
Performance Evaluation of
a Temporal Database Management System

Ilsoo Ahn and Richard Snodgrasst

Department of Computer Science
Unwerslty of North Carolina

Chapel Hill, NC 27514

Ahtroct

A prototype of a temporal database management system was built by extending Ingres It supports
the temporal query language TQuel, a superset of Quel, handling four types of databases statrc,
rollback, hrstorlcal and temporal A benchmark set of queries was run to study the performance of
the prototype on the four types of databases We analyze the results of the benchmark, and rdentr-
fy major factors that have the greatest impact on the performance of the system We also discuss
several mechanisms to address the performance bottlenecks we encountered

1. Introduction

Database management systems are supposed
to model reality, but conventronal DBMS’s lack the
capability to record and process time-varymg
aspects of the real world With growing sophlstr-
cation of DBMS apphcatrons, the lack of temporal
support raises serrous problems For example, con-
ventional DBMS’s cannot support 8tatotrcof querres

about the past status, much less trend analyaw
which 1s essential for apphcatrons such as declslon
support systems [Arrav 19841 There IS no way to
represent rettoacttue or poatacttve changes, while
support for error correctron or uudrt frotf necesa-
tates costly mamtenance of backups, checkpomts,
or transactron logs to preserve past states There
IS also a growmg Interest m applymg database
methods for uereton mnnagement and deetgn con-
trol m computer arded design, requrrmg capabrhtles
to store and process trme dependent data
Without temporal support from the system, many
applications have been forced to manage temporal
mformatlon m an ad-hoc manner

Thts research wan supported by NSF grant DCR-840!2330
t The work of thu author wad rlso supported by SD IBM

Fxolty Development Award
PermIssIon to copy wlthout fee all or part of thts maternal IS granted
provided that the copses are not made or dlstrlbuted for direct
commerctal advantage, the ACM copyrlght nottce and the tttle of the
pubhcatlon and its date appear, and notlce IS gtven that copymg IS by
permlsston of the Assoclatton for Computmg Machinery To copy
otherwlse, or to repubhsh, requtres a fee and/or spectflc permIssIon

0 1986 ACM 0-89791-191-1/86/0500/0096 $00 75

The need for providing temporal support m
DBMS’s has been recognized for at least a decade
[Bubenko 1976, Schueler 19771 Recently, the
rapid decrease of storage cost, coupled with the
emergence of promnung new mass storage technolo-
gies such as optical disks (FuJItam 1984, Hoagiand
1985], have amphfied interest m database manage-
ment systems with temporal support or version
management [Copeland 1982, Wrederhold 19841 A
brbhographrcal survey contained about 70 articles
relating time and mformatron processmg [Bolour et
al 19821, at least 30 more artrcles have smce
appeared m the literature However, most efforts
on temporal databases have focussed on conceptual
aspects such as modeling, query languages or
semantics of time Little has been written on
implementation Issues, let alone performance
analysis of such systems, except for a few versron
management systems [Katz & Lehman 1984, Svo-
bodova 1981], rollback DBMS’s [Arlav & Morgan
1982, Copeland & Mater 1984, Lum et al 1984],
and an earlier version of LEGOL 2 0 [Jones et al
19791

In this paper, we drscuss the rmplementatlon
and performance of a prototype temporal DBMS,
and identify major factors,that have the greatest
Impact on the performance of the system Sections
2 and 3 briefly set the context for thus mvestlga-
tron, descrrbmg the types of databases in terms of
temporal support, and the query language sup-
ported by the prototype The next two sections

96

outhne the implementation and provide a

comprehensive analysis of the performance of the
prototype Fmally, Section 6 discusses several
mechamsms that address the performance
bottlenecks rdentilled in the prototype

2. Typea of Databaaea

Numerous schemes have been proposed to
record and process history data augmented with
addrtlona! time attributes. A taxonomy of time to
characterize the time attribute and detlne types of
database management systems m terms of tem-
poral support was recently proposed [Snodgrass &
Ahn 1985, Snodgrass t Ahn 1986]

No Rollback Rollback

Static Quenes Static Rollback

Historical Queries Historical Temporal

Flgure 1: Types of Databases

As summarized in Figure 1, two orthogonal
criteria are the capability to make hlefortcef
guerteo about the past status of the enterprise
modeled by a database, and the ability to rollback

to the past state of the database modeling an
enterprise The former concerns the progression of
events through time, the latter concerns the
recording of those events in a database ffautottcaf
databases support historical queries, incorporating
t&d ftme Rollback databases support rollback
operations, incorporating troneactron trme Tem-

poral databases support both operations, mcor-
poratmg both kinds of time A third kind of time
1s wer-defined time, whose semantics IS defined by
each application program Supporting user-defined
time requires only mmlma! changes to a DBMS,
and does not substantially impact its performance

Historical databases record the history of the
enterprise being modeled, and view tuples u&d at
some moment as of now Rollback databases
record the history of database activities, and view
stored tuples, whether valid or not, us of some
moment in time Temporal databases combine the
benefits of the two, viewing tuples uohd at some
moment seen su of some other moment Further
examples that emphasize the often subtle
differences in these four types of databases are
described elsewhere [Snodgrass & Ahn 1986]

