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Abstract

Introduction− Power converters are used in mi-
crogrids to transfer power to the load with a regulated 
voltage. However, the DC-AC converters present distor-
tions in the waveform that can be improved with the help 
of real-time controllers.

Objective− Evaluate the response in alternating cur-
rent of the buck converter controlled with the ZAD-FPIC 
technique.

Methodology− Based on the differential equations that 
describe the buck power converter, the ZAD and FPIC 
controllers are designed. Afterwards, simulations of the 
complete controlled system are made using Simulink 
of MATLAB. Then, the system is implemented experi-
mentally and the controller is executed in real-time with 
the help of a DS1104 from dSPACE. In the end, several 
tests are carried out to check the effectiveness of the 
controller.

Results− The results show that the controller allows 
good stability against different variations in the system 
and in the load.

Conclusions− The ZAD-FPIC technique controls the 
variable  and tracks changes in the waveform, magni-
tude, and frequency of the reference signal. The control-
ler presents good stability to different tests, tracking the 
reference signal after each event.

Keywords− Control of power converters, ZAD-FPIC 
technique, DC-AC converter, signal tracking

Resumen 

Introducción− Los convertidores de potencia son utili-
zados en las micro redes para transferir la potencia a la 
carga con una tensión regulada. Sin embargo, los conver-
tidores DC-AC presentan distorsiones en la forma de onda 
que pueden ser mejoradas con la ayuda de controladores 
en tiempo real.

Objetivo− Evaluar la respuesta en corriente alterna del 
convertidor buck controlado con la técnica ZAD-FPIC.

Metodología− Se parte de las ecuaciones diferenciales 
que describen el convertidor de potencia buck, luego se 
diseñan los controladores ZAD y FPIC, se hacen simu-
laciones del sistema completo controlado en Simulink de 
Matlab, se implementa el sistema de forma experimental y 
el controlador se ejecuta en tiempo real con la ayuda de una 
DS1104 de la empresa dSPACE, al final se realizan varias 
pruebas para comprobar la efectividad del controlador.

Resultados− Los resultados muestran que el controlador 
permite que una buena estabilidad contra diversas varia-
ciones en el sistema y en la carga.

Conclusiones− La técnica ZAD-FPIC controla la varia-
ble y realiza seguimiento ante cambios en la forma de 
onda, magnitud y frecuencia de la señal de referencia. El 
controlador presenta buena estabilidad ante diferentes 
pruebas, siguiendo la señal de referencia después de cada 
evento.

Palabras clave− Control de convertidores de potencia, 
técnica ZAD-FPIC, convertidor DC-AC, seguimiento de 
señales
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I. IntroductIon

Power converters are used to transfer electrical 

energy [1] in a network from direct to direct cur-

rent (DC-DC) or from direct to alternating current 

(DC-AC), which is useful for renewable generation 

sources [2], [3]. This conversion can be performed 

to supply loads that are connected to the network, 

with the guarantee of security, reliability, and 

low cost [4]. However, different types of load are 

normally connected to power converters, such as 

electric welders, communication equipment, and 

electrical elements of medicine, among others [5]. 

This results in significant load variations [6], [7], 

which must be analyzed to know the best solution 

for the system.

The technique known as “zero average dynam-

ics” (ZAD) has been used in previous studies [8], 

[9] because it allows to maintain the commuta-

tion frequency [10]. This technique is validated by 

analytical and numerical results while changing 

the parameters that determine the stability of the 

system [11]. Fixed point inducting control (FPIC) is 

also used to maintain system stability.

The previous literature has investigated how un-

stable orbits in the chaos can be controlled in DC 

power converters by using the ZAD-FPIC tech-

nique. Numerical [12], analytical [13], and experi-

mental tests also were performed to validate the 

different responses of DC-DC converters [14]. How-

ever, many of these works are dedicated to show 

the behavior of DC-DC converters, and only a few 

for DC-AC converters. Studies of the latter should 

be done more broadly to identify the ways these 

converters respond to changes generated in the 

system. Additionally, there is no research at the 

numerical or experimental level where FPIC con-

trol in DC-AC conversion is used to improve system 

stability.

