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Abstract: This paper presents an extended Kalman filter derivation for loosely coupled GPS (Global 

Positioning System)/INS (Inertial Navigation System) integration based on quaternion attitude representation 

using the Earth-Centered Earth (ECEF) Frame. In this loosely coupling integration, both the position and 

velocity estimates from GPS receiver are used as the measurements to extended Kalman filter, and then they 

are integrated with inertial measurements from inertial measurement units (IMU) to estimate the attitude, 

position and velocity of an air vehicle. The velocity estimates which have centimeter level estimation error 

from the GPS receiver are used to improve the filter performance. For attitude estimation, the global attitude 

parameterization is given by a quaternion and a multiplicative quaternion-error approach is used to guarantee a 

normalization constraint of quaternion in the filter. Simulation results are shown to obtain the estimation of the 

attitude, position, velocity, biases and scale factors and to evaluate the performance of the EKF with the 

measurement combination composed of the two different types of GPS navigation solutions (the position only, 

and both the position and the velocity in the ECEF frame). 

Keywords: loosely coupled GPS/INS integration; Earth-Centered Earth-Fixed Frame; multiplicative 

quaternion-error approach; GPS navigation solutions; extended Kalman filter 

 

1. Introduction 

Integration of GPS (Global Navigation Satellite System) and INS (Inertial Navigation System) has been 

intensively studied and widely applied, and become a standard method for position and attitude estimation of a 

moving vehicle due to their complementary characteristics [1,2,3,4]. GPS and INS (GPS/INS) integration aims 

to utilize the advantages of the two individual systems and make up for their weaknesses. An INS is a 

self-contained system regardless of the operational environment and provides high frequency information by 

mechanizing the acceleration and angular rate outputs of the IMU (Inertial Measurement Unit) which consists 

of three orthogonal accelerometers and three orthogonal gyros [5]. MEMS (Microelectromechanical systems) 

technology can reduce the IMU’s cost considerably, it could make IMU’s results diverge after continuously 
using for a long period of time. On the other hand, GPS is an external navigation system that can provide low 

frequency navigation information (acceleration and rotation rate of the object) with bounded error over time [5]. 

By aiding the INS with external measurements related to one or several of the system states, INS errors can be 

estimated and corrected for, e.g. by using a Kalman filter. The integration of GPS with INS improves the quality 

and integrity of each navigation system: use of GPS permits calibration of inertial instrument biases, and the 

INS can be used to improve the tracking and reacquisition performance of the GPS receiver. The benefits of a 

GPS/INS integration is that the INS estimates can be corrected by the GPS data and that the INS can provide 
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position and angle updates at a higher rate than GPS. The aiding measurements can be processed in a separate 

filter and included in the INS filter in the form of position and velocity measurements, so-called “loosely 
coupled” integration. Alternatively, aiding measurements, e.g. GPS pseudorange, may be included directly into 

the INS filter, so-called “tightly coupled” integration.  The loosely coupled GPS/INS integration strategy is 

common to use due to its faster processing, simplicity of implementation and robustness. In loosely coupled 

integration, the GPS position and velocity solutions are used as measurement inputs to the integration filter 

which estimates the INS errors [4,5]. The navigation solution of the loosely coupled integration is the INS 

navigation solution, corrected with the Kalman filter. While four or more satellites are visible to GPS receiver, 

GPS position/velocity solution can be obtained and loosely coupled integration can offer high system 

robustness. The principle advantage of loosely coupled integration is simplicity with the chosen computational 

frame. Loosely coupled integration can operate with GPS position measurements alone or velocity 

measurements alone [6,7].  

The GPS velocity measurement obtained by differentiating GPS position measurement is noisy when a 

code-based sing-epoch GPS position is used [4,8]. On the other hand, the GPS velocity measurement of a 

carrier-smooth-code based or Kalman filter-based solution is less noisy than the above one. One notable aspect 

of GPS/INS integration is the coordinate system used to describe the determined position and velocity. An 

Earth-Centered Earth-Fixed (ECEF) frame is a commonly used reference frame and resolving axes for the 

computation of satellite navigation solutions. The ECEF frame is usefully applied for a loosely coupled 

GPS/INS integration filter without any coordinate transformation since GPS receivers generally estimates the 

position and velocity in the same frame directly. In the navigation filter the ECEF frame has no need to take the 

covariance mappings from the NED (North-East-Down) to the ECEF frame and vice versa due to the difference 

of the coordinates while the NED frame requires covariance mappings [3]. However, the ECEF frame has a 

disadvantage in understanding the attitude of an air or ground vehicle intuitively while the NED frame provides 

more intuitive in expressing them as a local frame. The choice of the computation frame is not necessarily the 

most important factor in terms of computational efficiency although the navigation solutions are required in the 

geographical frame.  