2. TQuel

TQuel (Temporal QUW Language)
[Snodgrass 1986], a superset of Quel [Held et a!
19751, supports both historical queries and rollback
operations It extends several Que! statements to
provide query, data dellmtion and data mampula-
tion capabilities supporting a!! four types of data-
bases It expresses historical queries by augment
ing the retrieve statement with the when
predicate to specify temporal relatIonships among
participating tuples, and the valid clause to
specify how the rmphclt time attrrbutes are com-
puted for result tuples The rollback operation IS
specified by the am of clause for the rollback or
the temporal DBMS’s The append, delete,
and replace statements were augmented with
the valid and the when clauses m a similar
manner Finally, the create statement was
extended to specify the type of a relation, whether
static, rollback, historIca! or temporal, and to drs-
tmgulsh between an interval and an event relation
if the relation IS historical or temporal The
semantics of TQuel was formalized using tuple
relational calculus [Snodgrass 19861

The example query m Figure 2 inquires the
state of a database a8 of 1981, shifting back in
time Retrieved tuples satisfy not only the where
clause, but also the when clause specifying that
the two tuples must have coexisted at some
moment The valid clause specifies the values of
the voltd from and valad fo attributes of the result
tuples

retrieve (h.id, h.seq, i.id, i seq)
valid frcm @tart of (h overlap i)

to 8nd Of (h 8xt8nd i)
where h id = 500 end

i amount = 73700
when h overlap i
a8 of w1981w

Figure 2: A TQue! Query

4. A Prototype Temporal DBMS

It involves substantial research and ample-
mentatlon effort to fully integrate temporal sup
port into the DBMS itself New access methods
and query processing algorithms need to be
developed to achieve reasonable performance for a
variety of temporal queries, without penalizing
more frequent non-temporal queries

97

As an intermediate step towards a fully
integrated temporal DBMS, we built a prototype
by modlfymg portions of the static DBMS Ingres
[Stonebraker et al 19761, while still keeping the
conventional access methods and query processmg
algorithms Hence the performance of the proto-
type was expected to be less than ideal, rapidly
deteriorating for both temporal and non-temporal
queries However, it IS still useful to identify prob-
lems with conventional access methods and query
processmg algorithms, and to suggest possible
mechanisms for addressing those problems In
addition, the prototype can serve as a comparison
point for fully integrated DBMS’s developed m the
future

The prototype supports all the augmented
TQuel statements retrieve, wPad*
delete, replace and create The valid,

when and aa of clauses are fully supported,
though default values for these clauses are not
supplied The copy statement was modified to
perform batch input and output of relations having
time attributes It also supports all four types of
databases static, rollback, historical and temporal

The parser was modified to accept TQuel
statements and generate an extended syntax tree
with subtrees for valid, when, and am-of
clauses Some of the query evaluation modules
were changed to handle the newly defined node
types and lmphclt time attributes such as valad
from, valrd to, traneactaon rtart and transactton

stop Functions to handle temporal operators
#tart of, end of, precede, overlap, and
extend were added m the one-variable query pro-
cessing interpreter

The system relation wits modified to support
various combmatlons of lmpllclt time attributes,
which depend on the type of a relation as specified
by its create statement A time attribute IS
represented as a 32 bit integer with a resolution of
one second It has a dlstmct type, so that input
and output can be done in human readable form
by automatically convertmg to and from the rnter-
nal representation Various formats of date and
time are accepted for Input, and resolutions rang-
mg from a second to a year are selectable for out

Put

One of the most important decisions wss how
to embed a four-dimensional temporal relation into
a two-dimensional static relation as supported by
Ingres There are at least five such embeddmgs
[Snodgrass 1986] Our prototype adopts the

scheme of augmentmg each tuple with two tran-
saction time attributes for a rollback and a tem-
poral relation, and one or two vahd ftme attributes
for a historical and a temporal relation depending
on whether the relation models events or intervals

For a rollback relation, an append operation
inserts a tuple with the traneactton etart and tran-
sactron stop attributes set to the current time and
“forever” respectively A delete operation on
a tuple simply changes the transaction stop attn-
bute to the current time A replace operation
Brst executes a delete operation, then inserts a
new version with the transaction start attribute set
to the current time A historical relation follows
similar steps for append, delete and replace
operations with the valad from and valad to attn-
butes as the counterparts of transaction start and
transaction stop attributes Values of the valid
from and valid to attributes are defaulted to the
current time and “forever” respectively, but also
can be speclfled by the valid clause

For a temporal relation, an append opera-
tion inserts a tuple with the transaction start of
the current time, and transaction stop of “for-
ever” Attributes valid from and valid to are set
as specified by the valid clause, or defaulted if IS
1s absent A delete operation on a tuple sets the
transaction stop attribute to the current time mdl-
catmg that the tuple was virtually deleted from
the relation Next a new version with the updated
valid to attribute IS Inserted mdicatmg that the
version has been valid until that time A
replace operation first executes a delete
operation as above, then appends a new version
marked with appropriate time attributes There-
fore, each replace operation m a temporal rela-
tion inserts two new versions This scheme has a
high overhead m terms of space, but completely
captures the history of retroactive and postactive
changes In addition, all modification operations
for rollback and temporal relations m this scheme
are append only, so write-once optical disks can be
utilized A more detailed discussions of these
operations can be found elsewhere [Snodgrass
1986]

The prototype was constructed m about 3
person-months over a period of a year; this Agure
does not include familiarization with the Ingres
internals or with TQuel Most changes were addi-

tions, increasing the source by 2,999 lines, or 4 9 %
(our version of Ingres IS approximately 58,809 lines

low)

