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 Performance Evaluation Models for Single-item

 Periodic Pull Production Systems

 NUREDDIN KIRKAVAK and CEMAL DIN4ER

 Bilkent University, Turkey

 A number of pull production systems reported in the literature are found to be equivalent to a tandem-
 queue so that existing accurate tandem-queue approximation methods can be used to evaluate such
 systems. In this study, we consider developing an exact performance evaluation model for a non-tandem-
 queue equivalent pull production system using discrete-time Markov processes. It is a periodically con-
 trolled serial production system in which a single-item is processed at each stage with an exponential
 processing time in order to satisfy the Poisson finished product demand. The selected performance mea-
 sures are throughput, inventory levels, machine utilizations and service level of the system. For large
 systems, which are difficult to evaluate exactly because of large state-spaces involved, we also pro-
 pose a computationally feasible approximate decomposition technique together with some numerical
 experimentations.

 Key words: approximate decomposition, Markov processes, performance evaluation, pull production

 INTRODUCTION

 In the 1970s, the Just-In-Time (JIT) philosophy was introduced into the production literature and

 has produced an alternative production control system (Kanban System) as an offspring. Golhar

 and Stamm' offer a comprehensive review and provide a framework for classifying the related JIT
 literature. The first successful example of development and implementation of the JIT concept as a
 material management system has been reported by Sugimori et al.2 in the Toyota Motor
 Company describing their production system. At Toyota, the system is actually operated by
 means of kanbans. The kanban material management system is well described by Sugimori et al.2
 and Kimura and Terada3. It acts as the nervous system of the JIT production system whose

 functions are to direct in-process materials just-in-time to the workstations and to pass informa-
 tion as to what and how much to produce. In such systems, the kanbans pull in-process materials
 from one workstation to another to meet the demand at each workstation at the right time.

 In practice, there are many alternative forms of pull production systems that differ in some
 design or operating characteristics4. However, the pull system is commonly distinguished from the
 conventional push method of production control by the existence of finite buffers for in-process
 materials and the production triggering process that depends on the inventory level of the suc-
 ceeding buffer stocks. The well-known pull systems are kanban-controlled production lines.

 The simplest form of pull production control system is called a base stock system. There exists a
 single inventory buffer between each workstation. The maximum inventory level permitted in this
 intermediate buffer is called the base stock level. Each time the downstream workstation (the one

 closer to final demand) requires in-process material, it withdraws one unit from the intermediate
 buffer. Production of one unit is then triggered at the upstream workstation since the inventory
 level falls below the base stock level. Production stops (workstation is blocked) when the inven-
 tory level of the buffer reaches the base stock level. Note that the downstream workstation pulls
 the required in-process materials, which are processed at the upstream workstation.

 LITERATURE REVIEW

 Many of the kanban systems described in the production literature are equivalent to a tandem
 queue5. A tandem queue is a set of finite queues in series. Note that for two particular queueing
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 systems to be equivalent to each other, they must have the same joint queue length distribution5-7.

 This is simply because most of the key performance measures are computed using joint queue
 length distributions. Berkley5 showed when and how tandem queues can be used to obtain the
 performance measures of a two-card kanban-controlled pull production line. Two-card kanban
 systems are designed for batch manufacturing environments where materials in-process are
 handled periodically. In a two-card system, production kanbans serve as work orders to replace

 containers withdrawn and withdrawal kanbans serve as material requisitions for the periodic
 material handling operation (see Figure 1).

 Infinite Supply Withdrawal Orders

 of for
 Raw Materials Finished Product

 Material Flow

 Qin n Qou= _Q'n Qout

 ^'1 + ;1 A ' K2 '2 A 'N
 _ _ _ _ _ _ _ _ _ _ _ _ J_ _ _ _ _ _ _ _ _ _ _J _ _ , I __ _ _ _ _ . _ _ _ _

 Production Cycle '- ; ' ; Production Cycle Withdrawal Cycle Withdrawval Cycle
 Kanban (information) Flow

 .4 - --------

 FIG. 1. Tandem arrangement of workstations in a two-card kanban-controlled pull production line.