Various studies have been investigated for loosely coupled GPS/INS integration to address position and 

attitude estimation problem where most of them have been studied in the NED frame. Falco et. Al [9] 

investigated approaches for loosely coupled GPS/INS integration in the NED frame. Wei and Schwarz [10] 

developed two strapdown inertial algorithms using the local-level frame and ECEF frame, and compared them 

in terms of computation time. The algorithm using the ECEF frame is known to have about 30 percent more 

efficient than the standard algorithm using the local frame as long as an output rate of 5 Hz is sufficient [9]. 

Crassidis [3,4] showed an EKF (Extended Kalman Filter) and sigma-point Kalman filtering for integrated GPS 

(Global Positioning System) and inertial navigation in the NED frame using only GPS position measurement. 

The EKF is based on a quaternion parameterization of the attitude [3]. Edwan et al. [11] derived a total state 

loosely coupled GPS/INS integration algorithm based on the DCM (direction cosine matrix) attitude 

representation as a state space vector to be estimated. Gross and et al. [12] presented the EKF and UKF 

(Unscented Kalman Filter) implementations of GPS/INS integration algorithms in the geodetic frame for Euler 

angles based attitude, position and velocity estimations with the GPS position and velocity measurements, and 

evaluated with respect to performance and complexity. To represent attitude, several parameterizations can be 

used to represent such as Euler angles, quaternions, modified Rodrigues parameters, and the rotation vector. 

Quaternions are particularly appealing since no singularities are present and the kinematics equation is linear 

[13].   
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In this paper, an EKF filter using the Earth-Centered Earth-Fixed (ECEF) frame formulation is derived for 

loosely coupled GPS/INS integration to determine both the position and the attitude of an unmanned aerial 

vehicle (UAV). The GPS navigation solutions (position and velocity in the ECEF frame) are directly 

integrated with inertial measurements from gyros and accelerometers without coordinate transformation for 

loosely coupled GPS\INSS integration in the ECEF frame. This paper was motivated by the advantage of the 

ECEF frame for loosely coupled GPS/INS integration so that GPS navigation solutions are directly used as 

the EKF filter measurements in the ECEF-frame navigation equations without coordinate transformation. 

Furthermore, the global attitude parameterization expressed by a quaternion is used while a generalized 

three-dimensional attitude representation is used to define the local attitude error. A loosely coupled GPS/INS 

integration algorithm is easy to implement and needs to be derived with the following characteristics [7]. 1) 

Firstly, loosely coupled GPS/INS integration algorithm should be described using the ECEF frame so that the 

EKF can estimate the position, velocity and attitude of an UAV with respect to the ECEF frame using the GPS 

navigation solutions. 2) Secondly, centimeter per second–level of accuracy GPS velocity solutions are assumed 

to be available to the EKF as measurements as well as standalone GPS position solutions since recently a 

commercial GPS receiver can provide very precise velocity estimates [14]. 3) Thirdly, the EKF uses a 

multiplicative error quaternion after neglecting higher-order terms for attitude estimation since the attitude 

kinematics here is based on the quaternion, which must obey a normalization constraint that can be violated by 

the linear measurement updates associated with the standard EKF [4,13]. Then the four-component quaternion 

can effectively be replaced by a three-component error vector [15]. As a simulation result, the three different 

types of the GPS navigation solutions composed of the position solution only, and both the position and velocity 

solutions are used for the loosely coupled GPS/INS integration algorithm to analyze the estimation 

performances.  

Thus, the main contribution of this paper is the derivation of the EKF for the loosely coupled GPS/INS 

integration algorithm so that the benefits of the ECEF frame, highly precise GPS velocity estimates and the 

quaternion parameterization can be used simultaneously with the measurement combination. Since the GPS 

navigation solutions are given in the ECEF frame, they are directly used to update the INS-derived trajectory 

with no coordinate transformation in the filter. In addition, the derived EKF based on the ECEF frame 

navigation equations has the benefit of faster computation compared to the filter based on the local navigation 

frame equations [10]. The derived EKF can use two different kinds of GPS navigation solutions composed of 

the position, and both the position and the velocity as the measurements obtained from the GPS receiver to the 

EKF. The loosely coupled GPS/INS integration algorithm can attain improvement in the filter performance 

when centimeter per second–level of accuracy GPS velocity solutions are available under the normal visibility 

of the GPS.  

2. Attitude Kinematics 

In this section the basic properties of attitude kinematics is summarized. One of the most useful attitude 

parameterizations is given by the quaternion, which is a four-dimensional vector. Like the Euler axis/angle 

parameterization, the quaternion is also four-dimensional vector, defined as 
4

T
T

q   q ρ , with 

 1 2 3 4
ˆ sin( / 2), cos( / 2)

T
q q q q = = =ρ e where ê is the axis of rotation and  is the angle of 

rotation [15]. The quaternion components are dependent each other since a four-dimensional vector is used to 

describe three dimensions. The quaternion satisfies a single constraint given by 1.T =q q  To describe the 

attitude in different reference frames, superscripts and subscripts i, e, n and b which denotes  the 
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Earth-Centered-Inertial (ECI), ECEF, navigation and body frames are used in the attitude matrices. The 

attitude matrix that transforms the ECEF frame, E, to the body frame, B, is related to the quaternion by  

 ( ) ( ) ( )b T

e
C = q q q                                  (1) 

with                
4 3 3 [ ]

( )
T

q I  +  
 =  − 

ρ
q

ρ
 ,   

4 3 3 [ ]
( )

T

q I  −  
 =  − 

ρ
q

ρ
            (2) 

where
3 3I  is a 3 3 identity matrix and [ ] is a notation for a cross product matrix [11].  