98

6. Benchmarking the Prototype

We define the update count for a tuple as the
number of update operations on the tuple, and the
avetoge updofe counf for a relation as the average
of the update counts over all tuples m the relation
We hypothesized that, as the average update
count increases, the performance of our prototype
with conventional access methods would
deteriorate rapidly not only for temporal but also
for static queries We postulated the maJor factors
to affect the performance of a temporal DBMS
were the type of a database, the query type, the
access methods and loading factors, and the
update count

A benchmark was run to co&m these
hypotheses in various situations, and to determine
the rate of performance degradation as the aver-
age update count increased. This section describes
the details of the benchmark, presents its results,
and analyzes the performance data from the
benchmark

6.1. The Benchmark

To compare performance on different types of
databases, we needed test databases of all four
types described in Section 2 For each of the four
types, we created two databases, one with a 100%
loading factor and the other with a 50 % loading
factor As the sample commands for a temporal
database m Figure 3 show, each database contains
two relations, 2’gpe-h and Type-i, where Type w
one of Static, Rollback, Historical, and
Temporal

create persiatent interval Temporal-h
(id = 14. amount = 14,

=eq = 14, string = c96)
modify Temporal-b to hash cm id

where fillfactor = 100

create perrimtent interval Temporal-i

(id = 14, amount = 14,

=eq = 14, string = c96)
modify Temporal-i to imaa on id

where fillfactor = 100

Figure 8: Creating a Temporal Database

Type-h IS stored m a hashed file, and Type-i 1s
stored m an ISAM file The loading factor of the
files are specified with the fillfactor parame-
ter m a modify statement [Woodfill et al 19811

Each tuple has 108 bytes of data in four
attributes, id, amount, seq and string
Id, a four byte integer, 1s the key m both relations
Amount and string are randomly generated as
integers and strings respectively, and seq IS ml-
tlallzed as zero In addition, rollback and histon-
cal relations carry two time attributes, while tem-
poral relations contain four time attributes Attn-
butes transaction start and valid from are ran-
domly mltlallzed to values between Jan 1 and Feb
15 in 1980, while attributes transaction stop and
valid to are set to “forever” indicating that they
are the current versions The evolution of these
relations will be described shortly

Each relation is mltmhzed to have 1024
tuples using a copy statement The page size m
our prototype IS 1024 bytes With 100 % loading,
there are 9 tuples per page m static relations, and
8 tuples per page m rollback, historical, or tem-
poral relations Therefore, we need at least 114
pages for each static relation, and 128 pages for
each of the others The actual size depends on the
database type, the access method, the loading fac-
tor, and the average update count

Twelve sample queries with varying charac-
teristics comprise the benchmark as shown in Fig-
ure 4 These queries were chosen m an attempt to
represent the characteristic queries m databases
with temporal support, to isolate the effects of
various TQuel clauses, to exercise the access
methods available in Ingres, and to demonstrate
the posslblhty of performance enhancement The
number of output tuples were kept constant
regardless of the update count, except for queries
QOl, Q02 and Q12

QOl retrieves all versions of a tuple (uerglon
ecan) from a hashed Rle given a key Q03 is a roll-
bock query, applicable only to rollback and tem-
poral databases, retrieving the state of a relation
as of some moment m the past QOS retrieves the
most recent version of a tuple from a hashed file
given a key, while Q07 retrieves the most recent
version of a tuple from a hashed file without a key,
resultmg m a sequential scan of the whole file

Queries Q02, Q04, QOS and QOS are counter-
parts of QOl, Q03, &OS, and Q07 respectively,
where even numbered queries access an ISAM file
and odd ones access a hashed file Both QO9 and
QlO Join current versions of two relations, QO9
goes through the primary access path of a hashed
file and QlO goes through an ISAM file

99

range of h in temporal-h

range of i ia temporal,1

01: retrieve (h.ld, h.seq)
where h.id = 500

02: retrieve (i.id, i.seq)

where i id = 500

03: retrieve (h.id, h.seq)

a8 of ~08.00 1/1/m”
04: retrieve (i.id, i seq)

e8 of “08:oo l/1/80”

05: retrieve (h.id, h seq)
where h.id = 500

when h werlap “now”

06. retrieve (i.id, i.seq)
where l.id = 500
when i werlap “now”

07 retrieve (h.id, h.seq)
vhere h.amount = 69400
when h overlap “now”

08. retrieve (l.id, i seq)
where i.amount = 73700

rhen f werlap "now"

09: retrieve (h.ld, i.id, i.amount)
where h.id = i.amount
when h OVerl&Bp i and

i overlap “now”
10. retrieve (i id, h id, h.amount)

where i id = h.amount
when h werlap i and

h overlap "now"

11. retrieve (h.id, h.seq, i.ld,
i . seq, i amount)

valid from start of h
to end of i

when atart of h precede i

a8 of “4:oo l/l/ao”

12. retrieve (h.id, h.seq, i id,

i.seq, i.amount)
valid from l tart of (h overlap 1)

to end of (h extti 1)

where h.id = 500 amI
i.amount = 73700

when h werlap i
am of “now”

Figure 4: Benchmark Queries

Querres Q05 through QlO all refer to only
the most recent versions They are termed etatac
queries m the sense that they retrieve the current
state of a database as if from a static database.
For a static database, the rhcw clause in these
queries are neither necessary nor applicable For a
rollback database, we use the am of clause
instead of the uhen clause For example, when
x overlap “now” will become a8 of "now"

