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less number of misaligned read, also similarly possessed 
high level of AUC (0.9723). Such selection and optimiza-
tion method of tools appropriate for panel sequencing can 
be utilized for fields requiring error minimization, such as 
clinical application and liquid biopsy studies.
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Introduction

After the emergence of Sanger sequencing 40 years ago, 
more precise, massive-running, and rapid methods of align-
ing reads to a huge reference genome have been developing 
consistently. Innovative technology such as Next-Generation 
Sequencing (NGS) is widely used in genetic variant detec-
tion and has successfully transited from bench-to-bedside 
in the recent decade. NGS platforms, such as MiSeqDx and 
Oncomine Dx, have already received approval from the US 
Food and Drug Administration (FDA) for in vitro diagnos-
tic tests and numerous hospitals are already utilizing these 
systems for clinical trials. Furthermore, NGS technology 
is also starting to become commercialized; for instance, 
FoundationOne (https://www.foundationmedicine.com/) 
and Personal Genome Service Genetic Health Risk (https://
www.23andme.com/) provide doctors or clinicians the nec-
essary biomarkers of the potential patient for clinical trials 
or targeted therapies.

From the advancement in technology, the price of 
sequencing and the turnaround time has decreased rapidly 
and clinical application is thus becoming more accessible. 
NGS in clinical diagnostics actively makes use of targeted 
panel sequencing, a method that targets only a small portion 
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of the whole genome, mainly by detecting actionable muta-
tions using panels comprising known hotspots (Cheng et al. 
2015; Easton et al. 2015; Kurian et al. 2014). In South 
Korea, specifically, gene panel testing based on NGS has 
been covered by the National Health Insurance since March 
2017. Therefore, acceleration of panel tests on patients can 
be readily anticipated. A clinical gene panel test based on 
NGS involves numerous complicated steps that need opti-
mization and quality management. Specifically, the detailed 
processing of bioinformatics analysis such as the read map-
ping step, deduplication, local realignment, and variant 
calling process, is gaining more importance. For each step, 
various algorithms have been developed and their perfor-
mances are compared with each other. Consistent perfor-
mance evaluation with quality control is imperative for clini-
cal examinations, as such analysis influences the diagnostics 
and treatments in actual patients.

Since clinical panel sequencing is primarily aimed for 
clinical analysis, it requires an optimization procedure with 
a different standard from that of whole genome or whole 
exome sequencing. Clinical panel studies vary in the loca-
tion of hotspots to be targeted and such data can be influ-
enced by the specimen type, library manufacturing protocol, 
and sequencing condition. Furthermore, mutations can differ 
by race and disease type, and therefore, selecting an optimal 
tool and parameter for such variations in data is a very cru-
cial procedure for precision medicine.

The Samsung Genome Institute (http://sgi.samsunghos-
pital.com/) has developed and utilized CancerSCAN, based 
on the data from more than 10,000 panel sequencing studies 
since 2014 (Kim et al. 2017). With the accumulated data, the 
general pipeline has been optimized for the CancerSCAN 
panel and this study will focus on the alignment tool, which 
is the first step in the analysis process.

The first step in the analysis of NGS data is alignment, 
i.e., specifically aligning the generated reads to the human 
reference genome sequence to locate the chromosomal 
position. The aligned positions become the basis for vari-
ant detection analysis and therefore, faulty alignments or 
systematic biases lead directly to variant detection errors. 
Numerous aligners have been proposed so far with distin-
guishing properties in order to achieve greater accuracy 
pertaining to precision. Previous studies have reviewed 
the tools according to mapping strategy (Bao et al. 2011; 
Fonseca et al. 2012), tool characteristics, input data type 
(Thankaswamy-Kosalai et al. 2017), and manipulating the 
tool parameter options (Hatem et al. 2013). The Hatem 
group specifically compared nine tools with RNA-seq data 
and manually optimized the parameters, changing the num-
ber of allowed mismatches and gapped lengths, to achieve a 
reduced runtime while sacrificing the quality of the result. 
The runtime of algorithms is also regarded as an important 
parameter in the aspect of turnaround time in clinical panel 

sequencing. Although library preparation and sequencing is 
the more time-consuming process, excessively longer NGS 
gene panel tests compared to other clinical tests, is a prob-
lem that needs to be solved.