For small angles the vector part of the quaternion is equal to half angles so that / 2ρ α and 
4,q where α is 

a vector of the roll, pitch and yaw angles. The attitude matrix can then be approximated by  3 3

b

e
C I  − α

which is valid to within first-order in the angles.  

The attitude kinematics equation is given by  

    
b b b

e eb e
C C = −  ω                                  (3) 

with                          ( )b b b e

eb ib e ieC= −ω ω q ω
        

                       (4) 

where b

eb
ω is the angular velocity of the B frame relative to the E frame expressed in B coordinates, 

b

ibω is the 

angular velocity of the B frame relative to the I frame expressed in B coordinates and 
e

ieω is the angular 

velocity of the Earth relative to the ECI frame expressed in the ECEF frame. Another form of Eq. (3) is given 

by  

e e b

b b eb
C C  =  ω                                   (5)   

where ( ) .e b T

b e
C C= The quaternion kinematics equation is given by  

1 1
( ) ( )

2 2

e b e

eb eb eb
=  = q q ω ω q                           (6) 

with              
[ ]

( )
( ) 0

e e

b e eb eb

eb eb e T

eb

 − 
 =  − 

ω ωω
ω

                             (7)                

where e

eb
ω is the angular velocity of the B frame relative to the E frame expressed in B coordinates. A major 

benefit of using quaternions is that the kinematics equation is linear in the quaternion and is also free of 

singularities. Another advantage of quaternion is that successive rotations can be achieved using quaternion 

multiplication. Here the convention of Lefferts et al. [16] who multiply the quaternions in the same order as 

the attitude matrix multiplication (in contrast to the general convention established by Hamilton [16]) is 

adopted. This is written by  

( ') ( ) ( ' )C C C= q q q q                          (8) 

The composition of the quaternion is bilinear, with  

   ' ( ') ( ) '  q q q q q q q q= =                   (9) 

Also, the inverse quaternion is defined by 

1

4q

− − 
=  
 

ρ
q                              (10) 

Note that 
1 [0 0 0 1] ,T− =q q which is the identity quaternion.  
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3. ECEF Frame Navigation Equations 

In this section the E frame navigation equations with the quaternion parameterization are derived. 

Beginning from Newton’s 2nd law of motion in the gravitational field of the Earth, which relates specific force 

and gravitation, the total acceleration is given by  

2

2

eb
ib ib

d

dt
= +

r
f γ                                (11) 

where 
ebr is the position vector of the body relative to the E frame, 

ibf is the specific force vector sensed with 

respect to the I frame, and 
ibγ is the gravitation which does not incorporate with any centripetal components. 

The translational velocity is obtained by taking time derivative of the position vector 
ebr :  

[ ]eb eb
ie eb

I E

d d

dt dt
= + 

r r ω r                        (12) 

with 
e eb
eb

E

d

dt
=

r
v                          (13) 

where 
e

ebv is the velocity of the body relative to the E frame described in the E frame.  

Equation (12) is then given by  

[ ]eeb
eb ie eb

I

d

dt
= + 

r
v ω r                         (14) 

Time derivative of Eq. (14) yields the equations of the translational motion: 

2

2
[ ] [ ] [ ]

2[ ] [ ][ ]

eb eb ie eb
ie eb eb ie ie eb

E E EI

eb ie
ie eb eb ie ie eb

E E

d d d d

dt dt dt dt

d d

dt dt

   
= +   +  +   

   

 
= +   +   

 

r v ω rω v r ω ω r

v ωω v r ω ω r

+

+

        (15) 

Substituting Eq. (11) into Eq. (15) yields  

2eb
ie eb ie ie eb ib

E

d

dt
= −   

v
f ω v ω ω r γ- +               (16) 

Representing Eq. (13) and (16) resolved about the E frame is given by  

e e

eb eb=r v                                    (17) 

22e e b e e e e e

eb b ib ie eb ie eb ebC −  v f v r γ= - +                      (18) 

where   ,
Te

eb e e ex y z=r e e

ie ie
  =  ω ,  0 0 ω ,

Te

ie ie=ω ωie
is the Earth’s angular rate, b

ibf is the 

specific force vector relative to the I frame resolved about the B frame and  
T

e

eb x y z
   =  γ is the 

gravitational force vector of the body in the E frame. The components of the gravitational force vector in the 

E frame considering up to 2nd order polynomial are given by 
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2 2

22 2

2 2

22 2

2 2

22 2

3
1 5 1

2

3
1 5 1

2

3
1 5 3

2

e e e
x

e e e
y

e e e
z

R z x
J

R R R R

R z y
J

R R R R

R z z
J

R R R R







   = − − −   
    

   = − − −   
    

   = − − −   
    

                        (19) 

where 
2 2 2

e e e
R x y z= + + is the range from the center of the Earth to the center of mass of the body, J2 is the  

coefficient of second zonal harmonics of the Earth potential. Combining Eqs. (6), (17) and (18) yields the 

nonlinear mechanization equations in the E frame.  