This article presents the performance of the buck 

converter in response in alternating current con-

trolled by ZAD and FPIC. Variations in the con-

troller are performed to identify responses in the 

output voltage and current. Controller performance 

is described for signal variation, using different 

types of tests such as waveform and frequency, 

among others while also considering disturbances 

as the load changes. In general, several tests are 

developed to show the robustness of the system 

experimentally.

The rest of the paper is divided into three sec-

tions. Section 2 presents the methodology used in 

this research with the electronic circuit, the control 

techniques, and the experimental analysis consid-

ered. Section 3 presents the results, the analysis, 

and discussions arising from the results. Finally, 

section 4 describes conclusions obtained from the 

prototype of the DC-AC power inverter controlled 

by ZAD-FPIC.

II. Methodology

In this section, the mathematical model of the buck 

converter with the ZAD-FPIC technique is present-

ed with the calculation of the duty cycle , which is the 

percentage of time in which the switch is in 1 (Fig. 

1). This value depends on the variables of the system, 

the reference, and the control parameters used in the 

investigation.

A. DC-AC converter

Fig. 1 presents a diagram of a DC-AC converter. 

The diagram shows two sources and a commutation 

switch, a filter with an inductor and capacitor (LC), 
and a resistive load (R). The initial system con-

figuration is given to start with a non-regulated DC 
input voltage E and a centered pulse width modula-

tion (CPWM) at a constant frequency (5 kHz). The 

regulated output signal ( can be obtained for DC or 

AC depending on the reference signal, which is use-

ful for home applications [3].

Fig. 1. DC-AC converter

Source: Authors.

The switch changes position to 1 or 2, depending 

on the control signal (u), which controls the time 

that the switch is connected to the filter. During the 
operation, the model of the buck converter can be 

represented as shown in Fig. 2. This model consid-

ers the internal resistance of the inductor rL  and it 

has a serial connection with the inductor L and the 

source Eu as previously tested in [11] and [15]. The 

model considers the capacitor  connected in parallel 

to the load R. The output signal can be measured by 

the resistance R as vc = iR * R. Herein, the current 

flowing through the inductor is iL and the current in 

the load iR.

Fig. 2. Electrical circuit under study

Source: Authors.
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From this circuit, the linear mathematical model 

in the state variables is shown in Eq. (1). Herein, 

a = -1/RC, h = 1/C,  m = -1/L, and p = -r/L. The state 

variables are the voltage in the capacitor (vc) and the 

current through the inductor (iL):

dzad(kT ) =
     (2s(x(kT ))+Ts

.
_(x(kT ))             (3)

         s
.
_(x(kT )) - s

.
+(x(kT ))

     

                                            

where:

s(x(KT )) = (1 + aKs)x1
 (KT ) + Kshx2(KT ) - x1ref

 - Ks 
x
.
1ref  (4)

s
.
+(x(KT )) = (a + a2Ks + hKsm)x1(kT )   

   + (h + ahKs + hKsp)x2(KT ) + hKsE  

    - x
.
1ref - Ksx

..
1ref                 L         

(5)

s
.
_(x(KT )) = (a + a2Ks + hKsm)x1(kT )   

   + (h + ahKs + hKsp)x2(KT ) - hKsE   

   - x
.
1ref - Ksx

..
1ref                   L         

(6)

The variables a, h, m, and p were described before 

and ks is the parameter of the ZAD control, x
.
1ref = vref

 

is the reference signal, and x
.
1ref, x

..
1ref are their deriva-

tives. For more details see [18].