Widely used tools with superior performances in previ-
ous studies (Thankaswamy-Kosalai et al. 2017) were ini-
tially evaluated including Bowtie 2 (Langmead et al. 2009), 
BWA–MEM (Li and Durbin 2009), and NovoAlign (http://
www.novocraft.com). Furthermore, tools that were devel-
oped after the previous review papers or those that have not 
been widely compared previously in review papers, were 
also selected and included BatAlign (Lim et al. 2015) show-
ing higher sensitivity and specificity than BWA–MEM and 
Bowtie 2 when processing short reads with structural vari-
ants, BWA–PSSM (Kerpedjiev et al. 2014) outperforming 
the sensitivity of BWA–MEM and Bowtie 2 using position-
specific scoring matrices for high divergent reads such as 
ancient DNA, CUSHAW3 (Liu et al. 2014) scoring higher 
sensitivity compared to BWA–MEM, Bowtie 2 and NovoA-
lign for short reads, Kart (Lin and Hsu 2017) reducing the 
runtime to about 3–100 times compared to BWA–MEM and 
Bowtie 2 with both short and long reads, and NextGenMap 
(Sedlazeck et al. 2013) showing shorter runtime and higher 
percentage of correctly mapped reads compared to BWA and 
Bowtie 2 when processing high divergence reads.

Panel sequencing also differs from whole genome or 
whole exome sequencing pertaining to mapping perfor-
mance. The reason for such discrepancy is that (1) excessive 
time can be wasted on processing a portion of the genome 
without hotspots, since clinical tests usually focus on hot-
spots of interest and (2) the mutation type and length to be 
detected can largely influence performance. BatAlign spe-
cifically, can accurately detect fusion reads such as structural 
variants and polymorphic-variants (Lim et al. 2015). Also 
(3) multiple alignments, or secondary alignments, on com-
paratively narrow target regions can show a more simpli-
fied determination of detection compared to whole genome 
sequencing. Therefore, panel sequencing requires an opti-
mized analytical pipeline that can maximize its performance 
regarding the various properties it possesses.

This study aimed to organize the single nucleotide 
variants (SNVs) and insertion/deletions (InDels) that 
occur in Koreans based on the 8378 analyzed results data 
from CancerSCAN. In addition, using the CancerSCAN 
data, we can seek an appropriate alignment tool for Can-
cerSCAN. Although the algorithms for each tool possess 
different strengths and features, this study will empha-
size on comparing how many reads were mapped in their 
correct positions. If the reads were to be mapped in a 
different position, the wrongly mapped positions can be 
detected as variants, and therefore become false positives, 
which is critical in clinical tests. Hence, the proportion 
of misaligned and unmapped reads is the most important 
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measure, since it can mislead the result of alignment and 
clinical decisions. In this study, we compared the perfor-
mance of aligners by evaluating the number of aligned, 
misaligned, and unmapped reads using simulated reads. 
The reads were generated from the Human reference 
sequence using in silico simulation and the original posi-
tion in which the reads were generated from was com-
pared with the mapped position resulting from each tool 
alignment.

Materials and methods

In silico read generation

In silico read generation was based on the human refer-
ence genome (hg19). However, among various read simu-
lators, none possessed the ability to identify the location 
from which the reads were generated, insert the variants 
with the desired variant allele frequency, and determine 
the target region to be sequenced for panel sequencing. 
Therefore, DWGSIM (http://github.com/nh13/dwgsim) 
was only used to report the read generated position and 
FASTQ datasets with variants were produced according 
to the following methods.