( )2

1
( )

2

2

e

eb

e e

eb eb

e
e b e e e e e

eb
b ib ie eb ie eb eb

C

   
   =   
    −   
 

q ω
q

r v

v f v r γ- +

                        (20) 

Figure 1 shows the algorithmic flowchart of the mechanization equation in the E frame. In this algorithm, the 

numerical integration of the IMU raw data is computed in two steps. In the first step, the quaternion 

kinematics including the angular velocity b

ib
ω  is integrated numerically to obtain the transformation matrix 

from the E to the B frame. In the second step, the specific force b

ib
f is transformed into the E frame, and then 

the velocity and position of the body are obtained by integrating the acceleration in the E frame consecutively. 

To represent the attitude in the N frame the rotation matrix b

n
C  from the N frame to the B frame is obtained 

through the successive rotation matrices: 

( )T
b b n

n e e
C C C=                                    (21) 

with                   

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

n

e
C

−   −    
 = −   
 −   −   −  

             (22)                

where n

e
C is the rotation matrix that transforms the E frame to the N frame,  and  are geodetic latitude 

and longitude which can be computed using the position vector e

eb
r  with WGS-84 parameters [14,15].  

 

Figure 1. Algorithmic flowchart mechanization equation in the ECEF frame.  
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 Here the gyro measurement model is given by [4] 

3 3( )b b

ib g ib g gv
I S= + + +ω ω β η                    (23a) 

 
g gu=β η                                 (23b) 

where b

ib
ω is the true angular velocity of the B frame relative to I frame expressed in the B coordinates, b

ib
ω is 

the measured angular velocity of the gyro, 
g
β is the gyro bias, 

g
S is a diagonal matrix of gyro scale factors, 

and 
gv
η and 

gu
η are zero-mean Gaussian white-noise process with spectral densities given by 2

3 3av
I  and 

2

3 3,au
I  respectively. The accelerometer measurement model is given by [4] 

3 3( )b b

ib a ib a av
I S= + + +f f β η                            (24a) 

 
a au=β η                                  (24b) 

where b

ib
f  is the true specific force of the B frame relative to I frame expressed in the B coordinates, b

ib
f is the 

measured specific force of the accelerometer, 
aβ the accelerometer bias, 

aS is a diagonal matrix of 

accelerometer scale factors, 
avη and 

auη are zero-mean Gaussian white-noise process with spectral densities 

given by 2

3 3av
I  and 2

3 3,au
I  respectively. The scale factors are assumed to be small enough so that the 

approximation 1

3 3 3 3( ) ( )I S I S
−

 +  − is valid for both the gyros and accelerometers, which will be used in the 

EKF derivation [1].  

 

4. Extended Kalman Filter equations for loosely coupled GPS/INS integration 

In this section the implementation equations for the EKF for loosely coupled GPS/INS integration using 

the ECEF frame are shown. The GPS navigation solutions are used as measurements to the EKF, which are 

used to correct the INS errors. Here the GPS navigation solutions are assumed to be available through the 

GPS Kalman filter navigation in the GPS receiver and have two possible GPS navigation solutions. One is the 

position of a vehicle in the ECEF frame and the other is both the position and velocity a vehicle in the ECEF 

frame. The estimated quantities are given by [1,3]  

 

1ˆ ˆ ˆ( )
2

e

eb= q q ω
                            

      (25) 

3 3
ˆ ˆˆ ˆ( )( ) ( )b b B e

eb g ib g E ieI S C= − − −ω ω β q ω
        

                 (26) 

ˆ ˆe e

eb eb=r v                                      (27) 

2ˆˆ ˆ ˆ ˆˆ ˆ( ) 2 ( )e e b e e e e e e

ie b ib ie ie ie ie ie ie
C −  v q f v r γ r= - +                        (28) 

3 3
ˆ ˆ ˆ( )( )b b

ib a ib a
I S= − −f f β                                (29) 

ˆ
g
=β 0                                       (30) 

ˆ
a
=β 0                                       (31) 

ˆ
g
=s 0                                       (32) 

ˆ
a
=s 0                                       (33) 
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where 0 is a 3×1 null matrix, ˆ
g

s and ˆ
as the elements of the diagonal matrices ˆ

g
S and ˆ

a
S , respectively. Also, 

ˆ( ),e

b
C q ˆb

ib
f  and ˆ ˆ( )e e

ie ie
γ r are evaluated at the present estimates. The attitude matrix ˆ( )e

b
C q  is computed using 

Eq. (1). Note that the attitude matrix ˆ( )e

b
C q of Eq. (28) is coupled into the position vector as shown in Eq. 