C. Control with FPIC

The FPIC technique was presented in [18] and later 

tested in [19] and [20]. This technique is useful 

for autonomous and non-autonomous systems, es-

pecially to control discrete systems. This is based 

on the continuity theorem of the eigenvalues and it 

is used to stabilize the orbits of one or more periods 

in unstable or chaotic systems. This technique does 

not require to measure the state variables. It forces 

the system to evolve to a fixed point; therefore, it is 
necessary to have prior knowledge of the equilibrium 

point of the control signal.

Starting from Eq. (3) with x1 = x1ref, x
.
1ref (in the 

steady state), and x
.
1 = ax1 + hx2, the duty cycle is 

calculated for the steady-state with Eq. (7):

dss =
 T[hKsmx1ref + aKsx

.
1ref + Kspx

.
1ref]

   -2hKs
E

                                                            

            
L

 + T[-aKspx
.
1ref - hKs

E
 - Ksx

..
1ref]          (7)

         
L

         -2hKsE

    L

                                                      

D. Control with ZAD and FPIC

Both the ZAD and FPIC techniques can be used to 

control the output voltage  in the power inverter, 

with (x1 = vc) and (x2 
= iL) as the system variables, 

the ZAD control parameter Ks, the FPIC parameter 

N, the reference voltage x1ref = vref, and the input volt-

age E.

Using Eq. (8) with Eqs. (3)–(7), the control vari-

able (d) with ZAD and FPIC is calculated with a 

frequency of kHz, to close the control loop. If the 

converter regulates the output voltage vC for variable 

loads, then it is necessary to update the values of the 

load; thus, it is useful to measure the current in the 

inductor (x2 
= iL) and the voltage in the load (x1 = vC):

v
.
C =

  -   1     1             0

 RC    C    vC  +  E

         -  1   - rL     iL       L  
u   (1)

  L     L   

The control signal u changes values between (+1, 

−1) as shown in Figs. 1 and 3. With the changes in 
the control signal, two types of system topologies are 

presented for each period with the CPWM. The re-

sulting model in the representation, x
. 
= Ax + Bu,  is 

shown in Eq. (2), where x = [x1, x2]´ = [vC, iL] .́ In this 

equation, the term T is the commutation period and 

the term d is the duty cycle.

Fig. 3. Control signal + and − with CPWM
Source: Authors.

 Ax + B     u = + 1     0 ≤ t ≤ d
    

2

 x
. 
= Ax - B      u = - 1    d ≤ t ≤ T - d  (2)

    
2
     

2

 Ax + B     u = + 1    T - d ≤ t ≤T

           
2

A controller can be designed by generating a duty 

cycle that controls both the voltage  and the stabil-

ity of the system. The ZAD and FPIC techniques 

were designed with this purpose and they will be 

explained in the next subsections.

B. Control with ZAD

This technique was proposed in [8], and later tested 

numerically and experimentally in [11], [16], and 

[17]. This technique basically consists of defining a 
function and forcing an average value of zero at each 

sampling period. For this particular case, s(t) is used 

as a time domain function of the state value at the 

start of the sampling period (x(kT )).

Considering linearity in the sliding surface s(x), 

the duty cycle is modified by the ZAD as expressed 
in Eq. (3):
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d =
 dzad(kT ) +Ndss                         (8)

  N + 1
                                   

For more information about the FPIC control tech-

nique and parameter , it is recommended to review 

[17]-[19]. 

The advantages of using the ZAD-FPIC control 

techniques are that they have fixed switching fre-

quency, operate under steady-state error, and the 

system is more robust in the presence of chaos and 

oscillations. This can be evidenced in previous inves-

tigations [11], [15], and [17].

E. Experimental development

The ZAP-FPIC controller is shown in Fig. 4. The 

hardware design is based on analog electronic de-

vices comprising an optoelectronic driver and MOS-

FETs that integrate the DC-AC inverter. The load 

is resistive and sensor and signal processing use 

operational amplifiers. The rest of the system is de-

veloped with the DSP (digital signal processor) card 

DS1104 produced by dSPACE, which is programmed 

for the following phases: signal acquisition with 12 

bits with a sampling rate of 5 kHz, the controllers 

ZAD-FPIC implementation for the real-time control 

of the converters using a CPWM signal. The control-

lers require parameters such as x1ref, C, L, E, Ks and 

N; the values used in this research are presented in 

Table 1.