Step I: simulated read data generation

The reference genome sequence was modified to gen-
erate reads within the target area for panel sequencing. 
The areas ± 200 bp from each target obtained from Can-
cerSCAN were put together to reconstruct the reference. 
With the reference prepared, DWGSIM was used to simu-
late pair-ended reads with a read length of 100 bp. As 
input parameters, the base error rate was set as 8.25E−05 
and the insert size was 175 ± 51.85 (mean ± SD, bp) 
obtained from a mix of 10 HapMap cell lines from a pre-
vious study (Chung et al. 2016). The read production was 
4Gbase with a mean coverage of 1140×, equated with 
that of CancerSCAN. All generated reads were assessed 
to determine whether they were correctly produced from 
the corresponding target region. Reads that overlapped 
between different target regions were excluded.

Step II: variant insertion

Variants were inserted into the FASTQ files generated in 
Step I. Variants were selected from 40,602 SNVs and 198 
InDels (Supplementary Table 1) which were called from 
8378 cancer patient samples in CancerSCAN. The number 
of variants to be inserted was chosen according to the listed 
eight sets in Table 1. All reads covering each variant position 
were modified according to the corresponding variant allele 
frequency obtained from CancerSCAN. Maximum length of 
each insertion and deletion was 25 and 30 bp, respectively.

Therefore, in the ith FASTQ file, if the read depth of the 
jth variant position is nij, the variant was inserted according 
to the variant allele frequency of the corresponding variant 
pij (Supplementary Table 1). Thus, if the number of reads 
that possesses variants in the jth position is the random vari-
able Xij, the distribution of Xij will resemble a binomial dis-
tribution as such. 

In total, 8 FASTQ file sets were produced, ranging from 
“Set 1” containing no variants to “Set 8” containing more 
than 4000 variants. Each set was produced three times 
repeatedly (Table 1). Variants were inserted from a ran-
dom selection among the variant lists from Supplementary 
Table 1 and FASTQ files within the same sets had the same 
variant type and matching variant allele frequency.

Alignment tool selection and features

Fonseca et al. (2012) reviewed the characteristics of 60 
alignment tools and compared functions such as maximum 
and minimum read length, number of allowed mismatches, 
etc. Referring to the various features of each tool, tools 
were appropriately selected for the given server and data 
type to be handled. The standards of selection were based 
on accessibility (open source material), alignment option 
(DNA-based paired-end sequencing allowing mismatches, 
InDels, gaps) and the quality awareness of the tools (utili-
zation of mapping quality). Tools that were not compatible 
with our system, AlignerBoost (Zheng and Grice 2016) and 
CORA (Yorukoglu et al. 2016), were excluded from the list.

The eight selected tools and their basic features are listed 
in Table 2. The number of citations was obtained from Web 
of Science (https://webofknowledge.com/) on September 

Xij ∼ B
(

nij, pij

)

Table 1  Number of SNVs and 
InDels inserted in simulated 
FASTQ sets

Variant type Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

SNV 0 20 40 80 160 230 300 4111

Insertion 0 1 5 10 20 35 48 48

Deletion 0 2 5 10 20 35 53 53

http://github.com/nh13/dwgsim
https://webofknowledge.com/
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28, 2017. BWA–MEM has been the most cited followed by 
Bowtie 2. The recently published tool, Kart and the unpub-
lished tool, NovoAlign, had no citations. More than half 
the tools were published before 2014, and Bowtie 2 and 
BWA–MEM were used popularly despite the existence of 
new tools. Tools that specified the exact number of mis-
matches, InDels, and gaps in Table 2 were marked with 
the corresponding numbers, and tools that used the score 
function were indicated with “score” in the column. The 
mapping quality range used in evaluating the reads was also 
sorted in the table. While BatAlign, BWA–MEM, Kart, and 
NextGenMap use a range from 0 to 60, other tools used 
different mapping quality ranges. The factors common to 
all eight tools were that they have FASTQ as the input for-
mat and SAM as the output format. However, BWA–PSSM 
preprocesses each FASTQ file to SAI file and then the two 
SAI files from each paired-end read are combined to form 
a single SAM file.