(28), which permits to estimate the attitude from the position measurements.  

We now derive the attitude error equations, which are used in the EKF covariance propagation. The 

linearized model error kinematics follows directly from that the quaternion is linearized using a multiplicative 

approach [3,13]. The error quaternion and its derivatives are given by 

1ˆ −= q q q                                   (34) 

with 
4

T
T

q     q ρ , where the quaternion multiplication is defined by Eq. (9).  The equivalent attitude 

error matrix is given by  

ˆ( ) ( ) ( )
T

B B B

E E E
C C C  =  q q q                         (35) 

If the error quaternion is small enough to within first order, the vector part of the quaternion error can be 

approximated by / 2 ρ α and 
4 1,q  where α is a small error-angle rotation vector. Also, the 

quaternion inverse is defined by Eq. (10). The linearized model error-kinematics then takes the form:   

ˆ ˆ[ ] ( )b b B e e

ib ib E ie
C   = − + −α ω α ω q ω                   (36a) 

4 0q =                              (36b) 

where ˆb b b

ib ib ib
 = −ω ω ω  and e

ie
 =ω 0  since e

ie
ω is constant. Note that the fourth error-quaternion 

component is constant. The first-order approximation, which assumes that the true quaternion is close to the 

estimated quaternion, yields 4 1.q  The order of the system in the EKF is then reduced to one state using 

this property. From the angular velocity model of Eq. (23a), the error of 
b

ibω to within first-order 

approximation in the EKF can be written using the approximation 1

3 3 3 3( ) ( )
g g

I S I S
−

 +  −  [1] as  

3 3 3 3

3 3 3 3

ˆ ˆ( )( ) ( )( )

ˆ( ) ( ) ( )

b b b

ib g ib g gv g ib g

b

g g ib g g g gv

I S I S

I S B I S

  

 

= − − − − − −

 = − −  +  −  + − 

ω ω β η ω β

β s η
                (37) 

where ˆ ˆ, ,g g g g g g = −  = −β β β s s s b

ib
 is a diagonal matrix of the elements of b

ib
ω and ˆ

g
B is the a diagonal 

matrix of the elements of ˆ .
g
β

 
The error e

ie
ω  can be computed using a first-order Taylor series expansion. 

This yields  

3 3 3 3 3 3
ˆ ˆ ˆ[( )( ) ] ( ) ( ) ( )b b

g ib g g g ib g g g gvI S I S B I S   = − − −  − −  −  −  − −α ω β α β s η              (38) 

The state, state-error vector, process noise vector and covariance used in the EKF are defined as  
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, ,

e e

eb eb

gve e

eb eb

gu

g g

av

g g

au

g g

a a

   
        
     
         =     
     
        
      

q α
r r

η
v v

η
x β x β w

η
β β

η
s s

s s

                      (39) 

2

3 3 3 3 3 3 3 3

2

3 3 3 3 3 3 3 3

2

3 3 3 3 3 3 3 3

2

3 3 3 3 3 3 3 3

0 0 0

0 0 0

0 0 0

0 0 0

gv

gu

av

au

I

I
Q

I

I







   

   

   

   

 
 
 =
 
 
 

                        (40) 

where 
3 30  is a 3×3 null matrix, the state vector x is a 22-dimensional vector, and the state-error vector x  

is a  21-dimensional vector since a 4-dimensional quaternion is used to describe three dimensions. The 

error-dynamics used in the EKF are given by 

F G =  +x x w
            

                   (41) 

11 3 3 3 3 14 3 3 16 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

31 32 33 34 35 36 37

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

F F F

I

F F F F F F F

F

   

      

      

      

      

      

 



= 















                   (42) 

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

ˆ( ) 0 0 0

0 0 0 0

ˆˆ0 0 ( )( ) 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

g

E e

B g

I S

C I S

G I

I

   

   

   

   

   

   

   

 − −
 
 
 − − 

=  
 
 
 
 
 

q

               (43) 

with    11 3 3 14 3 3 16
ˆ ˆ ˆ ˆ[( )( ) ], ( ), ( )b b

g ib g g ib gF I S F I S F B = − − −  = − − = −  −ω β           (44a)                

( )2

31 32 33ˆ
ˆˆ ˆ( )[ ], , 2e

eb

E e b e e

B ib ie ie
F C F F= −  = −  + = − 

r
q f γ                              (44b) 

35 3 3 37
ˆ ˆˆ ˆ( )( ), ( )( )E e E e b

B a B ib aF C I S F C F S= − − = − −q q                             (44c) 

where b

ib
F is a diagonal matrix of the elements of 

b

ibf and ˆ
a

S  is a diagonal matrix of the elements of ˆ .as

More details of Eq. (44) derivations are explained in Appendix.  