Fig. 4. Block diagram of experiment for ZAD-FPIC controllers

Source: Authors.

table 1: ParaMeters used In the ac test

Parameter Description Value

R Resistance of load 151.3 Ω
C Capacitance 57.68 µf

L Inductance 3.945 mH

rL Internal resistance 4 Ω

E Input voltage
±32 V

(Dual source)

Fc Commutation frequency 5 kHz

Fs Sampling frequency 5 kHz

Ks Control parameter ZAD 5

N Control parameter FPIC 1

Source: Authors.

To convert the signal from DC to AC, it is neces-

sary to implement a half bridge. This is used to feed 

the LC circuit with the sources  and  by a CPWM as 

shown in Fig. 5. To avoid a short circuit on the tran-

sistors, it is necessary to use complementary control 

signals + u = u = 1 and – u = u = -1.

Fig. 5. Half bridge

Source: Authors.

Because CPWM (+u) and CPWMinv (-u) outputs 

are obtained with the DSP and have the same ground 

references, it is necessary to decouple the digital cir-

cuits from the power circuits. This is the purpose of 

the high-speed optocoupler grid shown in Fig. 6. 

Fig. 6. Optoelectronic insulation 

Source: Authors.

The circuit operates as follow: the DS1104 card 

provides two signal, digital and complementary (CP-

WM and CPWMinv) as they are required to activate 

the MOSFETs as shown in Figs. 5 and 6. These out-

puts are raised to 13.5 V in HIN and LIN outputs 

related to the analogic ground system. They also are 

isolated from the digital ground reference, which is 

required to use the IR2110 as shown in Fig. 7.

Fig. 7. MOSFET application in the DC-AC process

Source: Authors.
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In Fig. 7, HIN is the output provided by the first 
optocoupler presented in Fig. 6. This signal is adapt-

ed through the IR2110, converting it in the output 

signal HO with isolated ground reference (T3). This 

is used to provide the ON–OFF process of the two 

MOSFETs that are located in the high part. The 

LIN output of the optocouplers from the lower part 

is converted to the LO output with the GND analog 

reference as in Fig. 7, which handles the MOSFET 

located in the lower part. This design can withstand 

up to 500 V and 30 A depending on the MOSFET 

used.

Fig. 8. Output signal obtained with the 

CPWM and voltage  in the load after the filter
Source: Authors.

Fig. 7 displays the results using the filter imple-

mented based on the LC process. It receives high-

frequency signals from the CPWM and, with the 

LC, converts these to AC and DC signals with regu-

lation at the outputs. Fig. 8 shows the voltage vC in 

the capacitor and the CPWM signals obtained by 

the inverter.

This commuted system is likely to present electro-

magnetic interference (EMI) [21]. For that reason, 

the sensed signals vC and iL provided by the con-

verter must be shielded as in Fig. 9.

 

Fig. 9. Signal shielding

Source: Authors.

VI. results and analysIs

This section presents the results of the control re-

sponse with the signals in AC. Initially, the parame-

ters of the controller are used in the tests to evaluate 

changes in the output voltage and current.

A. Parameters for the test

Table 1 shows the parameters of the implemented 

circuit. The converter uses the power from a dual 

source BK PRECISION (reference 1761) with a volt-

age of E = 32 V. The value of the capacitor used for 

the LC filter was reduced to tracking the AC signals 
at a higher frequency.

