PB : ProgBufferT(0, 0);
SC1, SC2 : SeqCompT(µl, µp, µc, µo, µg)

ARCHI INTERACTIONS

ARCHI ATTACHMENTS FROM PG1.deliver prog TO PB.get prog1;
FROM PG2.deliver prog TO PB.get prog2;
FROM PB.put prog1 TO SC1.select prog1;
FROM PB.put prog1 TO SC2.select prog1;
FROM PB.put prog2 TO SC1.select prog2;
FROM PB.put prog2 TO SC2.select prog2

END

Table 7. Textual description of ConcCompSys

SC,1
SC,2serv_time()

serv_time()

SC,1
SC,2serv_time()

serv_time()

λ2

λ1

FCFS

ConcCompSys

1

1

1

1

1

1

exp()

exp()

Fig. 17. QN associated with ConcCompSys

6.5 Analysis of the Sequential Compiler

We now return to the sequential architecture and we evaluate it with respect to
the four average performance measures in a given set of scenarios of interest. Let
us concentrate on a specific scenario in this set, which is characterized by certain
actual values for the numeric parameters of SeqCompSys denoted by λseq,1, λseq,2,
µseq,l, µseq,p, µseq,c, µseq,o, and µseq,g. Before proceeding with phase 6, we observe
that the QN model associated with SeqCompSys, which is shown in Fig. 12, is
closely related to a QS M/M/1. To transform it into a QS M/M/1, we perform
phase 5 as follows:

– The two arrival processes are merged into a single arrival process with arrival
rate λseq = λseq,1 + λseq,2. We observe that the probability that an incoming
program belongs to class 1 (resp. 2) is λseq,1/λseq (resp. λseq,2/λseq).

– The hypoexponential service time for the first class of programs is ap-
proximated with an exponential service time with rate µseq,1 such that
µ−1
seq,1 = µ−1

seq,l + µ−1
seq,p + µ−1

seq,c + µ−1
seq,o + µ−1

seq,g.
– The hypoexponential service time for the second class of programs is ap-

proximated with an exponential service time with rate µseq,2 such that
µ−1
seq,2 = µ−1

seq,l + µ−1
seq,p + µ−1

seq,c + µ−1
seq,g.

– The two classes of programs are merged into a single class, whose hyper-
exponential service time is approximated with an exponential service time
with rate µseq such that µ−1

seq = (λseq,1/λseq) · µ−1
seq,1 + (λseq,2/λseq) · µ−1

seq,2.

Denoted by ρseq = λseq/µseq the traffic intensity of the resulting QS M/M/1
approximating the open QN model for the sequential architecture, and assumed
ρseq < 1, phase 6 is conducted symbolically by employing the first group of
formulas at the end of Sect. 3.1. The results of the evaluation are reported in
Table 8.

6.6 Analysis of the Pipeline Compiler

As far as the evaluation of the pipeline architecture is concerned, after denoting
by λpipe,1, λpipe,2, µpipe,l, µpipe,p, µpipe,c, µpipe,o, and µpipe,g the actual values

Compiler throughput: Xseq = λseq

Compiler utilization: U seq = ρseq

Mean number of programs in the compiler: N seq = ρseq/(1− ρseq)

Mean compilation time: Rseq = 1/[µseq · (1− ρseq)]

Table 8. Symbolic evaluation for the sequential architecture

for the numeric parameters of PipeCompSys that characterize a certain scenario,
we note that the application of phase 5 to the QN of Fig. 15 simply boils down
to merging the two arrival processes into a single arrival process with arrival
rate λpipe = λpipe,1 + λpipe,2. The multi-class service processes for the lexer, the
parser, the checker, and the generator are trivially converted into single-class
service processes with service rates µpipe,l, µpipe,p, µpipe,c, and µpipe,g, respec-
tively, as the two classes of programs have the same service rate in each of the
four multi-class service processes.

The resulting open QN model, which is used in phase 6, is product form and is
symbolically evaluated by decomposing it into five QSs M/M/1 with the appro-
priate arrival rates. In particular, at equilibrium the arrival rate for the lexer,
the parser, the checker, and the generator is λpipe, while the arrival rate for
the optimizer is λpipe,1. As a consequence, the probability that a program leav-
ing the checker enters the optimizer (resp. the generator) is λpipe,1/λpipe (resp.
λpipe,2/λpipe). Another consequence is that the traffic intensity for the lexer,
the parser, the checker, and the generator is ρpipe,j = λpipe/µpipe,j where j ∈
{l, p, c, g}, while the traffic intensity for the optimizer is ρpipe,o = λpipe,1/µpipe,o.
Assuming that the QN is stable, which means that each of its service centers is
stable, i.e. λpipe < min(µpipe,l, µpipe,p, µpipe,c, µpipe,o · (λpipe/λpipe,1), µpipe,g), we
symbolically derive the four average performance indices both for the various
compilation phases and for the overall pipeline compiler, as reported in Table 9.