The EKF algorithm for loosely coupled GPS/INS integration is summarized in Table 1. The EKF is 

composed of initialization, propagation, gain computation and update. The GPS navigation solutions are used 

to the EKF measurements and are assumed to be modeled as 

, ,

e e

eb k eb k r= +r r η                                (45) 
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, ,

e e

eb k eb k v= +v v η                               (46) 

where 
rη and 

vη are zero-mean Gaussian noise processes with spectral densities given by  2

3 3r
I  and 

2

3 3,v
I  respectively.  

Table 1. Extended Kalman filter for loosely coupled GPS/INS integration 

 

Initialization 1 0 1 0
ˆ ˆ , , ,

k k k
P P R− −= =x x  

1 0 0 0 21 21( , ) ( , )kt t t t I−  = =  

 

 

Propagation 

 

 

 

3 3
ˆ ˆˆ ˆ( )( ) ( )b b B e e

eb g ib g E ieI S C= − − −ω ω β q ω  

1ˆ ˆ ˆ( )
2

e

eb= q q ω  

3 3
ˆ ˆ ˆ( )( )b b

ib a ib a
I S= − −f f β  

ˆ ˆe e

eb eb=r v  

2ˆˆ ˆ ˆ ˆˆ ˆ( ) 2 ( )e e b e e e e e e

ie b ib ie ie ie ie ie ie
C −  v q f v r γ r= - +  

1 1( , ) ( ) ( , )
k k k k

t t F t t t− − =   

1 1 1 1( , ) ( , )T

k k k k k k k
P t t P t t Q

−
− − − −=  +  

 

Gain 

 

1
T T

k k k k k k k
K P H H P H R

−− − = +   

 3 3 3 3 3 3 3 120 0 0
k

H I   =  for the position only estimates 

 3 3 3 3 3 3 3 120 0
k

H I I   = for the position and velocity estimates 

Update 

, ,

, , ,

, ,

ˆ
ˆˆ ˆ, or , , or 

ˆ

e e

eb k eb ke e e

k eb k k eb k k k eb k ke e

eb k eb k

   
= = = = =   

   

r r
y r y v y y r y

v v
 

 ˆ
k k k k

K = −x y y   

 21 21k k k k
P I K H P= −  

1 ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )2
2

1

k

k k k k k k k


 

+
+ + − − − − +

 
 =  =  = + 
 
 

α
q q q q q q α , 

renormalize quaternion 
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, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

ˆ ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

e e e

eb k eb k eb k

e e e

eb k eb k eb k

g k g k g k

a k a k a k

g k g k g k

a k a k a k

+ − +

+ − +

+ − +

+ − +

+ − +

+ − +

= + 

= + 

= + 

= + 

= + 

= + 

r r r

v v v

β β β

β β β

s s s

s s s

 

 

The EKF is initialized with a known state (the bias initial conditions for the gyro and accelerometer are 

usually set to zero) and error covariance matrix. The first three diagonal elements of the error covariance 

matrix correspond to attitude errors of the body-fixed frame with respect to the ECEF frame Then, the 

Kalman gain is computed using the measurement error covariance matrix Rk and sensitivity matrix 
kH . The 

sensitivity matrix 
kH for the position, and both the position and velocity are given by  

 3 3 3 3 3 3 3 120 0 0
k

H I   =                          (47a) 

 3 3 3 3 3 3 3 120 0
k

H I I   =                          (47b) 

Thus, two different measurement types composed of the GPS position only, the GPS position and velocity can 

be considered in the EKF design. In general,  

The corresponding measurement error covariance 
kR is given by  

2

3 3k r
R I =                                  (48a) 

2

3 3k v
R I =                                  (48b) 

2

3 3 3 3

2

3 3 3 3

0

0

r

k

v

I
R

I




 

 

 
=  
 

                             (48c) 

The state error covariance follows the standard EKF update. The position, velocity, and bias states also follow 

the standard EKF additive correction while the attitude error state update is computed using a multiplicative 

update [3,15]. The updated quaternion is renormalized by brute force. Finally, the propagation equations 

follow the standard EKF model. To reduce the computational load a discrete-time propagation of the 

covariance matrix is used 

1

T

k k k k kP P Q
− −
+ =  +                             (49) 

where 
k is the discrete-time state transition matrix and 

kQ is the discrete-time process noise covariance 

matrix. Though 
kQ  can be obtained using numerical solution given by van Loan [18], the first-order 

approximation of the solution is given by 

T

kQ tGQG                              (50) 

where t is the constant sampling time.  