B. Performance of the buck converter in AC

Figs. 10–12 show the performance of the buck con-

verter with the control techniques. The signals have 

a sinusoidal waveform x1ref = 20 * sen(2π * 20t)V.
Channel 1 (CH1) shows the current in the load 

iR (lower part of the figure); as the load impedance 
is 151.3 Ω, the peak current in the same is approxi-
mately 132 mA. This signal has a gain of 200 mV/

div. Next, channel 2 (CH2) shows the output PWM 

that feeds the LC filter (upper part of the figure). 
The voltage produced with the CPWM signal has 

an amplitude of ±32 V. Note that this channel has a 

gain of 50 V/div and this signal is switching at a con-

stant frequency of 5 kHz. Finally, channel 3 (CH3) 

shows the output voltage vC with an amplitude of 20 

V and a frequency of 20 Hz (middle part of the fig-

ure). This channel has a gain of 10 V/div.

Fig. 10. PWMC, vC, and iR when x1ref = 20 * sin(2π * 20t)V
Source: Authors.

Fig. 11 shows the voltage in the capacitor (vC), 

the current in the inductor (iL), and the current in 

the load (iR). These signals were acquired with the 

program ControlDesk for the same reference signal 

20 * sin(2π ∗ 20t) V.
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Fig. 11. vC, iL, and iR plotted in ControlDesk 

when υref = 20sin(2π*20t) V
Source: Authors.

The error in Fig. 12 is in the range of ±5% be-

cause the duty cycle (d) is not saturated. A fixed 
switching frequency is presented. The current in 

the inductor (iL)  (Fig. 11) is lagged with respect to 

the voltage signal (vC). The current signal in the 

inductor has a large ripple due to transistor switch-

ing at 5 kHz. 

Fig. 12. vC, d, and error plotted in ControlDesk 

when υref =  20sin(2π*20t) V
Source: Authors.

1) Performance of the buck converter   

 in AC with triangle waveform

Fig. 13 shows the performance of the controllers 

when the signal to follow is a triangle waveform of 

amplitude 20 V with a frequency of 20 Hz.

Fig. 13. PWMC, vC, and iR signals 

when υref is a triangle waveform
Source: Authors.

Fig. 15 shows the behavior of the voltage signal 

when a quick change in the waveform of the ref-

erence signal is performed. The reference signal 

changes from a triangle shape with voltage magni-

tude of 30 V and 10 Hz to a sinusoidal signal with 

the same characteristics.

This figure shows the input feeding of the 

filter with the CPWM, the output voltage , and 

the current in the load iR. It can be observed 

that the waveform changes according to the sig-

nal to be followed and the controller shows a 

better performance. Therefore, it is possible to 

control the output of any type of waveform the 

user requires.

B. Changes in the voltage reference

Fig. 14 shows the behavior of the voltage signal 

with a quick change in the reference signal. The 

initial sinusoidal signal, with a magnitude of 20 

V peak and frequency of 10 Hz, changes to a new 

square signal with voltage magnitude peak of 20 V 

and frequency of 10 Hz.

Fig. 14. Behavior of the buck converter with changes in the 

waveform of the reference from sinusoidal to square

Source: Authors.

Fig. 16 shows the behavior of the output volt-

age signal when the signal frequency is changed 

from υref
 = 25sen(2π * 10t) V to υref = 25sen(2π 

* 20t) V.
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Fig. 15. Instantaneous change from 

triangle to sinusoidal waveform

Source: Authors.

Figs. 17–19 show the behavior of the output volt-

age and the current in the load iR according to the 

changes in the reference signal. The output signal 

is composed of a direct current (DC) signal and an 

alternating current (AC) signal. Fig. 17 shows the 

change of the  output signal when υref = 10 sin(2π *50t) 
V is changed to υref = 20 + 10sin(2π *50t) V.

Fig. 16. Instantaneous change in 

the frequency from 10 Hz to 20 Hz

Source: Authors.

Fig. 17. Behavior of the υc and iR when the 

voltage reference changes from 

υref = 10sen(2π * 50t) V to υref = 20 + 10sen(2π * 50t) V
Source: Authors.