Phase j throughput: Xpipe,j = λpipe for j ∈ {l, p, c, g}
Xpipe,o = λpipe,1

Phase j utilization: U pipe,j = ρpipe,j

Mean number of programs in phase j: N pipe,j = ρpipe,j/(1− ρpipe,j)

Mean duration of phase j: Rpipe,j = 1/[µpipe,j · (1− ρpipe,j)]

Compiler throughput: Xpipe = Xpipe,g

Compiler utilization: U pipe = 1−∏
j
(1− U pipe,j)

Mean number of programs in the compiler: N pipe =
∑

j
N pipe,j

Mean compilation time: Rpipe =
λpipe,1

λpipe
·∑

j
Rpipe,j +

λpipe,2

λpipe
·∑

j 6=o
Rpipe,j

Table 9. Symbolic evaluation for the pipeline architecture

6.7 Analysis of the Concurrent Compiler

We denote by λconc,1, λconc,2, µconc,l, µconc,p, µconc,c, µconc,o, and µconc,g the
actual values for the numeric parameters of ConcCompSys with respect to a
certain scenario. The QN model associated with ConcCompSys, which is shown
in Fig. 17, can easily be transformed into a QS M/M/2 by performing phase 5
as in the case of SeqCompSys.

Denoted by ρconc = λconc/(2 · µconc) the traffic intensity of the resulting QS
M/M/2 approximating the open QN model for the concurrent architecture, and
assumed ρconc < 1, phase 6 is conducted symbolically by employing the second
group of formulas at the end of Sect. 3.1 with m = 2. The results of the evaluation
are reported in Table 10.

Compiler throughput: Xconc = λconc

Compiler utilization: U conc = 2 · ρconc/(1 + ρconc)

Mean number of programs in the compiler: N conc = 2 · ρconc/(1− ρ2
conc)

Mean compilation time: Rconc = 1/[µconc · (1− ρ2
conc)]

Table 10. Symbolic evaluation for the concurrent architecture

6.8 Comparison of the Three Architectures

Due to the simplicity of the three architectures, for each of them phase 7 is
skipped altogether. So, we can finally compare the sequential architecture, the
pipeline architecture, and the concurrent architecture on the basis of the four
average performance indices that we have symbolically computed (phase 8). In
order to perform a fair comparison, we assume that in every scenario the com-
pilation phases have the same duration for the three architectures, i.e. µseq,j =
µpipe,j = µconc,j ≡ µj for all j ∈ {l, p, c, o, g}. On the contrary, the three arrival
rates λseq, λpipe, and λconc can freely vary provided that they preserve the fre-
quency of each class of programs, i.e. λseq,c/λseq = λpipe,c/λpipe = λconc,c/λconc ≡
pc for all c ∈ {1, 2}.

We focus on two different scenarios and we concentrate only on the mean
number of programs that are compiled per unit of time, as analogous results can
be derived for the other three average performance indices. In the first scenario,
we assume that the three architectures undergo to a light workload. In this
case, the specific architecture does not really matter, as the relations among
the three throughputs directly depend on the relations among the three arrival
rates: Xt1 RXt2 if and only if λt1 Rλt2 , with t1, t2 ∈ {seq, pipe, conc} and
R ∈ {<,=, >}.

In the second scenario, instead, we assume that the three architectures un-
dergo to a heavy workload. This means that the values of the three arrival

rates are such that all the architectures work close to their maximum through-
puts, which can be derived from the corresponding stability conditions. In the
case of the sequential architecture, λseq is close to Xseq,max = µseq, with µ−1

seq =
p1·

∑
j µ−1

j +p2·
∑

j 6=o µ−1
j . In the case of the pipeline architecture, λpipe is close to

Xpipe,max = min(µl, µp, µc, µo/p1, µg). In the case of the concurrent architecture,
λconc is close to Xconc,max = 2 · µconc, with µ−1

conc = p1 ·
∑

j µ−1
j + p2 ·

∑
j 6=o µ−1

j .
In this scenario, for an accurate comparison it is worth considering the three
following sub-scenarios:

– In the first sub-scenario, the five compilation phases have approximatively
the same average duration, i.e. µl