Method of evaluation

Evaluation of alignments was performed using the original 
chromosomal position for each pair of generated reads via 
the DWGSIM simulator. The original chromosomal posi-
tions were separately and distinctively stored in a separate 
file and were compared with the starting position of the 
mapped read after alignments of the tools. If the starting 
positions of the mapped read did not exactly match the 
respective separately stored original position or the position 
that the read was actually generated from, the read was con-
sidered as wrongly mapped and therefore a misaligned read. 
Even if the reads were mapped in different locations because 
of sequence homology, they were considered as misaligned. 

Alignments were accepted as correct if and only if the start-
ing positions agreed exactly, despite any existence of vari-
ants in the reads or any other sequence errors. Every read 
was evaluated using such methods to examine the mapping 
performance of the tools.

Other factors such as time were also used as an evalua-
tion standard. Of the eight tools, seven were run under four 
threads, CentOS 6.6, and RAM 192 GB with CPU 2.40 GHz 
(12 cores); NovoAlign proceeded under a single thread with 
the same RAM and CPU because the multi-threaded option 
was only available commercially. The time required for the 
alignment process was measured until a final SAM file was 
made.

The mapping quality for all tools had a cutoff value of 
zero. In other words, reads were not filtered out even if the 
mapping quality of a specific read was very low. Addition-
ally, Bowtie 2 (mapping quality range of 0–42), BWA–PSSM 
(0–200), CUSHAW3 (0–250), and NovoAlign (0–70) had 
different calculation methods for mapping quality; the scores 
were linearly transformed to fit the range of 0–60 like any 
of the other tools. Therefore, we could visualize every read 
without filtering, and determine any tendencies in misalign-
ments for each tool.

Results

Number of simulated reads

Reads were produced with a coverage of 1140× in each 
set, rather than exactly matching the total number of 
reads. Therefore, the average number of reads in a set was 
66,894,525 reads with a standard deviation of 5616 reads 

Table 2  List of alignment tool and features

Mismatch and InDels column shows the number of mismatches and InDels allowed in the alignment by default. Score indicates that the mapper 
uses score function. Gap column shows if consecutive InDels are permitted in alignment, as if possible the length of gaps in base pair. Yes is 
abbreviated as Y
a Version: the tool versions used were the latest versions as of August 23, 2017
b Citation: the number of citations of tool publications was obtained from Web of Science on September 28, 2017
c NovoAlign: NovoAlign is not published and can be accessed through http://www.novocraft.com. The published year for NovoAlign is the year 
of its first version

Alignment tool Versiona Citationb Published year Citations/year Mismatch InDels Gaps MQ range

BatAlign v1 3 2015 1.5 5 Y 200 0–60

Bowtie 2 v2.3.2 7227 2009 843.6 Score Score Y 0–42

BWA-MEM v0.7.15 8494 2013 1035.5 Y 8 Y 0–60

BWA-PSSM v0.7.8 15 2014 4.3 Y 8 Y 0–200

CUSHAW3 v3.0.3 177 2014 48.1 Y Y Y 0–250

Kart v2.2.1 0 2017 0 Y 5 5 0–60

NextGenMap v0.5.0 55 2013 14.1 Score Score Y 0–60

NovoAlignc v3.08.00 – 2014 – 8 7 Y 0–70

http://www.novocraft.com
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which is approximately 0.8% of the average (Supplementary 
Table 2).

Repeatability

The repeatability of each alignment tool was confirmed by 
a reiterating alignment for Set 1 and Set 8. Tools other than 
BatAlign produced the exact same alignment result for all 
reads, whereas BatAlign had a different alignment result for 
the two trials. The total numbers of misaligned reads in the 
two trials were fairly the same; however, roughly 1% of the 
reads was initially mapped properly, read in one trial, and 
misaligned in the other, creating a discrepancy in repeat-
ability (Supplementary Table 3).