Qll is a query mvoivmg a temporal horn, a
Join of two tuples based on temporal mformatlon
In this query, the am of clause specifies the rolf-
bock operation shlftmg the reference point to a
past moment The when clause specliles a tem-
poral relationship between two versions, where the
value of valid from attribute m the version from
T8pe-h relation IS earlier than the correspondmg
value m the version from Type-1 relation The
valid clause specifies that transaction start attrr-
bute of the result tuple be set to the value of tran-
saction start attribute m the version from Tgpe-h
relation, and that transaction stop attribute of the
result tuple be set to the correspondmg value m
the version from Type,i relation Q12 contains
all types of clauses in TQuel, mqurrmg the state of
a database as of “now” given both temporal and
non-temporal constraints Obviously, Qll and
Q12 are relevant only for a temporat database

These twelve queries were run on each of
eight test databases as described earlier, two data-
bases, with the loading factor of 100 % and 50%
respectively, for each of Static, Rollback,

Historical, and Temporal We focused solely
on the number of disk accesses per query at a
granularity of a page, as this metric 1s highly
correlated with both CPU time and response time
There are a few pitfalls to be avoided with this
metric Disk accesses to system relations are rela-

tively independent of the database type or the
characterlstlcs of queries, but more dependent on

how a particular DBMS manages system relations
Also, the number of disk accesses varies greatly
depending on the number of internal buffers and

the algorithm for buffer management To ehm-
mate such variables, which are outside the scope of
this paper, we counted only disk accesses to user

relations, and allocated only 1 buffer for each user
relation so that a page resides m main memory
only until another page from the same relation IS

brought m

Once performance statlstrcs were collected
for all sample queries, we simulated the uniformly
distributed evolution of a database by

100

mcrementmg the value of seq attribute m each of
the current versions. The time attrrbutes were
appropriately changed for this replace operation
using the default of valid from “now” to
“forever” as described III Section 4. Thus a new
version (two new versions for temporal relations) of
each tuple IS inserted, and the average updote
count of the database IS increased by one Perfor-
mance on the sample queries were measured after
determining the size of each relation appended
with new versions This process was repeated until
the average update count reached 15, which we
believed high enough to show the relationship
between the growth of I/O cost and the average
update count The benchmark was run on a Vax
11/780, consummg approximately 20 hours of CPU
time

5.2. Performance Data

Space requirements m various databases were
measured as the average update count ranged
from 0 to 15, and were useful for analyzing the
I/O cost measured m the benchmark Figure 5
shows the data for the average update count of 0
and 14 along with the gtorut/~ pet update It also
shows the grorvtb rute, obtained when divldmg the
growth per update by the size for the update count
of 0 From this table, we find that

The rollback and the historical databases have
the same space requirements

The temporal database consumes the same
amount of space as the rollback and the histori-
cal databases for the update count of 0

The temporal database, followmg the embed-
ding scheme described m Section 4, requires
almost twice the additional pages as the update
count increases

The growth per update for a hashed file varies
slightly due to key collisions m hashing

I/O costs for sample queries on each data-
base were measured as the average update count
increased from 0 to 15 Output costs account for
storing temporary relations, which remam constant
because the size of temporary relations IS the same
for the sample queries regardless of the update
count Since they are negligible compared with the
input costs, being 56 pages for QO9 and QlO each
and 4 pages for Ql2 on the hlstorlcal and the tem-
poral databases, and 0 for the others, we concen-
trate on the analysis of the input costs Figure 6
shows the input costs for the temporal database
with 100% loading

Similar tables, a total of 8, were obtained for
each database of different types and loading fac-
tors We summarize the input costs for sample
queries on various databases with the average
update count of 0 and 14 in Figure 7

Figure 7 shows that the rollback and the his-
torical databases exhibit similar performance, while
the temporal database is about twice more expen-
sive than rollback and hlstorrcal databases for the
update count of 14 If we draw a graph for the
input costs shown m Figure 7, we get Figure 8 (a)

Figure 8 (b) IS a srmrlar graph for the rollback
database with 50% loading, showmg Jagged lines
caused by the odd numbered updates filling the
space left over by the previous updates before
adding overflow pages

6.3. Analyrla of Performance Data

The graphs m Figure 8 show that input cost
increases almost linearly with the update count,
but with varying slopes for different queries A
question is whether there are any particular rela-
tionships independent of query types between the
input cost and the average update count, and
between the input cost and the database type To
answer this question, we now analyze how each
sample query IS processed, and identify the dom-
inant operations which can characterize each

query

Though queries QOl and QO5 are functionally
different from each other, one bemg the uets;en
8can and the other a efotre query, our prototype
built with conventional access methods uses the
same mechanism to process them Both queries
are evaluated by accessing a hashed file given a
key (hashed accecu) Likewise, QO2 and QOS
requires the access to an ISAM Rle given a key
(ISAM access) Queries Q03, Q04, Q07 and QO8
all need to scan a file, whether hashed or ISAM
(eequenkol ucdn)

Processing &OS Brst scans an ISAM file
sequentially doing selection and proJection into a
temporary relation (one uatrabfe detachment) It
then performs one hashed access for each of 1024
tuples m the temporary relation (tupfe substrtu-
kon). Here the dominant operation IS the hashed
access, repeated 1024 times QlO is similar to &OS
except that the roles of the hashed file and the
ISAM file are reversed Hence the dominant
operation for QlO IS the ISAM access