 There has been a significant accumulation in the literature of tandem queueing models of pro-
 duction lines over the last 30 years. Various design and operating aspects of these systems have
 been studied. The exact analysis mostly focused on the special structure of the underlying Markov
 chains and solved the associated Chapman-Kolmogorov balance equations for the steady-state
 probabilities8-10. As the state-space of the system under study increases, the use of exact methods
 becomes computationally infeasible because of the magnitude of computational effort and the
 computer space requirements. The only remaining viable approach for the analysis of large-scale
 systems appears to be the use of approximation techniques. In an approximate analysis, the
 system is decomposed into smaller (one or two-node) subsystems that are analysed in isolation
 and are then related to each other in an iterative manner to obtain the performance measures of
 the whole system"-'3.

 In the 1980s, to represent more general distributions in queueing systems, Altiok'4 introduced
 phase-type distributions into the production literature. This provided an alternative approach to

 modelling several issues of production systems and also to approximating general distributions to
 be used in analytical models as well as in simulation. Altiok and Stidham'5 used a two-stage
 phase-type distribution, which exactly represents the process completion time distribution of jobs
 in a system of exponential servers subject to exponential failures and repairs. The advantage of

 this formulation is that it also provides the approximate representations of tandem queues with
 general processing times with or without breakdowns. The resultant systems of queues in tandem
 with phase-type service time distributions and with finite queue capacities were studied through
 decomposition approximations by Altiok"1.

 There have been a number of attempts at developing analytical models that provide insights
 into how pull production systems perform. Wang and Wang'6 developed a Markov model for
 determining the number of kanbans required in a serial JIT system, in which assembly-type
 operations were allowed. By evaluating Markov chains for an alternative number of production
 kanbans, they found a solution that minimizes total inventory holding and shortage costs. Re-
 cently, Meral"7 developed an analytical model in order to investigate the workload allocation
 problem on ideal JIT production systems (one kanban at each stage). She also proposed a decom-
 position approach to handle longer production lines.

 The periodic pull system formulated by Kim'8 is a single-item, multi-stage production line
 utilizing a two-card kanban control system with a fixed withdrawal cycle time. Sarker and
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 Parija"9 developed a mathematical model to find an optimal batch size for a JIT production
 system operating under a fixed-quantity, periodic delivery policy. The system they considered

 procures raw materials from suppliers, processes them and finally delivers the finished products

 demanded by outside buyers at fixed interval points in time. Deleersnyder et al.20 formulated a

 discrete time stochastic model in order to demonstrate the key features of JIT production philos-

 ophy. The dimensionality problem associated with Markov chains restricts the applicability of this
 type of model to lines having a relatively small number of workstations (typically not more than

 three). Recently, Berkley2" introduced a decomposition approximation using embedded Markov
 chains for kanban-controlled pull production lines with periodic material handling and Erlang

 processing times. So and Pinault22 estimated the amount of buffer stocks needed at each station in

 order to meet a predetermined level of performance by utilizing an approximation in which the

 whole system was decomposed into individual M/M/1 queues with bulk service. Mitra and

 Mitrani23 described an alternative decomposition for a single-card kanban system, which is equiv-

 alent to So and Pinault's model. The finished products were assumed to be immediately with-

 drawn from the system. In another study by Mitra and Mitrani24, an exogenous demand process
 was introduced so that their first study turned out to be a special case corresponding to heavy
 demand arrivals. Analysing the sample path descriptions, Mitra and Mitrani24 also showed that
 systems under consideration became equivalent to a tandem queue when the input material
 queues are eliminated.

 Buzacott25 developed a linked queueing network model to describe the behaviour of a kanban-
 controlled production system. He pointed out that kanban-controlled systems can be shown to be
 particular cases of a more general inventory level triggered approach to production control. On
 the other hand, Badinelli26 presented a descriptive model for steady-state performance of a serial
 inventory system in which each facility follows a continuous-review pull policy under stochastic

 demand. In this model, each downstream facility orders a fixed amount, Q, from the upstream

 facility whenever the inventory position at the intermediate buffer reaches a reorder point, R.

 DESCRIPTION OF THE SYSTEM

 In the context of operational design, the periodic review and periodic material handling issues
 are the widely encountered characteristics in practice for pull production systems18. In such
 periodic pull systems, the transfer of work-in-process (WIP) inventories between stages and the
 release of collected kanbans as production orders to workstations are initiated at the beginning of

 the periods. In this study we investigate the steady-state behaviour of a non-tandem-queue (NTQ)

 equivalent pull production system. To this end it is formulated as a discrete-time Markov process.
 Note that, a discrete-time model can satisfactorily approximate the continuous model by suffi-
 ciently squeezing the time periods.