Misaligned and unmapped reads

All simulated reads, Sets 1–8, were mapped to the whole 
hg19 reference sequence. Since the reads were simulated 
in silico from the reference genome, alignment results 
were expected to be nearly perfect. However, CUSHAW3 
resulted with average of 2,099,439 misaligned reads, 3% 
of total reads, in Set 1 and even increased to 2,124,189 
misaligned reads, 3.1% of total, in Set 8, which car-
ried the most variants (Fig. 1). Misaligned reads, unlike 
unmapped reads, are regarded as more misleading, since 
they produce false positive results from mapping to the 

wrong location and are reported as mutation supporting 
reads. Tools other than CUSHAW3 had a similar level 
of average number of misaligned reads, with NovoAlign 
possessing the lowest. The number of misaligned reads in 
the tools was overall insensitive to the number of variants 
in the set. Exceptionally, in BatAlign, NextGenMap, and 
NovoAlign, misaligned reads increased for Set 8, when 
an excessive amount of variants were present. In contrast, 
BWA–PSSM had average of 186,931 misaligned reads, 
3% of total reads, in Set 1, while sets with variants showed 
a lower proportion of misaligned reads at 2%, which is 
approximately 110,762 misaligned reads per sets.

On the other hand, for the average number of unmapped 
reads, NovoAlign performed with 21,071 unmapped 
reads, 0.3% of total, even in simulated read sets without 
any inserted mutation like Set 1, and 161,209 reads were 
unmapped in NextGenMap, 0.2% of total (Supplementary 
Table 4). Kart and BWA–PSSM also showed unmapped 
reads in Set 1, though very small. The proportions and 
average number of unmapped reads in the above tools 
neither increased nor showed any such tendency as the 
number of inserted variants increased from Sets 1 and 8. 
The unmapped reads in Bowtie 2 appeared only when the 
number of variants increased in Sets 7 and 8. Other tools 
like BatAlign, BWA–MEM, and CUSHAW3 did not have 
any unmapped reads in all repetitions of the simulated 
sample sets.

Fig. 1  Number of misaligned 
reads for each simulated FASTQ 
set. The average number of 
misaligned reads obtained by 
comparing the alignment result 
with the original position of the 
reads. The detailed average and 
standard deviation are listed in 
Supplementary Table 4
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Mapping quality distribution

The mapping quality differences for each tool, between prop-
erly aligned reads and misaligned reads are compared in 
the graph (Fig. 2). Such distinction is fundamental when 
setting a threshold to filter the misaligned reads from prop-
erly aligned reads. The mapping quality distribution for 
properly mapped reads in BWA–MEM is concentrated at 
the highest group of mapping quality; more than 99% of 
properly mapped reads possessed a mapping quality of over 
50. Similarly, for misaligned reads, 99.8% of the reads were 
distributed in the lowest group of mapping quality, proving 
that BWA–MEM is capable of effectively separating and 
removing the misaligned reads during alignment. Bowtie 2 
showed a similar performance and thus, is also confirmed to 
be an effective tool to discard misaligned reads. The distri-
bution in BWA–PSSM, in contrast to the other seven tools, 
had a very low percentage of properly aligned reads at the 
highest group of mapping quality. Such a phenomenon might 
have occurred since BWA–PSSM initially reports mapping 
quality with a range from 0 to 200, and the process in which 
we linearly transformed the scores could have been mis-
leading. Nevertheless, the fact that the ability to discern 
misaligned reads using BWA–PSSM was inferior to that of 
BWA–MEM could be affirmed. BatAlign, NovoAlign, and 
NextGenMap had approximately 15% of misaligned reads 
scored at the highest group of mapping quality, thus fail-
ing to show effective distinguishing abilities on the reads. 
Receiver operating characteristic (ROC) analysis on the 
mapping quality was performed on alignment result of Set 8, 
including the most variants. As previously mentioned, Bow-
tie2 and BWA–MEM each showed the highest class of AUC, 

0.9984 and 0.9970 respectively, followed by BWA–PSSM, 
CUSHAW3 and Kart, in order (Fig. 3).