Qll IS evaluated by sequentially scannmg one
file to find versions satlsfymg the am of clause

101

For such a version, the other file 1s sequentrally
scanned for versions satisfying both the aa of
clause and the v&en clause Here the dominant
operation IS the sequential scan Processing Q12
requires a sequential scan and a hash access to find
versions satisfying the where clause, then Joins
them on time attributes accordmg to the whea
clause Since the number of versions extracted for
the Join IS small enough to fit into one page each,
the dominant operation IS the sequential scan

From this analysis, we can divide the input
cost into the fized portion and the uotrabfe portion
The fixed cost IS the portion which stays the same
regardless of the update count It accounts for
traversing the directory m the ISAM, or for creat-
mg and accessing a temporary relation whose size
IS independent of the update count The variable
cost IS deflned to be the result of subtracting the
fixed cost from the cost of a query on a database
with no update Operations contrrbutmg to the
variable cost will grow more expensive as the
number of updates on the relation increases

Now we can define the pro&h tefe of the
input cost on a database with the update count of
nas.

Growth Rate, -
C” - co

(uoriabfe tort) X n

where
C, - rnput coet for updote count o/n
C, = anput tort for update count of 0

The growth rate IS the key aspect of an rmplemen-
tatron, characterlzmg the performance degradation
as the update count increases Clearly the ideal
would be a growth rate close to 0

Fixed costs, variable costs and growth rates
for sample queries on various types of databases
were calculated The growth rate was relatively
independent of the update count n, as indicated by
the linearity shown m Figure 8 Figure 9 shows
fixed costs, variable costs and growth rates for
sample queries on the rollback and the temporal
databases with the loading factor of 100% and
50% each The hlstorlcal database shows the same
variable costs and the growth rates as the rollback
database, except for QO8 and Q04 which are not
applicable to hrstorical databases But Its llxed
costs are the same as the temporal database,
except for Q03, QO4, Qll & Q12 which are not
applicable

Rather surprrsmgly, the growth rate turned
out to be independent of the query type and the

access method as far as access methods of sequen-
tial scan, hashmg or ISAM are concerned. It was,
however, dependent on the database type and the
loading factor For example, the growth rates for
operations such as sequential scan, hashed access,

and access of data pages m ISAM are all 2 0 m
case of the temporal database with 100% loadmg
On the other hand, the growth rates for similar
operations are approxrmately 0 5 m case of the
rollback or the hlstorlcal database with 50% load-
ing

From these analyses, we can make several
observations as far as access methods of sequential
scan, hashing or ISAM are concerned

The Bxed and the variable costs are dependent
on the query type, the access method and the
loadmg factor, but relatively independent of the
database type

The growth rate IS approxrmately equal to the
loadmg factor of relations for rollback or hrs-
torlcal databases

The growth rate of input cost 1s approxrmately
twice the loadmg factor of relations for tem-
poral databases

The growth rate IS independent of the query
type and the access method

The fact that the growth rate can be deter-
mined given the database type and the loading fac-
tor without regard to the query type or the access
method has a useful consequence From the
deflmtron of the growth rate, we can derive the fol-
lowing formula for the cost of a query when the
update count IS n

C, - C, + (growth rate) X (vanable cost) X (nj

- f&red tort) + (ucrtabte cost) +

(growtA rote) X (vartoble cost] X (n)

- (fized cost) + fuanobte co8t) X

/ 1 + (growth rote) X n /

Therefore, when the cost of a query on a
database with the update count of 0 IS known and
its fixed portion IS Identified, it is possible to
predict future performance of the query on the
database when the update count grows to n Note
that the fixed cost, and hence the variable cost,
can even be counted automatrcally by the system,
except when the size of a temporary relation varies
greatly depending on the update count

102

6.4. Non-uniform DiaMbution

Thus far, we have assumed umform dlstnbu-
tlon of updates where each tuple WI!! be updated
an equal number of times as the average update
count Increases Smce the assumption of umform
distribution may appear rather unrealistic, we also
ran an experiment with a non-uniform distribution
To simulate a maximum variance case, only 1
tuple was updated repeatedly to reach a certain
average update count We measured performance
of queries on the updated tuple and on any of
remaining tuples, then averaged the results
weighted by the number of such tuples Smce it
takes 0 (n”) page accesses to update a single tuple
for n times, owing to the overflow cham ever
lengthening, we repeated the process only up to the
update count of 4, which was good enough to
confirm our subsequent analysis

Performance of a query 1s highly dependent
upon whether the tuple partlclpatmg in the query
has an overflow cham We hypothesized that
updating tuples with a high variance would alIect
the growth rate slgnlficantly, owing to the presence
of long overflow chains for some tuples and the
absence of such chains for others However, the
growth rate averaged over all tuples turned out to
remain the same as the uniform distribution case
For example, if we update one tuple m a temporal
relation 1024 times, the average update count
becomes one For a query like QOl, a hashed
access to any tuple sharmg the same page ss the
changed tuple costs 257 page accesses, while a
hashed access to any tuple residing on a page
without an overflow costs Just one page access
Therefore, the average cost becomes three page
accesses, the same as the umform distribution case