 

5. Simulation results 

In this section simulation results are shown that estimate a flying vehicle’s attitude, position, and velocity, 
as well as the gyro and accelerometer biases and scale factors. All measurements are assumed to be sampled 
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every 0.1 seconds. The gyro measurements are simulated using Eqs. (23) with 
710 10

gv
 −=   rad/s1/2  and 

1010 10
gu

 −=  rad/s3/2
, and an initial bias 0.5 deg/hr on each axis. The accelerometer measurements are 

simulated using Eq. (24) with 69.81 10
av

 −=   m/s3/2  and 56 10
au

 −=   m/s5/2
, and an initial bias 

3300 2.9 10g −=   m/s2 on each axis. Also, the scale factors are given by  2

3 310
g

S I
−

= and 4

3 310 .
a

S I
−

=
 

Initially the GPS navigation solution is simulated using Eqs. (45) and (46) with 5r = m and 

23 10
v

 −=  m/s. The origin location of the aerial vehicle motion is described at 
0 35.139968 = degrees and 

0 126.931658 = degrees. The initial quaternion is given so that the aerial vehicle body-fixed frame B 

coincides with the local navigation frame N. The initial velocity is given by  0 2 0
Tn =v m/s. The 

rotational rate profile is given by: 5 deg/min rotation about the xb axis for the first 200 s and then zero for the 

final 400 s; no rotation about the yb axis for the first 200 s, then a 5 deg/min rotation for the next 200 s and zero 

for the final 400 s; no rotation about the zb axis for the first 200 s, then 5 deg/min rotation for the final 400 s.  

In the EKF an initial attitude error of 3, -3 and 3 degrees is given in each axis. The initial covariance 

matrix P0  in the EKF is diagonal. For this case, the three attitude parts of the initial covariance are each set to a 

3  bound of 5 degrees, i.e., [(5/3)×(π/180)]2 rad2. The initial estimates for position are set to the true position 

of the aerial vehicle in the E frame adding the position error of 10 m in each axis. The initial variance for the 

position is given by (10/3)2 m2. The initial velocity is set to the true velocity of the aerial vehicle in the E frame 

adding the velocity error of 1 m/s in each axis. The initial variance for the velocity is given by (1/3)2 m2/s2. The 

initial gyro and accelerometer biases and scale factors are all set to zero. The three gyro-bias parts of the initial 

covariance are each set to a 3  bound of 3 deg/hr, i.e., [(3/3)×(π (180×3600))]2 rad2/s2. The three 

accelerometer-bias parts of the initial covariance are each set to a 3  bound of 0.005 m per second-squared, 

i.e., (0.005/3)2. The three gyro-scale factor parts of the initial covariance are each set to a 3  bound of 0.015, 

i.e., (0.015/3) 2. Finally, the three accelerometer-scale factor parts of the initial covariance are each set to a 3  

bound of 0.01, i.e., (0.01/3) 2.  

The resulting EKF using both the EKF position and velocity measurements are shown in Figure 2. 

Figure 2(a) shows an ascending flight trajectory in the N frame, where the body-fixed frame of the aerial 

vehicle is plotted with respect to the N frame along the trajectory. Figure 2 (b) shows the attitude estimation 

errors and respective 3  bounds derived from the EKF covariance matrix. The attitude errors are within their 

3 bounds and converge to near zero at 3600 s, which indicates that the EKF is performing in an optimal 

fashion. The large errors in pitch and yaw are due to the fact that these angles are the least observable state for 

the particular the aerial vehicle motion. Figure 3 (c) and (d) show the position and velocity estimation errors, 

and their 3  bounds, respectively. The position and velocity knowledges are within 1 m and 0.01 m/s for each 

axis, respectively. The velocity estimation errors are shown for 60 s to observe fast convergence clearly, and 

they maintain their convergence for the rest of the simulation. Figure 2 (e) and (f) show the gyro and 

accelerometer bias estimation errors, and their respective 3  bounds. Figure 2 (g) and (h) show the scale 

factor estimation errors of the gyro and accelerometer, and their 3  bounds, respectively. All errors remain 

within their respective bounds, which indicates that the EKF works properly.  
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  (a) Ascending flight trajectory in the ENU frame   (b) Attitude estimation errors with 3 error bounds 

  

(c) Position estimation errors with 3 error bounds      (d) Velocity estimation errors with 3  

 error bounds 

 

(e) Gyro bias estimation errors with 3 error bounds      (f) Accelerometer bias estimation errors 

 with  error bounds 
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(g) Gyro scale factor estimation errors         (h) Accelerometer scale factor estimation  

with 3 error bounds errors               with 3 error bounds 

Figure 2. EKF estimation results for both the position and velocity measurements 

To quantify the estimation results of the position and attitude, the norms of the attitude and position errors 

are numerically integrated, respectively over the 3600 s simulation, given by 

3600

0
( )

a a
J t dt=  e                              (38a) 

3600

0
( )

r r
J t dt=  e                              (38b) 

where ( )a te denotes the roll, pitch and yaw errors in degrees and ( )r te denotes the position estimation errors 

in meter. Then Eq. (38) is averaged over 30 runs (i.e, Monte-Carlo type simulation is performed). Table 2 
shows the averaged Ja and Jr values for different measurements using both the position and velocity, and the 
velocity only, respectively. It shows that smaller averaged Ja and Jr are obtained when both the GPS position 
and velocity are used together.  