 This basic system consists of N stages in tandem (see Figure 2). At each stage there is only one

 workstation processing a single-item, so that the term 'stages' and 'workstations' could be used

 interchangeably. Wj (1 < j < N) represents workstations. At any workstation Wj, there are two
 stocks Qin and Q9ut respectively for storing incoming and outgoing WIP inventory items at work-

 station Wj. W, is responsible for the first operation of the item, converting raw material RM (or,
 alternatively, denoted by component C0 stored in stock Q in) into component C, (stored in stock

 QOut until the end of the period then instantaneously transferred to stock Q in). Wj (2 < j < N - 1)
 converts component CjF1 (from stock QT) into component Cj (stored in Q9ut until the end of the
 period then instantaneously transferred to stock Qin+ ). WN performs the final operation of the
 item, converting component CN- 1 (from stock Q,n) into finished product FP (which could alterna-
 tively be denoted by CN and stored in Q?4't until the end of the period then instantaneously trans-
 ferred to QFP or, alternatively, Qn+ 1). The maximum number of items allowed in stocks QoUt and

 Qjn 1 is Kj; that is, the maximum capacity of buffer space allocated for component Cj between
 workstations Wj and Wj+ 1. Note that I I (0 T 17 < Kj_ 1) and I9ut (0 < Rut < Kj) denote the level
 of WIP inventories at stocks Qn and Q9ut, respectively. Consider the total number of component
 Cj items between workstations 14' and W+, then the inequality for the current level of WIP
 inventories at stocks Qjout and Qin 1; ljout + ?i K~ holds.
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 Infinite Supply Withdrawal Orders

 of for
 Raw Materials Finished Product

 Periodic Material Transfer

 Qin QoUt Q2n QOUt Q,n Qout QFP

 _ _ _ _ * . F P I

 ]IIR~~~(w1)~~~2IEE+E 1 ~~CN-1Q9D+I

 ~~iTh --------- -------------
 Periodic Kanban (information) Release

 FIG. 2. Kanban-controlled periodic pull production line.

 For simplification, the rate of supply of RM is assumed to be infinite. Since a kanban-controlled

 pull production system typically operates with small lot sizes, it is assumed that one kanban

 corresponds to one item of inventory in this formulation. The analysis can be easily extended to
 cover the systems operating with lot sizes greater than one at a cost of the dimensionality problem
 in evaluating transition matrices. In these periodic pull systems, the production is only initiated

 just for the replenishment of items removed from the buffer stocks during the material handling

 and inventory review period (transfer/review cycle time) of T time units. Workstation Wj produces
 components Cj in order to maintain the inventory level of stock QjY+ 1 at K .

 At the end of period k, first the components collected at outgoing stocks (IRut(k) units of com-
 ponent CJ) are transferred to incoming stocks Qi+ 1 in the context of the material handling func-
 tion. Then, in the context of the production/inventory control function, the total number of

 kanbans released as production orders to start production of components Cj at workstation W
 for the period k + 1 becomes K -Iin+ 1(k + 1). Note that the convention used in this study is the
 'beginning of period' in evaluating any state parameter of the system with the exception of I7Rt(k),
 which denotes the inventory level of stock QOut at the end of the period k, since all output buffers
 are empty at the beginning of any period.

 The two sources of uncertainty considered in this system are the demand and processing time

 variability. The demand for the finished product FP arrives with exponentially distributed inter-
 arrival times to the buffer stock QFP. The mean inter-arrival time of the demand is (1/iA). For
 simplification, backorders are not considered in this formulation, so an arriving finished product
 demand finding zero FP items at QFP (that means, or alternatively IFP is zero) is lost. The
 processing times are assumed to be exponentially distributed. The mean processing time at work-

 station Wj is (1/Uj). For simplification, the workstations are assumed to be reliable. As a result,
 there are N + 1 stochastic processes involved in the system.