We can extend this result to a more general
case If the number of primary pages IS z with
100% loading, there WI!! be approximately $2
overflow pages for the average update count of one
m a temporal relation Let y be the number of prr-
mary pages which have overflow pages, and z be
the number of primary pages which do not have an
overflow, then y + z - z Since the average

length of overflow chains IS 22 pages, the average

cost of a hashed access to suchy a relation WI!! be

VX(& +1)+2x1
-1X F+ m-3

If+2 2 2

showing the same result as the more restricted
case discussed above

This reasoning can be generalized for other
database types, access methods, loading factors,
query types, and update counts m a similar
fashion Now one more observation about the
growth rate can be added

l The growth rate IS independent of the dlstrrbu-
tron of updated tuples

We conclude that the results from the benchmark
we ran under the assumption of umform dlstribu-
tion are still valid for any other distribution

6. Performance Enhancement

As the results of the benchmark indicate,
sequential scans are expensive Access methods
such as hashing and ISAM also suffer from rapid
performance degradation due to ever-growing
overflow chains Reorganization does not help to
shorten overflow chains, because all versions of a
tuple share the same key

Since lower loadmg reduces the number of
overflow pages in hashing and ISAM, it results m a
lower growth rate Hence better performance IS
achieved with a lower loading factor when the
update count IS high But there IS an overhead for
mamtammg a lower loading factor, which may
cause worse performance than a higher loading
when the update count 1s low Lower loading
requires more space for primary pages Scanning
such a file sequentially (c g for query Q07 or Q08)
IS more costly Especially for ISAM, lower loading
requires more directory pages, which may increase
the height of the directory For example, query
QlO for the update count of 0 in Figure 7 reads in
3385 pages with 50% loading, slgmllcantly hrgher
than 2233 pages with 100% loading

We conclude that access methods such as
hashing or ISAM are not suitable for a database
with temporal support There are other access
methods that adapt more gracefully to dynamrc
growth, such as B-trees, dynamic hashing, extendr-
ble hashing, and grid files [Nlevergelt & Hmter-
berger 19841 These methods require complex
algorithms and slgmficant overheads to maintain
certain structures as new records are added But
the performance IS still dependent on the count of
all versions, which may be sigmtlcantly higher than
the count of current versions Furthermore, a
large number of versions for some tuples will
require more than a bucket for a single key, caus-
ing slmllar problems exhibited m conventional
hashing and ISAM It IS also difficult to maintain
secondary indices for these methods, whrch often

103

spilt a bucket and rearrange its records, and to
utlhze write-once storage medmm like optrcal
disks Therefore, new storage structures and
access methods tailored to the particular charac-
terlstrcs of temporal databases are needed to
enhance performance sigmficantly

Databases wrth temporal support muntam
both the current and the history data on line But
the current and the history data exhibit clear
differences m their charactenstrcs, such as the
number of versrons, storage reqmrements, access
frequency and update patterns These dlflerences
make It natural to process them separately explort-
mg their umque characterlstrcs Therefore, we
adopt the ttvo level store with separate storage
aress for the current and the hrstory data [Ahn
19861 The pttmaty store contams current versions
which can satisfy all non-temporal querres and pos-
sibly some of frequently accessed history versrons
The htstory store holds the remuning history ver-
srons Thus scheme to separate current data from
the bulk of history data can mlmmlze the overhead
for non-temporal queries, and at the same trme
provide a fast access path for temporal queries

In addrtlon, queries retrrevmg records
through non-key attributes (e g QOO and QO8) can
be facilitated by secondsty tndeztng There are
several alternative structures for a secondary index
on a relation wrth multiple versions The Index
may be stored mto a single file for all the versrons
(1 level), or may itself be mamtamed as a t-level
structure having a current Index for the current
data and a history index for the hrstory data In
each case, any storage structure such as the heap,
hashing or ISAM may be chosen for the index

Frgure 10 shows the estimated Input costs for
the sample queries on the temporal database with
the two level store and the secondary indexing,
where ‘-’ indicates no change from the conven-
tional case The advantage of the two level store
IS evident m processmg static querres such as Q05
through QlO The cost remams constant for any
update count As shown under the column Sample
in Figure 10, QlO on the temporal database with
the update count of 14 costs 2233 pages instead of
34493 pages Versron scan (QOl and QO2) can also
be improved by clustering history versions of the
same tuple into a mmlmum number of pages, e g
28 history versions mto 4 pages ss the column
Cludered in Frgure 10 shows

Columns under 48 f-&eve1 m Frgure 10 show
the estimated Input cost when an Index IS

mamtamed as a single file on the amount attrl-
bute for the temporal relation The index needs
erght bytes for each entry, four for the secondary
key and four for a tuple id, and hence can store
101 entrres in a page of 1024 bytes Since there
are 29 versions multrphed by 1024 tuples, 295
pages are needed for the index If we store them
m a heap, it costs 324 pages, 295 index plus 29
data pages, to evaluate Q07 This IS m fact more
expensive than the simple Zlevel store without any
Index, though better than the conventronal struc-
ture itself If we use hashmg for the index, the
cost is reduced to 30 page accesses wrth 1 index
page and 29 data pages

If we use the Zlevel Indexing wrth a separate
index for current data, there are only 1024 entries
m the Index, requrrmg 11 Index pages Q07 costs
12 pages wrth the heap index, whrle it costs only 2
pages w&h the hashed Index, as shown m columns
under 08 d-Level m Figure 10 Note the difference
between 3717 pages and 2 pages for processmg the
same query