Fig. 18 shows the behavior of the output signal 

when υref = −20 + 10sin(2π * 50t) V is changed to 
υref

 = 20 + 10sin(2π * 50t) V.

Fig. 18. Behavior of the υc and iR signals 

when the reference changes from 

υref = −20 + 10sin(2π * 50t) V to υref = 20 + 10sin(2π * 50t) V
Source: Authors.

Fig. 19 shows the behavior of the output signal 

when the triangle waveform with voltage magnitude 

of 10 V, offset of −20 V, and frequency of 10 Hz is 
changed to a signal with a triangle waveform with 

a voltage magnitude of 10 V, an offset of +20 V, and 

frequency of 10 Hz. From these results, it is observed 

that the ZAD and FPIC techniques adapt quickly to 

the changes produced in the waveform, magnitude, 

and frequency of the reference signal.

Fig. 19. Behavior of υc and iR signals when υref changes 

and the signal has a triangle waveform with offset

Source: Authors.
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C. Behavior of the buck    

converter with load changes

Figs. 20–22 show the behavior of the buck converter 

controlled by ZAD and FPIC (with Ks = 5 and N = 1), 

following the reference signal υref = 20sin(2π * 20t) V. 
These figures show the behavior of the output volt-
age  (upper part) and the current of the load iR (lower 

part) when the load of R = 151.3 Ω is connected and 
disconnected.

Fig. 20. Behavior of vC and iR signals when 

the initial resistance changes from open 

circuit to a resistance of R = 151.3 Ω
Source: Authors.

Fig. 21. Behavior of vC and iR with a change 

from R = 151.3 Ω to an open circuit (R →∞)
Source: Authors.

Fig. 22. Behavior of vC and iR with a change 

from R = 151.3 Ω to an open circuit (R →∞)
Source: Authors.

Figs. 23 and 24 show the behavior of the buck 

converter controlled by ZAD and FPIC (with KS = 5 

and  = 1) when the load R = 256.3 Ω is changed to 
R = 151.3 Ω. In these figures, the controlled vari-
able (vC) does not suffer alteration, whereas the 

current in the load iR changes with perturbations 

in the load.

Fig. 23. Behavior of vC and iR with a change 

from R = 151.3 Ω to R = 256.3 Ω
Source: Authors.

Fig. 24. Behavior of vC and iR with a change 

from R = 151.3 Ω to R = 256.3 Ω
Source: Authors.
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IV. conclusIons

This paper presented an evaluation of the response 

in alternating current of the buck converter with 

zero average dynamics (ZAD) and fixed point induct-
ing control (FPIC). The test was based on measuring 

the dynamic behavior of the output voltage, current, 

and power according to changes in the controller. 

The results show that the controller allows good sta-

bility against different variations in the system and 

that it regulates well the output voltage of the circuit. 

The ZAD and FPIC techniques adapt quickly to the 

changes produced in the waveform, magnitude, and 

frequency of the reference signal.

The converter has limitations to follow high AC 

frequency signals due to the frequency commutation 

being 5 kHz. For that reason, an AC signal in the 

circuit with a higher frequency is required. In ad-

dition, the commutation process has to operate with 

a higher switching speed, which implies changes in 

the design of the converters such as the LC filter. 
It could be necessary to change optocouplers in the 

MOSFETs by using a higher switching speed and a 

faster controller such as an FPGA. Signal shielding 

must be considered in the circuit to avoid electromag-

netic compatibility problems that distort the signals.

In this investigation, the ZAD control technique is 

used in conjunction with the FPIC technique. This 

is due to the fact that experimentally, with the use 

of the DSP and how it is mandatory to synchronize 

the sample with the output to have PWMC, there are 

delays in the control signal  due to the time necessary 

to execute the closed loop. With the advantage that 

FPIC has of stabilizing chaotic systems, it was possi-

ble to control this system with these included delays.
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