Runtime

The runtime for each tool was measured from the execu-
tion of tool command until the SAM output was gener-
ated (Fig. 4). Severe fluctuation in time was observed in 
NextGenMap and the standard deviation in each set was 
the highest. Kart maintained the fastest runtime for all sets, 
followed by NovoAlign, BWA–MEM, Bowtie 2, BatAlign, 
and BWA–PSSM, in that order, and all finished within 1 h. 
Among those tools, NovoAlign varied in performance time 
between sets, whereas Kart and BWA–MEM were very sta-
ble in time for different numbers of mutation.

Discussion

BWA–MEM, as the most popular tool, had no drawback in 
its performance. Kart showed excellent performance in runt-
ime and a low misaligned read proportion; however, 5.3% of 
the misaligned reads had high mapping quality thus caus-
ing a difficulty separating the mapped and misaligned reads 
properly, and unmapped reads were also present. NovoAlign 
had the least percentage of misaligned reads with a very 
short alignment runtime, despite only a single thread being 
used, but also had the highest unmapped read percentage 
and problems in filtering with roughly 16% misaligned reads 
showing mapping quality.

Most of the misaligned reads were related to the X or 
Y chromosomes. Specifically, half of the misaligned reads 

Fig. 2  Mapping quality distribution for aligned and misaligned 
reads. Mapping quality for aligned and misaligned reads was cal-
culated and the reads were grouped into six categories according to 
their scores. The solid bars indicate the properly aligned reads and 

the dashed boxes indicate the misaligned reads. The mapping quality 
range for all tools was equalized from 0 to 60 using linear transforma-
tion
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Fig. 3  ROC analysis of read mapping quality in Set 8. ROC curve and the corresponding AUC was displayed for the mapping quality result on 
the alignment result of Set 8 for each tool

Fig. 4  Runtime of tools for 
different simulated FASTQ sets. 
Each set had three repetitions 
and used four threads when 
aligning the reads. NovoAlign 
was the only tool that used a 
single thread
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occurred between the two sex chromosomes; reads produced 
from the X chromosome were mapped to the Y chromo-
some and the reverse also occurred. Such tendency most 
likely occurred because the sequence homology between 
the X and Y chromosomes was comparatively higher than 
other chromosomes. As to specify the cause of misaligned 
reads, the sequence of the misaligned reads was further ana-
lyzed. Thus, the misaligned reads of Set 1, having identi-
cal sequence to the reference since no variants are inserted, 
was examined to determine whether the misaligned reads are 
based on the reference sequence homology (Table 3). Of the 
total misaligned reads, ranging from 37 to 99% for different 
alignment tools was aligned to locations with different posi-
tion and sequence. As such reads were misaligned despite 
the high similarity to the original position of each read, mis-
aligned reads in the presence of perfectly identical sequence 
can be considered as not directly related to the performance 
of the tools. However, misaligned reads in nonidentical 
sequences should be regarded as non-reasonable misaligned 
reads. Kart possessed the least non-reasonable misaligned 
reads, 37.1% of total misaligned reads, along with the total 
number of misaligned reads. Although misaligned reads only 
take small proportion of the total reads, such misaligned 
reads that are non-reasonable are most likely to lead to false 
positive variants.

Additionally, 10% of misaligned reads were mapped out 
of the targeted region. As currently used tools do not utilize 
the target region for alignments, alignments of reads to the 
reference genome have high probability of being mapped off 
the target region. If tools are to be developed to align reads 
based on the user-defined target region, the tools would not 
only decrease the runtime, but also decrease the misaligned 
reads by effectively mapping reads, formed from second-
ary alignments on locations with high sequence homology, 

to the correct position, and will therefore directly relate to 
increasing the precision of clinical panel sequencing.