 EXACT MODEL

 Considering the Poisson demand arrival process for finished product FP, {ND(t), t > O}, and the

 satisfied demand during period k, D,(k) (O < D,(k) , IN+ (k), because of no backorders), the prob-
 ability distribution is:

 t(T)d e-AT 0 < d <NI+ 1(k)

 P[Ds(k) = doI 1k]=d-1(T'eT d?I+() 1
 1 _ E I fe do = JIN+ 1 (k).

 1=0

 Considering the production/inventory control system, the production orders to be released for

 period k are determined at the beginning of period k. After the periodic transfer of WIP inventory

 at the end of the period k -1, a production order (the number of production kanbans collected
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 within the period k - 1) is released at workstation Wj for producing component Cj in period k.
 The sum of all undelivered production orders (remaining production kanbans to be processed) at

 workstation Wj at the beginning of period k becomes Kj-I_+ l(k). This targeted amount of pro-
 duction could be achieved if there is a sufficient amount of component CjF at workstation Wj.
 That is, if K -Iin+ l(k) < IJn(k) + W7n(k) where W?n(k) is one if workstation Wj is busy processing
 component Cj1 at the beginning of period k, and zero if the workstation Wj is idle at the begin-
 ning of period k. The target production is then adjusted according to the availability of com-

 ponent Cj_ 1 at the beginning of period k as:

 Oj(k) = min{Kj - Ij+ 1(k), Ij (k) + Wi (k)}, 1 j < N. (2)

 On the other hand, the actual amount of production during period k at workstation Wj is referred
 to as Pj(k) (0 K Pj(k) < Oj(k)). Considering the exponential production process of component Cj at
 workstation Wj, the probability distribution of producing Pj(k) units of component Cj during
 period k is:

 t(/, T)0 e-j T 0 p <Q (Jk)
 P[Pj(k) = p9l Oj(k)] = i -1 (, T) T (3)

 | 1- E Hj e-J T Pi? = Oj(k).
 1. 1=0 1!

 The state of workstation Wj at the beginning of period k can be described by a pair of system
 parameters, (Iin(k), Wjn(k)), where 0 < Ijn(k) < Kj_1, Wj(k) E {0, 1} and moreover, IEn(k)
 + W?n(k) K KF1. Then, the state of the whole system at the beginning of period k can be satisfac-
 torily described by 2N parameters:

 ?f(k) = [Won(k), Iin(k), Won (k), Iin(k), Won (k), ..., Iin(k), Won (k), In+ 1(k)] (4)

 The one-step transition equations, determining the system state ?f(k) are as follows.

 Workstation status

 {i ifn~(k- l) <K,
 Wn(k) =0 if 1in(k -1)= K (5)

 1 if W?n (k -1) = 1 and Pj(k -1) = 0
 or

 W?n (k-1) = 0 and Oj{k - 1) > 0 and Pj(k - 1) = 0

 W~~~~n (k) ~~~~~~~~or 6
 Wj?n(k) = < O <' P (k-1) < Oj(k-l) (6)

 0 if Wjon(k -1) = 0 and Oj(k -1) =0
 or

 Pj(k - 1) = Oj(k - 1)
 2 Aj < N.

 Inventory status

 IEn(k) = Ijn(k - 1) + Wjn (k -1) + Pjl(k - 1) - (P{k - 1) + Wj?(k)), 2 < j < N, (7)

 Iin+ l(k) = In+ l(k - 1) + PN(k - 1)- Ds(k - 1). (8)

 All alternative transitions from Sf(k - 1) to Ef(k) can be found by enumerating all possible values
 of N + 1 stochastic processes. The entries of the resulting one-step transition probability matrix
 M are as follows:

 N

 m[Ef(k -1), Ef(k)] = , ((P(k -l))P[D5(k -1) = dS?IIN+ 1(k -1)] HI P[Pj(k -1) = pYIOJ{k - 1)]

 (9)
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 where

 M = {P(k -1) = [Pl(k - 05 ...,5 PN(k -1)5 Ds(k -1)]:

 O< P jk- 1) Oj(k-1), 1 < Nj N,O < Ds(k-1)I+ < in+ (k-1)} (10)

 :(P(k - 1)) = if P(k 1) causes a transition from Ef(k - 1) to Ef(k)
 - ) =0 otherwise. (1

 In this formulation, the limiting distribution of the states of the system X could be found (if it
 exists) by solving the stationary equations of the Markov chain under consideration with the
 following boundary condition imposed:

 RM= n and n:eT = 1 (12)

 where e is a row vector with all elements equal to one, and X is the unique solution of the above

 equations. A discussion on the variety of methods to compute the stationary probabilities of large
 Markov chains can be found in Philippe et al.27 and Baruh and Altiok28.