∼= µp
∼= µc

∼= µo
∼= µg ≡ µ. In this case

Xseq,max
∼= (4 + p1)−1 · µ, Xpipe,max

∼= µ, and Xconc,max
∼= 2 · (4 + p1)−1 · µ. It

follows that:
Xpipe,max/Xseq,max

∼= 4 + p1
Xpipe,max/Xconc,max

∼= 2 + 0.5 · p1
Xconc,max/Xseq,max

∼= 2
Therefore, in this sub-scenario, the pipeline architecture outperforms — in
terms of mean number of programs compiled per unit of time — the sequen-
tial architecture (resp. the concurrent architecture) of a factor that ranges
between 4 and 5 (resp. between 2 and 2.5) depending on the frequency of
the programs of class 1. In addition, we see that the concurrent architecture
outperforms the sequential architecture of a factor 2. We conclude that in
this sub-scenario the pipeline architecture is the architecture of choice.

– In the second sub-scenario, there is one compilation phase, say lexical anal-
ysis, whose average duration is several orders of magnitude greater than the
average duration of the other phases, i.e. µl ¿ µj for all j ∈ {p, c, o, g}. In
this case Xseq,max

∼= µl, Xpipe,max = µl, and Xconc,max
∼= 2 ·µl. It follows that:

Xpipe,max/Xseq,max
∼= 1

Xconc,max/Xpipe,max
∼= 2

Xconc,max/Xseq,max
∼= 2

We conclude that in this sub-scenario, in which one of the five phases is a
bottleneck, splitting the various phases among different components oper-
ating in parallel brings no advantage, and the architecture of choice is the
concurrent one.

– In the third sub-scenario, the average durations of the five compilation phases
range between a minimum value and a maximum value that are several or-
ders of magnitude apart, i.e. µmin ≤ µj ≤ µmax for all j ∈ {l, p, c, o, g} with
µmin ¿ µmax. In this case (4 + p1)−1 · µmin ≤ Xseq,max ≤ (4 + p1)−1 · µmax,
Xpipe,max = µmin, and 2 · (4 + p1)−1 · µmin ≤ Xconc,max ≤ 2 · (4 + p1)−1 · µmax.
It follows that:

(4 + p1) · (µmin/µmax) ≤ Xpipe,max/Xseq,max ≤ 4 + p1
(4 + p1) · (µmin/µmax) / 2 ≤ Xpipe,max/Xconc,max ≤ (4 + p1) / 2

2 ≤ Xconc,max/Xseq,max ≤ 2
which generalizes the results of the previous two sub-scenarios, showing that
the concurrent architecture is always twice as faster as the sequential one,

and that the pipeline architecture is not always better than the other two, as
(4 + p1) · (µmin/µmax) and (4 + p1) · (µmin/µmax) / 2 can be less than 1 because
so is µmin/µmax.

7 Conclusion and Future Perspectives

In this paper we have presented a methodology for the prediction, the improve-
ment, and the comparison of typical average performance indices of alternative
architectural designs developed for a software system. The methodology relies
on the SPA based ADL called Æmilia, which provides a textual and graphical
environment in which architectural descriptions can be developed in an easy and
controlled way, and on QNs, which are structured performance models equipped
with fast solution algorithms for computing typical average performance mea-
sures and allow such performance measures to be interpreted back at the SA
description level. The combined use of Æmilia and QNs is made possible by a
suitable translation, which can be applied to a reasonably wide class of Æmilia
specifications satisfying certain syntax restrictions and has a complexity linear
in the number of software components declared in the Æmilia specifications. The
methodology and the translation have been illustrated on a scenario-based com-
parison of a sequential SA, a pipeline SA, and a concurrent SA for a compiler
system.

As far as future work is concerned, first we would like to provide an automated
support for our methodology. This will be accomplished by implementing the
translation of Æmilia specifications into QN models as well as the solution of
QN models in the architectural assistant module of the Æmilia-based software
tool TwoTowers 3.0 [12]. Second, we would like to integrate our methodology
within the software development cycle, both upstream and downstream. On the
one hand, we would like to develop a translation from notations used in the
software engineering practice, like e.g. UML, to our framework, in order to hide
as much as possible all the formal details with which the typical designer may
not be familiar. On the other hand, we would like to be able to generate code
that is guaranteed to possess the performance requirements proved at the SA
level. In this respect, a critical issue to address is taking into account the impact
on the software performance of the hardware architecture and operating system
on which the software system will be deployed.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995.

2. A. Aldini and M. Bernardo, “A General Deadlock Detection Approach for Soft-
ware Architectures”, to appear in Proc. of the 12th Int. Formal Methods Europe
Symp. (FME 2003), LNCS, Pisa (Italy), 2003.