 

Table 2. Averaged Ja and Jr values for different measurements 

 

 

 

 

 

Figure 3 shows the norms of the position and attitude estimation errors using two different measurement 

combinations of the GPS navigation solutions, respectively. The norms of the attitude estimation errors are very 

similar and converge to less than 0.1 degrees in 3600 s, as shown in Fig. 2 (a). On the other hand, the norms of 

the position estimation errors converge to smaller than 1.2 m and 4 m, respectively for both the position and 

velocity measurements, and the position velocity only. The values of Ja and Jr for the position and velocity 

measurements are smaller than the values of Ja and Jr for the position measurement only. More accurate EKF 

estimation result can be achieved when both the GPS position and velocity measurements are used, which 

indicates that the velocity measurements may improve the estimation performance with the position 

measurement.  
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(a) Attitude estimation errors                             (b) Position estimation errors 

Figure 3. Norms of attitude and position errors using two different measurement combinations 

                                                                      

To prove that the loosely coupled GPS/INS integration based on the EKF using both the ECEF position 
and velocity can be practically implementable and its performance can be improved, the EKF is simulated for 
different GPS velocities using three different 

v , which are 2 23 10 , 10 10− −  and 230 10− m/s for Eq. (46) 
under the same position error 5r = m. The results are also obtained using Monte-Carlo simulation. Table 3 

shows the averaged Ja and Jr values for different velocity errors using the three ECEF velocities under the 
same position error 5r = m. It shows that smaller averaged Ja and Jr are obtained as the velocity error is 

smaller. It means that more accurate EKF estimation result can be achieved when more accurate velocity is 
used in the EKF.  Even when the velocity error 230 10

v
 −=  is used with the position, Jr in Table 3 is still 

smaller than, Jr in Table 2 for the position measurement only. More accurate EKF estimation results can be 
obtained when both the position and velocity measurements are used together with more accurate velocity 
measurement. Therefore, the velocity information from the GPS receiver may improve the EKF estimation 
result when it is used with the ECEF position. Furthermore, as the velocity accuracy is higher, more improved 
EKF result can be attained.   

 

Table 3. Averaged Ja and Jr values using both the position and velocity 

 

 

 

 

 

 

 

 

Figure 4 shows the norms of the position and attitude estimation errors using different GPS velocity errors for 

three cases. When the standard deviation is 23 10− m, the most accurate attitude and position estimations are 
achieved, which the norms of the attitude and position errors go down to 0.1 degrees and 0.3 m, respectively. 
As the standard deviation v  is smaller, smaller norms of attitude and position errors are obtained. Therefore, 

the benefit of accurate velocity from the GPS receiver for the loosely coupled GPS/INS integration is 
numerically verified.   
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(b) Attitude estimation errors                       (b) Position estimation errors 

Figure 4. Norms of attitude and position errors for different GPS velocity errors 

 

5. Conclusion 

In this paper an extended Kalman filter was derived for a loosely coupled GPS/INS integration algorithm 

that can take advantage of the benefits of the ECEF frame and centimeter per second-level of accuracy GPS 

velocity solution. The EKF is based on a quaternion parameterization of the attitude. However, 

straightforward implementation of the EKF using quaternion kinematics did not result in a unit quaternion 

estimate. The position, velocity, and bias states also follow the standard EKF additive correction while the 

attitude error state update is computed using a multiplicative update. The GPS navigation solutions which may 

consist of the position and velocity in the ECEF frame are directly used for the EKF without any coordinate 

transformation.  

    The EKF was first evaluated for different measurement types which consists of the position only, and 

both the position and velocity navigation solution from the GPS receiver. The EKF using both GPS the 

position and velocity measurements could achieve more accurate attitude and position estimation results than 

the EKF using the GPS position only when the velocity standard deviation error was sub-centimeter per sec 

level. To verify that the EKF for loosely coupled GPS/INS integration using both the GPS position and 

velocity measurements can be practically implementable and its estimation performance can be improved, the 

EKF was simulated for different GPS velocities using three different velocity standard deviations. The EKF 

could obtain more accurate attitude and position estimation results as the accuracy of the velocity is higher. 

The simulation results clearly demonstrated how a loosely coupled GPS/INS integration in an EKF 

formulation using the GPS position and velocity measurements can be used to estimate attitude, position, 

velocity and biases with improved estimation accuracy.   
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Appendix A 

The partial derivative components of F matrix of Eq. (40) is derived by taking the partial derivatives with 

respect to the state vector components of the EKF , , , , , , and ,e e

eb eb g a g a
α r v β β s s respectively.  
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The direction cosine matrix ( )e

bC q  is written by 
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Substituting the above equation yields time derivative of the velocity of Eq. (18) as 
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The Jacobian matrix of 
e

ebγ  with respect to the position vector 
e

ebr is given by                                         
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Substituting Eq. (23a) into Eq. (18) yields  
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Using the above equation the partial derivative components of the third row of F matrix are obtained by 
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