 Some of the key performance measures

 Average inventory levels. The above formulation results in N buffer stocks under consideration QTj,
 2 < j < N + 1. The mean inventory level at Q7 during the period is:

 Kj- I 1 Kj

 Z Z Z E P[In = i , W?n = wj, Iin+ =i? ]
 ijo=o Wjo=o ij+lo=o

 MIj = 4 x [(iY?-OJ)j+ MTTPJ(PO) - MTTP,{p59 j 2)
 m l x (i9J = 0j?][ E (ij? + i - d ) j i j 25 ... 5 N.-1)

 p=o = 1 T
 K- 1 j MTTDs(do) - MTTDs(do - 1)1
 ZP[I niY[d@ +1-d T SS ] N+

 (13)
 where

 0 p9 =0

 MTT .(9) (Po)tpjo- 1) eILjt r (Pj0)(Pj14)
 MTTPj(pj~) = j fTt/ e "jt dt + J T o1)! e i"t dt 1 < P; < ?i (14)

 j = 2, ... , N.

 Odo = 0

 MTTDs(do)={T A ,(dsO)t(dsO -1) J (ds;)t!s e 1) t (15)
 (do- 1)! (do T1)! 1 s

 Average throughput rate. Considering the long-term behaviour of the system, the throughput rates
 of the workstations are equal to each other because of the conservation of material flow in the

 system. The mean throughput rate of workstation Wj is denoted by MTRj and defined as the
 expected number of component C; items produced per unit time. The mean throughput rate of the
 system is:

 MTR = MTRN = MTRN = . MTR2 = MTR1 (16)
 where

 1 Kj+ oj ZE )P[Wjn = wj? Iin1+ = i? ]P[P 1
 1 Kj? =J1'n9\ I 0j+ ? = =

 MTRj= Kj-i ? Kj Oj -O ~ ~=w'

 I ij?O= O wjO = O ij+10 PO l j = ( 17
 XA' 2 Sj<N.(7
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 This is an important performance measure since the other performance measures (workstation

 utilization and service level) could be computed from the mean throughput rate of the system.

 Average workstation utilization. Although the long-term mean throughput rates of the work-

 stations are equal, the utilization of workstations MUj could be different because the production
 rates of workstations may differ. The mean utilization of workstation Wj is:

 MTR. MTR
 MU - - .(18)

 'j pi

 Average service level. The formulation of this system considers a loss system in which the demand

 for finished product FP, arriving at times when QN+ 1 is empty, is lost. The mean service level of
 the system is:

 MTR
 MSL= . (19)

 APPROXIMATE DECOMPOSITION

 The approximation method decomposes the production system into several individual sub-

 systems: starting with the last stage, each of the stages is approximated by a single-stage model
 with appropriately revised material supply, production and demand arrival functions. This decom-

 position procedure is repeated several times in order to approximate adequately the performance
 measures of the production system as a whole. The goal is to approximate the whole system given

 in Figure 2 by a sequence of isolated single-stage pull production sub-systems, Yj, 1 K j ? N
 (see Figure 3). The first and the last sub-systems are atypical since, in the first sub-system, the raw

 material input is assumed to be infinite and in the last stage the Poisson demand arrivals for the

 finished product are external to the system.

 The state of sub-system Yj at the beginning of period k can be described by a pair of system
 parameters, (Wfn(k), I" +1(k)), where 0 < I+ 1(k) < Kj, Wjn(k) e {O, 1 }. In our formulation, the
 state of the isolated single-stage periodic pull production sub-system at the beginning of period k
 is simply denoted by:

 _w<j(k) = [WJ n(k), In 1(k)]. (20)

 The one-step transition equations, determining the state of sub-systems, are the same as equations

 (5)-(8). All alternative transitions from Y_,j(k - 1) to Y_,j(k) can be found by enumerating all
 possible realizations of related random variables; I.n(k - 1), Pj(k - 1), W 1(k - 1), I+2(k-1)