3. F. Aquilani, S. Balsamo, and P. Inverardi, “Performance Analysis at the Software
Architectural Design Level”, in Performance Evaluation 45:205-221, 2001.

4. F. Baccelli, W.A. Massey, and D. Towsley, “Acyclic Fork-Join Queueing Net-
works”, in Journal of the ACM 22:248-260, 1989.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, “Automated Perfor-
mance and Dependability Evaluation Using Model Checking”, in Performance
Evaluation of Complex Systems: Techniques and Tools, LNCS 2459:261-289,
2002.

6. S. Balsamo, “Product Form Queueing Networks”, in Performance Evaluation:
Origins and Directions, LNCS 1769:377-401, 2000.

7. S. Balsamo, M. Bernardo, and M. Simeoni, “Combining Stochastic Process Al-
gebras and Queueing Networks for Software Architecture Analysis”, in Proc. of
the 3rd Int. Workshop on Software and Performance (WOSP 2002), ACM Press,
pp. 190-202, Roma (Italy), 2002.

8. S. Balsamo, V. De Nitto Personè, and R. Onvural, “Analysis of Queueing Net-
works with Blocking”, Kluwer, 2001.

9. S. Balsamo, L. Donatiello, and N. van Dijk, “Bounded Performance Analysis
of Parallel Processing Systems”, in IEEE Trans. on Parallel and Distributed
Systems 9:1041-1056, 1998.

10. F. Baskett, K.M. Chandy, R.R. Muntz, and G. Palacios, “Open, Closed, and
Mixed Networks of Queues with Different Classes of Customers”, in Journal of
the ACM 22:248-260, 1975.

11. H. Beilner, J. Mäter, and C. Wysocki, “The Hierarchical Evaluation Tool HIT”,
in Proc. of the 7th Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS 1994), LNCS 794, Wien (Austria), 1994.

12. M. Bernardo, “TwoTowers 3.0: Enhancing Usability”, to appear in Proc. of the
11th Int. Symp. on Modeling, Analysis and Simulation of Computer and Telecom-
munication Systems (MASCOTS 2003), IEEE-CS Press, Orlando (FL), October
2003 (http://www.sti.uniurb.it/bernardo/twotowers/).

13. M. Bernardo, “Symbolic Semantic Rules for Producing Compact STGLA from
Value Passing Process Descriptions”, to appear in ACM Trans. on Computa-
tional Logic, 2003.

14. M. Bernardo and M. Bravetti, “Performance Measure Sensitive Congruences
for Markovian Process Algebras”, in Theoretical Computer Science 290:117-160,
2003.

15. M. Bernardo, P. Ciancarini, and L. Donatiello, “Architecting Families of Software
Systems with Process Algebras”, in ACM Trans. on Software Engineering and
Methodology 11:386-426, 2002.

16. M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process Algebra: From
an Algebraic Formalism to an Architectural Description Language”, in Perfor-
mance Evaluation of Complex Systems: Techniques and Tools, LNCS 2459:236-
260, 2002.

17. M. Bernardo and F. Franzè, “Exogenous and Endogenous Extensions of Architec-
tural Types”, in Proc. of the 5th Int. Conf. on Coordination Models and Languages
(COORDINATION 2002), LNCS 2315:40-55, York (UK), 2002.

18. M. Bernardo and F. Franzè, “Architectural Types Revisited: Extensible And/Or
Connections”, in Proc. of the 5th Int. Conf. on Fundamental Approaches to Soft-
ware Engineering (FASE 2002), LNCS 2306:113-128, Grenoble (France), 2002.

19. J.P. Buzen, “Computational Algorithms for Closed Queueing Networks with Ex-
ponential Servers”, in Comm. of the ACM 16:527-531, 1973.

20. K.M. Chandy and C.H. Sauer, “Computational Algorithms for Product Form
Queueing Networks”, in Comm. of the ACM 23:573-583, 1980.

21. W.-M. Chow, E.A. MacNair, and C.H. Sauer, “Analysis of Manufactoring Sys-
tems by the Research Queueing Package”, in IBM Journal of Research and De-
velopment 29:330-342, 1985.

22. G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo, “Exploiting Modal Logic to
Express Performance Measures”, in Proc. of the 11th Int. Conf. on Modeling
Techniques and Tools for Computer Performance Evaluation (TOOLS 2000),
LNCS 1786:247-261, Schaumburg (IL), 2000.