7. Summary

We built a prototype of a temporal databsse
management system by extending the statrc DBMS
Ingres It supports the temporal query language
TQuel, a superset of Quel, handhng all four types
of databases static, rollback, hrstorrcal and tem-
poral A benchmark with a set of queries was run
to study the performance of the prototype on the
four types of databases with two loading factors
We analyzed the results of the benchmark, and
Identified major factors that have the greatest
impact on the performance of the system As far
as the access methods of sequential scan, hashing
or ISAM are concerned, the growth rate IS deter-
mined by the database type and the loading factor,
but Independent of the query type, the access
method, or even the drstrlbutron of updated tuples
A formula wss obtamed to estrmate the cost of a
query on a database with multiple temporal ver-
srons, when the cost of a query on the database
with a single version IS known and its fixed portion
IS Identified We also drscussed possible perfor-
mance enhancements using two-level storage struc-
tures and secondary mdexmg mechamsms tailored
for databases wrth temporal support

8. Bibliography

[Ahn 1986] Ahn, I Toward8 en Implementatron of
Database Munogement St/demo wath

104

[Arrav

[Arlav

Temporal Support In The Second Inter-

nofrond Conference on Data Engtneenng,

IEEE Feb 1986, pp 374-381

& Morgan 19821 Arw, G and H L Mor-
gan MDM Embeddrng the Tame Dtmen-

8ton tn Informalron Sgcrtemo Techmcal
Report 82-03-01 Department of De&Ion
Sciences, The Wharton School, Unwerslty
of Pennsylvania 1982

19841 Anav, G Preservtng The Ttme
Drmenston In Inform&on Sgetems PhD
Doss The Wharton School, Umverslty of
Pennsylvania, Apr. 1984

[Bolour et al 19821 Bolour, A, T L Anderson, L J
Debeyser and HK T Wong The Role of
Tame rn Inform&on Proceserng A Survey

StgArt Newcrletter, 80, Apr. 1982, pp 28
48

[Bubenko 1976] Bubenko, J A, Jr The temporal
dcmensron in tnformotton modeltng

Technical Report RC 6187 #26479 IBM
Thomal J. Watson Research Center Nov
1976

[Copeland 19821 Copeland, G What Zf Mase
Storage Were Free? IEEE Computer, 15,
No 7, July 1982, pp 27-35

[Copeland B Maler 19841 Copeland, G and D
Maler Maktng Smalltalk a Dafabaee Sue-
tern In Proceedtnge of the Stgmod ‘84
Conference, June 1984, pp 316-325

[FuJitam 19841 FuJitam, L Luser Optrcal Duke The
Comrng Revolt&on an On-Lane Storuge

Communicattons of the A88OCwhOn of

Computing Muchrnerg, 27, No 6, June
1984, pp 546-554

[Held et al 19751 Held, G D , M Stonebraker and
E Wong INGRES-A relattonof data bare

monogement eycrtem Proceedwage of the
1975 Natlonol Computer Conference, 44

(1975) pp 409-416

[Hoagland 1985] Hoagland, A Informokon Storage
Technology A Look at the Future IEEE

Computer, 18, No. 7, July 1985, pp 60-67

[Jones et al 19791 Jones, S , P Mason and R
Stamper LEGOL 2 0 a relatronal
8pecficatron language for complez rule8
Informatton Sgstem8, 4, No 4, Nov 1979,
pp 293-305

IKatz & Lehman 19841 Katz, R. and T Lehman
Dafobaee Support for Vernon8 and Alter-
n&wee oj Large Derifin Faler IEEE Tran-
uactlons on So/tware Engweertng, SElO,
No 2, Mar 1984, pp 191-200

[Lum et al 19841 Lum, V, P Dadam, R Erbe, J
Guenauer, P Pastor, G Walch, H Werner
and J Woodfill Desrfintnfi DBMS Support
for the Temporal fhmenston In Proceed-
wag8 of fhe Stgmod ‘84 Conference, June
1984, pp 115-130

[Nlevergelt 0 Hmterberger 19841 Nlevergelt, J and
H Hmterberger The Grtd File An Adopt-

able, Sgmmefnc Mull,keg FaIe Structure
ACM TWZ8aCftOn8 on Databore Sy8tem8,

9, No 1, Mar 1984, pp 38-71

[Schueler 19771 Schueler, B Updote Reconsidered
In Arclittecture and Model8 In Data Bare
Management Systems Ed G M Nyssen-
North Holland Pubhshmg Co, 1977

[Snodgrsss 62 Ahn 19851 Snodgrass, R and I Ahn
A Tazonomy of Ttme rn Databases In
Proceedrngs of the Internotronal Confer-

ence on Munagement of Data, ACM SIG
Mod Austin, TX May 1985, pp 236-246

[Snodgrass 1986] Snodgrsss, R A Temporol Query

Lanfiuofie ACM TrUn8aCt~On8 on Database

Sgeteme (to appear), (1986)

[Snodgrass & Ahn 1986] Snodgrass, R and I Ahn
Temporal Database8 IEEE Computer (to
opp ear), (1986)

[Stonebraker et al 19761 Stonebraker, M, E
Wang, P Kreps and G Held The Decngn
and Implement&on of INGRES ACM