Unmapped reads are discarded after sequencing and could 
result in financial loss. Misaligned reads, on the contrary, are 
mapped to wrong positions and could further lead to results 
with variants that do not exist or dilute the support reads for 
existing variants. Such false positives and false negatives 
are negligibly small in situations with a plethora of reads 
and can be trivial to the result, but they can cause signifi-
cant problems in cfDNA sequencing, a recently introduced 
technology. Sequencing for liquid biopsy samples requires 
an ultra-sensitive method that can detect variants even with 
an allele frequency under 0.1%. Therefore, sequence errors, 
measured from normal sample data, can be used for modi-
fication (Newman et al. 2016) and such a sequence error 
rate is reported differently for each substation class (Chung 
et al. 2016; Newman et al. 2014; Park et al. 2017). Moreover, 
various efforts are made to minimize and compensate the 
error in bioinformatics processes, such as the development 
of a Unique Molecule Identifier, which can separate the sig-
nificant signals mixed with PCR duplicates (Gregory et al. 
2016; Schmitt et al. 2012, 2015). As the application of NGS 
advances, lowering the error level that occurs stochastically 
will be vital in improving detection sensitivity.

Based on this study, we plan to optimize the tool param-
eters for post-alignment procedures, which include dedupli-
cation and local realignment processes. Furthermore, diverse 
detection caller algorithms are used for different variant 
types and their purposes, since the claimed performances 
vary with respect to the variant allele frequency and limit 
of detection. Therefore, selecting an appropriate detection 
caller regarding the purpose of the panel and target vari-
ant is compelling. As a beginning for such steps, we have 
attempted to select the most efficient and suitable alignment 

Table 3  Characteristics of misaligned reads in Set 1

Misaligned reads are classified as identical sequence when the read sequence is identical to the reference sequence of the aligned position. If the 
two sequences are different, such misaligned reads are classified as different sequence

The counts of misaligned reads were repeated three times and the data shows the mean ± standard deviation

Set 1 Count of misaligned reads Percentage of misaligned read

Total misaligned Identical sequence Different sequence Total mis-
aligned (%)

Identical 
sequence (%)

Different 
sequence 
(%)

BatAlign 154,232 ± 348.7 65041 ± 304.3 89,191 ± 47.1 100.00 42.2 ± 0.1 57.8 ± 0.1

Bowtie 2 112,071 ± 278.9 65237 ± 361.1 46,834 ± 177.6 100.00 58.2 ± 0.2 41.8 ± 0.2

BWA-MEM 110,809 ± 374.6 64787 ± 124.8 46,022 ± 331.5 100.00 58.5 ± 0.2 41.5 ± 0.2

BWA-PSSM 186,931 ± 737.5 34672 ± 157.6 152,259 ± 813.7 100.00 18.5 ± 0.1 81.5 ± 0.1

CUSHAW3 2,099,439 ± 3718.2 139615 ± 44.6 1,959,824 ± 3732.9 100.00 6.7 ± 0.0 93.3 ± 0.0

Kart 103,813 ± 46 65261 ± 113.1 38,552 ± 137.6 100.00 62.9 ± 0.1 37.1 ± 0.1

NextGenMap 277,783 ± 315.2 63498 ± 80.4 214,285 ± 306.3 100.00 22.9 ± 0.0 77.1 ± 0.0

NovoAlign 32,455 ± 149.8 104 ± 19 32,351 ± 158 100.00 0.3 ± 0.1 99.7 ± 0.1
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tool for CancerSCAN. We further expect that the proposed 
in silico simulation and performance evaluation methods 
will contribute to the development of novel panels for labo-
ratories with a similar purpose.
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