 Periodic Material Transfer

 Qout Q;i QOUt Qin QOUt *Qsn

 Periodic Kanban (information) Release

 FIG. 3. An isolated single-stage pull production subsystem Sj
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 and Pj+ 1(k - 1). The entries of the resulting one-step transition probability matrix M j could be
 approximately computed as follows:

 m 5y - (k-1), 9j(k)]
 i Kj+I Oj Oj+I

 Z Z Z E P[Wj 1 = wj+ +1, 'j+2 = i+2PPj= pj|Oj]
 wj+10O= ij+20=O Pj0=o Pj+10=o

 x P[Pj+ 1 = Pj?+ 1 IO ?+ 1 ]() j=1
 Kj- I 1 Kj+ I Oj Oj+ I

 Z Z Z Z Z p[Iin =iqp[W?n = WJ+1, iJ+ 2 = ij+2]P[Pj pj Q O]
 it0O wj+0=0O ij+20=0 Pj0O= Pj+10=o

 x P[Pj+ i = P?+ 1 1 ?j+ 114(-) 1 < j < N (21)
 Kj- O ?j Ij+ Iin

 Z Z Z p[I)n = i]P[Pj = p9 I Oj]P[Ds = do ' YJn+ 1]4() j = N
 Uj0= pj?=O ds?=O

 1 if the realizations of the related random variables cause a transition

 4(i) = t from 9_j(k - 1) to 9_j(k) (22)
 10 otherwise.

 In this formulation, the limiting distribution of the states of the sub-system iyj could be found (if
 it exists) in the same manner. The aim of the proposed decomposition approach is to represent the

 whole production system by a sequence of isolated single-stage periodic pull production sub-
 systems, where the streams of raw material and demand for component C; to be produced at

 sub-system gj are provided by sub-systems 2j-l and Yj+ , respectively (see Figure 4). The
 parameters of these isolated sub-systems must be coordinated in such a way that the performance
 characteristics of the resulting sequence are as close as possible to those of the production system
 as a whole.

 RMS FPD

 (??) , , , , P[D,]
 P[Won 1 3 n] p[W3on 14'n1 iin1 IN] P[WN, lIN+1]

 Zi Z2 ~~~~~~~Z3 ZN1Z

 p[I2in] p[I3in] p[4i;n] P[IN ]

 FIG. 4. Model of the production system constitutedfrom models of isolated single-stage sub-systems.

 While decomposing the whole production system, we start with the last sub-system, &N, and
 work our way backwards until we reach the first sub-system, by considering an infinite supply of
 raw material at all input buffer stocks, Qin, in order to initialize the steady-state probabilities of
 states of all decomposed sub-systems. In this backward initialization pass, the starvation of all
 sub-systems is ignored and only blocking is considered. Then, two consecutive passes, backward
 and forward passes, are executed iteratively until a satisfactory level of approximation in evalu-
 ating the performance measures of the whole production system is obtained. The level of approx-
 imation is determined by the deviation between throughput rates of the subsystems at consecutive
 iterations. During these iterations, both starvation and blocking of sub-systems are considered.

 More precisely, the steps summarizing the decomposition approach are as follows.

 Step 0. Initialization

 Set iteration index, 1 0.

 Set p(l)[In = Kj] =1, forj =2, ..., N + 1.
 Set sub-system (stage) index, j N.
 Set the level of approximation (e *-10- 8).

 Backward ioop. For]j N down to 1:
 compute M() and ir;.

This content downloaded from 139.179.226.224 on Mon, 04 Feb 2019 06:33:46 UTC
All use subject to https://about.jstor.org/terms



 N. Kirkavak and C. Dinger-Single-item Periodic Pull Production Systems 247

 Step 1. Iterations

 Set l-l+ 1,

 Backward loop. For j]= N down to 1:
 compute M( )ji r?; and MTR (l.

 Forward loop. For j]= 2 to N:
 compute M?;, irs and MTR(".

 Step 2. Stopping criteria

 If max I MTR(lb) -MTR('f I < e then
 2 S j N

 compute the performance measures of the system and stop; otherwise go to
 Step 1.

 We do not have a proof of convergence. However, in the many examples we have examined the

 method has always converged within a reasonable number of iterations (low lOs), only moderately
 dependent on the number of stages. As a result, the computational complexity of our approach
 grows relatively moderately (but more than linearly) with the number of stages in the system.