Tran8UChOn8 on Database Syoteme, 1, No
3, Sep 1976, pp 189222

[Svobodova 19811 Svobodova, L A refrable oblect-

ortenfed data depontory for a dutrtbuted
computer In Proceedtnfi8 of 8th Sgmpo-
8wm on Operoknfi St(etem8 Prtnctpfee,

Dee 1981, pp 47-58

[Wlederhold 19841 Wlederhold, G Database8 IEEE

Computer, 17, No. 10, Oct. 1984, pp 211-
223

[Wood611 et al 19811 Woodfill, J, P Slegal, J
Ranstrom, M Meyer and e allman Ingreo
Reference Munuel Version 7 ed 1981

105

Type
Loading

Static !! Rollback !! Histor1ed !! Temporal

100% 50% 190% 50% 100% 50% 100% 50%

Relation jlHlIjI=IlI HI1 HII HII HII HII HI1

Notes.
Relation H I a hashed file ‘UC’ denotes Update Count

Relation I I an ISAM file ‘-’ denotes not spplrcable

Figure 5: Space Requirements (m Pages)

1
-

3
4

387

384
3

4
387

384
3512

4539
115s
389

2
G

5

6
645
640

5
6

645
640

5816
6845
1925
647

15
Update
Count

6

QOl 1

:: 120”
QO4 128
QO5 1

QO6
QO7 120”

iii 1200 128

QlO 2233
Qll 385
(212 131

3 4 5 6 7 8 9 10 11 12 13 14

7 9 11 13 15 17 19 21 23 25 27 29 31
8 10 12 14 16 18 20 22 24 26 28 30 32

903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
896 1152 1408 1664 1920 2176 2432 2688 2644 3200 3456 3712 3968

7 9 11 13 15 17 19 21 23 25 27 29 31
8 10 12 14 16 18 20 22 24 26 28 30 32

903 1153 1411 1669 1927 2177 2435 2693 2951 3201 3459 3717 3975
896 1152 1408 1664 1920 2176 2432 2688 2944 3200 3456 3712 3968

8120 10386 12690 14994 17298 19564 21868 24172 26476 28742 31046 33350 35654
0151 11449 13755 16061 18367 20665 22971 25277 27583 29881 32187 34493 36799
2695 3457 4227 4997 5767 6529 7299 8069 8839 9601 10371 11141 11911
905 1163 1421 1679 1937 2195 2453 2711 2969 3227 3485 3743 4001

Ftgure 6: Input Costs for the Temporal Database wrth 100% Loading

1 Type

Loading

Query

QOl
Qof2
Q03
Qo4
QO5
QO3
Qo7

::

QlO
Qll
Ql2

14

15

16

I

0

-l

3

c
14 -

8

10

15 1 8

16 3 10
1927 257 2048
1920 256 2048

17298 1327 10296
18367 3385 12344

C
14

15
17

3839

3840
15
17

3839

3840
19256

21303
11510
s857

0

1

2

t

129

128
1

2

14 0 -
1

2

129
128

1
2

129
128
141
1177

14 0 14 0

15 1 8 1
16 3 10 2

1927 257 2048 -

1920 256 2048 -

15 1 8 1

16 3 10 2
1927 257 2048 129
1920 256 2048 128

17242 1271 10240 1197
18311 3329 12288 2233

0
-

1

3
257

256

1
3

257
256

1333

769
259

1
3

1
3

257
256

1276
3329

29
30

3717

3712
29
30

3717
3712

33350

34493
11141
3743

129
128

1200

L 385
131 -

Figure 7: Input Costs for Four Types of Databases

106

(a) Temporal Databw wth 100!?6 Loadmg (b) Rollback Databae with so$J Loadmg

FS9ure 8: Graphs for Input Pages

Type Rollback Temporal

Loadmg 100% 50% 100% 50%

Cost (III Pages) Growth Cost (m Pages) Growth oet (m Pages) Growth Cost (III Pages) Growth
Query Fued Vmsble Rate Fued Variable Rate ued Variable Rate Fued Variable Rate

QOl 0 1 1 0 1 05 0 I 2 0 I 1
1 1 1 2 1 05 1 1 2 2 1 1

:: 0 129 1 0 257 05 0 129 199 0 257 1

Qo4 0 128 1 0 256 05 0 128 2 0 256 1

QO5 0 1 1 0 1 05 0 1 2 0 1 1

QO'-J 1 1 1 2 1 05 1 1 2 2 1 1

Qo7 0 129 1 0 257 0 5 0 129 199 0 257 1
0 128 1 0 256 0 5 0 128 2 0 256 1

:: 0 1141 101 0 1271 0 5 56 1144 201 56 1277 1

QlO 1024 1153 1 2048 1281 05 1080 1153 2 2104 1281 1
Qll - - - - - - 0 385 2 0 769 1
Ql2 - - - - - - 2 129 2 2 257 1

Figure 9: Flxed Costs, Variable Costs and Growth Rates

Conventlonal 2-Level Store for Update Count - 14

Update Count Simple Clustered
Indexed on amount

Quw

0 14
as l-Level M 2-Level

aa Heap M Hash M Heap aa Hash

QOl 1 29 5
30 6

;: 1: 3717

QO4 128 3712

QO5 1 29 1

QO'J 30 2
QO7 1: 3717 129 324 30 12 2

324 30 12
;: 1g ;: l: - - - - z

QlO 2233 34493
Qll 385 11141

Q12 131 3743

Fiwre 10: Improvements for the Temporal Database with 100% Loading

107