23. E.M. Clarke, O. Grumberg, and D.A. Peled, “Model Checking”, MIT Press, 1999.
24. W.R. Cleaveland and O. Sokolsky, “Equivalence and Preorder Checking for

Finite-State Systems”, in Handbook of Process Algebra, Elsevier, pp. 391-424,
2001.

25. A.E. Conway and N.D. Georganas, “RECAL - A New Efficient Algorithm for
the Exact Analysis of Multiple-Chain Closed Queueing Networks”, Journal of the
ACM 33:786-791, 1986.

26. R.G. Franks, A. Hubbard, S. Majumdar, J.E. Neilson, D.C. Petriu, J.A. Ro-
lia, and C.M. Woodside, “A Toolset for Performance Engineering and Software
Design of Client-Server Systems”, in Performance Evaluation 24:117-135, 1995.

27. R.G. Franks and C.M. Woodside, “Performance of Multi-level Client-server Sys-
tems with Parallel Service Operations”, in Proc. of the 1st Int. Workshop on
Software and Performance (WOSP 1998), ACM Press, pp. 120-130, Santa Fe
(NM), 1998.

28. E. Gelenbe, “Queueing Networks with Negative and Positive Customers”, in Jour-
nal of Applied Probability 28:656-663, 1991.

29. N. Götz, U. Herzog, and M. Rettelbach, “Multiprocessor and Distributed System
Design: The Integration of Functional Specification and Performance Analysis
Using Stochastic Process Algebras”, in Proc. of the 16th Int. Symp. on Computer
Performance Modelling, Measurement and Evaluation (PERFORMANCE 1993),
LNCS 729:121-146, Roma (Italy), 1993.

30. H. Hermanns, “Interactive Markov Chains”, LNCS 2428, 2002.
31. J. Hillston, “A Compositional Approach to Performance Modelling”, Cambridge

University Press, 1996.
32. R.A. Howard, “Dynamic Probabilistic Systems”, John Wiley & Sons, 1971.
33. K. Kant, “Introduction to Computer System Performance Evaluation”, McGraw-

Hill, 1992.
34. L. Kleinrock, “Queueing Systems”, Wiley, 1975.
35. S.S. Lavenberg, “Computer Performance Modeling Handbook”, Academic Press,

1983.
36. S.S. Lavenberg and C.H. Sauer, “Approximate Analysis of Queueing Networks”,

in [35], pp. 173-221.
37. E.D. Lazowska, J. Zahorjan, G. Scott Graham, and K.C. Sevcik, “Quantitative

System Performance: Computer System Analysis Using Queueing Network Mod-
els”, Prentice Hall, 1984.

38. R. Milner, “Communication and Concurrency”, Prentice Hall, 1989.
39. M.K. Molloy, “Performance Analysis using Stochastic Petri Nets”, in IEEE

Trans. on Computers 31:913-917, 1982.
40. R. Nelson and A. Tantawi, “Approximate Analysis of Fork-Join Synchronization

in Parallel Queues”, in IEEE Trans. on Computers 37:739-743, 1988.
41. M.F. Neuts, “Matrix-Geometric Solutions in Stochastic Models – An Algorithmic

Approach”, John Hopkins University Press, 1981.
42. H.G. Perros, “Queueing Networks with Blocking”, Oxford University Press, 1994.

43. D.E. Perry and A.L. Wolf, “Foundations for the Study of Software Architecture”,
in ACM SIGSOFT Software Engineering Notes 17:40-52, 1992.

44. M. Reiser and S.S. Lavenberg, “Mean-Value Analysis of Closed Multichain
Queueing Networks”, in Journal of the ACM 27:313-322, 1980.

45. J.A. Rolia and K.C. Sevcik, “The Method of Layers”, in IEEE Trans. on Software
Engineering 21:682-688, 1995.

46. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging
Discipline”, Prentice Hall, 1996.

47. C. Smith, “Performance Engineering of Software Systems”, Addison-Wesley,
1990.

48. W.J. Stewart, “Introduction to the Numerical Solution of Markov Chains”,
Princeton University Press, 1994.

49. Simulog Corp., “The QNAP2 Reference Manual”, 1989.
50. K.S. Trivedi, ”Probability and Statistics with Reliability, Queueing, and Com-

puter Science Applications”, John Wiley & Sons, 2001.
51. P.D. Welch, “The Statistical Analysis of Simulation Results”, in [35], pp. 267-329.
52. C.M. Woodside, J.E. Neilson, D.C. Petriu, and S. Majumdar, “The Stochastic

Rendezvous Network Model for Performance of Synchronous Client-Server-like
Distributed Software”, in IEEE Trans. on Computers 44:20-34, 1995.