 The key performance measures

 Average inventory levels. According to the above formulation of the sub-systems, there are N

 buffer stocks under consideration, QJn, 2 <j < N + 1. The mean inventory level at Qj' during the
 period is:

 Kj- I 1 Kj

 Z Z Z p[Ijn =ij]P[ W?n = Wj? In =
 ijo=o wjo=o ij+io=o

 AMIJ X[(i~~O1)+ MTTPj(pjo) - MTTP1(p9-0 AMIj x [( _ o) + , (Oj + 1 j 25o 5 N(j)MTi(i-)

 =j o = [ T
 (23)

 Average throughput rate. The mean throughput rate of sub-system )j is denoted by MTR_. and is
 defined as the expected number of component C, items produced per unit time. The mean
 throughput rate of the whole system is:

 AMTR = MTRg.N MTR . MTR - MTR .1 (24)

 where

 E Kj (j )Pp[Wjn = w;? X Ii.n+ l i?+ Jp[p =1 Z Z = wi j = j%jPP = p9IO1 Ij = 1
 wjo = o ij+O =o pJo=o

 MTRyi Kj-I 1 Kj oj _ _o - = , Jin=i9+jp[p O
 g E E E E (PJ p[lin ij?]P[Wj? =w;? X jn+ l9 j+lP[j=P?1 0.1

 ijo=o w= o =o ij+io=o pjo=o

 t ~~~~~~~~~~~~~~~~~2 < j < N.
 (25)

 Average utilization. Although the long-term mean throughput rates of the sub-systems are equal,
 the utilization of sub-systems MU,,. could be different because the production rates of the sub-
 systems may differ. The mean utilization of sub-system Sj is:

 AMUJ = MUS =?MTLsi~ AMTR (26)
 'i Hii
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 Average service level. This is the ratio of finished product demand satisfied from stock to the total

 demand arrived within a period. The mean service level of the whole system is:

 AMSL~ , . (27)

 NUMERICAL EXPERIMENTATION

 An experiment is designed in order to investigate the general behaviour and the accuracy level

 of the single-stage approximate decomposition technique. A three-stage system is selected, because
 it is the smallest system that requires a significant amount of reduction in computation while

 solving the exact model. In the context of this experiment, 320 different three-stage systems were

 evaluated using both the exact and the approximate models. The range of system parameters is as
 follows.

 * Mean arrival rate of finished product demand; A = (0.1, 0.5, 1.0, 2.0, 10.0).
 * Number of kanbans at each stage; K = (1, 2, 3, 4).

 * Mean production rate at each stage; ,u = Alp,
 where p is the traffic intensity or the demand load, p = (0.45, 0.60, 0.75, 0.90).

 * Length of the transfer/review period; T = (1, 2, 3, 4).

 These pull systems consider a single product with a Poisson demand that arrives at the third
 (last) stage of the system with a mean rate of A. The demand arrivals during the times the finished

 product buffer is empty are lost (backordering is not allowed). At each stage of the system, the

 processing times are exponential with the same mean 1/,u and the number of kanbans allocated

 are equal to K. The status of the system is reviewed periodically with a period length of T. The
 production and material withdrawal orders are released at the beginning of the periods. It is

 assumed that the raw material supply for the first stage is infinite and the material handling times
 between stages are zero.

 The mean throughput rate is selected as a primary measure of performance for this experiment.

 All comparisons are based on this primary measure. Numerical experience suggests that when the
 mean throughput rates of the workstations converge to a unique solution during the iteration
 process, it agrees closely with the exact model. The percentage absolute error between the exact

 and the approximate mean throughput rates is computed as follows:

 % absolute error = 100 MTR | (28)
 MTR (8

 See Table 1 for the percentage absolute errors obtained from the results of the experiment and for
 the effect of system parameters on the accuracy of the approximate decomposition technique.

 The effect of the number of kanbans at each stage is very important. When there is only one
 kanban at each stage, the average of percentage absolute errors is greater than 20. This is because
 the starvation and blocking probabilities are very significant and an estimation error in these
 probabilities causes a large error in the computation of performance measures of the whole
 system. For the case of an increasing number of kanbans at each stage the average of the percent-
 age absolute errors, although fluctuating within an acceptable range, is decreasing in the limit.
 Very low and very high demand arrival rates have a relatively modest effect on the accuracy level
 for the number of kanbans exceeding one. The average of the percentage absolute errors seems to
 be insensitive to the variation in the traffic intensity. On the other hand, the errors slightly
 increase with an increase in transfer/review period length, and note that the average of the per-
 centage absolute errors is comparatively small for the number of kanbans exceeding one.

 The overall average of the percentage absolute errors between AMTR and MTR is less than 10.

 Generally speaking, it is accepted that the error level of an approximate decomposition technique

 should not exceed 3%. Note that, the average of the percentage absolute errors for the systems

 with K > 2 and 0.5 < A. < 2.0 is less than 2.90 (see the summary report in Table 1). As a result, the
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 TABLE 1. The average absolute percentage errors between the exact and the approximate mean

 throughput rates

 With respect to A A = 0.1 A = 0.5 2 = 1.0 A = 2.0 2 = 10.0
 Overall 3.3511 6.3558 9.0488 10.5789 12.8461
 2 < K < 4 3.1546 2.1602 2.9847 3.5394 6.0173

 With respect to K K = 1 K = 2 K = 3 K = 4
 Overall 23.0313 2.8095 6.6299 1.2739

 0.5 - A < 2.0 25.9610 2.0096 5.3654 1.3085

 With respect to p p = 0.45 p = 0.60 p = 0.75 p = 0.90
 Overall 8.5393 8.6048 8.1220 8.4785

 0.5 < A < 2.0 8.9500 8.7396 8.5569 8.3981
 2 < K < 4 3.4607 3.7103 3.2490 3.8643

 ?2 K 2 4?} 2.8039 2.8128 2.9056 3.0558

 With respect to T T = 1 T = 2 T = 3 T = 4
 Overall 6.7071 7.9913 8.6080 10.4381

 0.5 A <_ 2.0 5.9610 8.5240 9.7510 10.4085
 2 < K < 4 2.7920 3.0637 3.2482 5.1805

 0.5 A 2.0 2.1603 2.7392 3.1931 3.4856

 0.5 A i < 2.0
 Summary Overall 0.5 < A < 2.0 2 < K < 4 2 K 4
 report 8.4361 8.6612 3.5712 2.8948

 proposed approximate decomposition technique could be used for the evaluation of NTQ equiva-

 lent periodic pull production systems having more than one kanban at each stage and a demand
 arrival rate not in extreme values relative to other system parameters such as K, p and T.

 CONCLUSIONS

 A variety of production systems appearing in the literature has been investigated. There have
 been a few attempts to develop analytical models for the performance evaluation of kanban-
 controlled stochastic pull production systems. Most of the existing models address tandem-queue
 equivalent systems. There are a number of NTQ equivalent pull production systems to be con-
 sidered in a research study. A periodic review-instantaneous order/periodic transfer system is
 selected as the basic system to start the research on modelling and analysis of NTQ equivalent

 pull production systems. This basic system is formulated as a discrete time Markov process.
 Because of the dimensionality problem inherited in the exact solution technique, it could be
 exactly evaluated up to three stages in tandem.

 An approximate decomposition approach is proposed to handle larger periodic pull production
 systems that are analytically intractable. The proposed approach generates results that are quite

 close to the exact solution of the three stage systems. In order to improve the overall accuracy
 level of the approximation, a further study could be the development and analysis of a two-node

 decomposition technique. This type of approximation might lower the average errors on per-
 formance measures since one of the approximated probabilities utilized in the decomposition tech-
 nique could be exactly evaluated. On the other hand, the computation requirements of a two-node
 decomposition increase both in terms of memory and time.

 Note that the proposed approximation technique is demonstrated on our basic periodic pull
 production system, in which the arrival and the production processes are both Markovian. Other

 research could be based on the interaction of the variation coming from the stochastic processes in

 the system and the accuracy level of the approximation technique. In this way, several discrete
 distributions with different levels of variation could be utilized in the formulation. The extensions
 of the model to cover back-orders and unreliable machines are straightforward. In terms of the

 configuration of the network, the approximation could be extended to cover periodic pull pro-

 duction systems in the flow shop configuration by formulating the split and merge sub-systems.
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