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A prototype of a temporal database management system was built by extending Ingres It supports 
the temporal query language TQuel, a superset of Quel, handling four types of databases statrc, 
rollback, hrstorlcal and temporal A benchmark set of queries was run to study the performance of 
the prototype on the four types of databases We analyze the results of the benchmark, and rdentr- 
fy major factors that have the greatest impact on the performance of the system We also discuss 
several mechanisms to address the performance bottlenecks we encountered 

1. Introduction 

Database management systems are supposed 
to model reality, but conventronal DBMS’s lack the 
capability to record and process time-varymg 
aspects of the real world With growing sophlstr- 
cation of DBMS apphcatrons, the lack of temporal 
support raises serrous problems For example, con- 
ventional DBMS’s cannot support 8tatotrcof querres 

about the past status, much less trend analyaw 
which 1s essential for apphcatrons such as declslon 
support systems [Arrav 19841 There IS no way to 
represent rettoacttue or poatacttve changes, while 
support for error correctron or uudrt frotf necesa- 
tates costly mamtenance of backups, checkpomts, 
or transactron logs to preserve past states There 
IS also a growmg Interest m applymg database 
methods for uereton mnnagement and deetgn con- 
trol m computer arded design, requrrmg capabrhtles 
to store and process trme dependent data 
Without temporal support from the system, many 
applications have been forced to manage temporal 
mformatlon m an ad-hoc manner 
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The need for providing temporal support m 
DBMS’s has been recognized for at least a decade 
[Bubenko 1976, Schueler 19771 Recently, the 
rapid decrease of storage cost, coupled with the 
emergence of promnung new mass storage technolo- 
gies such as optical disks (FuJItam 1984, Hoagiand 
1985], have amphfied interest m database manage- 
ment systems with temporal support or version 
management [Copeland 1982, Wrederhold 19841 A 
brbhographrcal survey contained about 70 articles 
relating time and mformatron processmg [Bolour et 
al 19821, at least 30 more artrcles have smce 
appeared m the literature However, most efforts 
on temporal databases have focussed on conceptual 
aspects such as modeling, query languages or 
semantics of time Little has been written on 
implementation Issues, let alone performance 
analysis of such systems, except for a few versron 
management systems [Katz & Lehman 1984, Svo- 
bodova 1981], rollback DBMS’s [Arlav & Morgan 
1982, Copeland & Mater 1984, Lum et al 1984], 
and an earlier version of LEGOL 2 0 [Jones et al 
19791 

In this paper, we drscuss the rmplementatlon 
and performance of a prototype temporal DBMS, 
and identify major factors,that have the greatest 
Impact on the performance of the system Sections 
2 and 3 briefly set the context for thus mvestlga- 
tron, descrrbmg the types of databases in terms of 
temporal support, and the query language sup- 
ported by the prototype The next two sections 
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outhne the implementation and provide a 

comprehensive analysis of the performance of the 
prototype Fmally, Section 6 discusses several 
mechamsms that address the performance 
bottlenecks rdentilled in the prototype 

2. Typea of Databaaea 

Numerous schemes have been proposed to 
record and process history data augmented with 
addrtlona! time attributes. A taxonomy of time to 
characterize the time attribute and detlne types of 
database management systems m terms of tem- 
poral support was recently proposed [Snodgrass & 
Ahn 1985, Snodgrass t Ahn 1986] 

No Rollback Rollback 

Static Quenes Static Rollback 

Historical Queries Historical Temporal 

Flgure 1: Types of Databases 

As summarized in Figure 1, two orthogonal 
criteria are the capability to make hlefortcef 
guerteo about the past status of the enterprise 
modeled by a database, and the ability to rollback 

to the past state of the database modeling an 
enterprise The former concerns the progression of 
events through time, the latter concerns the 
recording of those events in a database ffautottcaf 
databases support historical queries, incorporating 
t&d ftme Rollback databases support rollback 
operations, incorporating troneactron trme Tem- 

poral databases support both operations, mcor- 
poratmg both kinds of time A third kind of time 
1s wer-defined time, whose semantics IS defined by 
each application program Supporting user-defined 
time requires only mmlma! changes to a DBMS, 
and does not substantially impact its performance 

Historical databases record the history of the 
enterprise being modeled, and view tuples u&d at 
some moment as of now Rollback databases 
record the history of database activities, and view 
stored tuples, whether valid or not, us of some 
moment in time Temporal databases combine the 
benefits of the two, viewing tuples uohd at some 
moment seen su of some other moment Further 
examples that emphasize the often subtle 
differences in these four types of databases are 
described elsewhere [Snodgrass & Ahn 1986] 

2. TQuel 

TQuel (Temporal QUW Language) 
[Snodgrass 1986], a superset of Quel [Held et a! 
19751, supports both historical queries and rollback 
operations It extends several Que! statements to 
provide query, data dellmtion and data mampula- 
tion capabilities supporting a!! four types of data- 
bases It expresses historical queries by augment 
ing the retrieve statement with the when 
predicate to specify temporal relatIonships among 
participating tuples, and the valid clause to 
specify how the rmphclt time attrrbutes are com- 
puted for result tuples The rollback operation IS 
specified by the am of clause for the rollback or 
the temporal DBMS’s The append, delete, 
and replace statements were augmented with 
the valid and the when clauses m a similar 
manner Finally, the create statement was 
extended to specify the type of a relation, whether 
static, rollback, historIca! or temporal, and to drs- 
tmgulsh between an interval and an event relation 
if the relation IS historical or temporal The 
semantics of TQuel was formalized using tuple 
relational calculus [Snodgrass 19861 

The example query m Figure 2 inquires the 
state of a database a8 of 1981, shifting back in 
time Retrieved tuples satisfy not only the where 
clause, but also the when clause specifying that 
the two tuples must have coexisted at some 
moment The valid clause specifies the values of 
the voltd from and valad fo attributes of the result 
tuples 

retrieve (h.id, h.seq, i.id, i seq) 
valid frcm @tart of (h overlap i) 

to 8nd Of (h 8xt8nd i) 
where h id = 500 end 

i amount = 73700 
when h overlap i 
a8 of w1981w 

Figure 2: A TQue! Query 

4. A Prototype Temporal DBMS 

It involves substantial research and ample- 
mentatlon effort to fully integrate temporal sup 
port into the DBMS itself New access methods 
and query processing algorithms need to be 
developed to achieve reasonable performance for a 
variety of temporal queries, without penalizing 
more frequent non-temporal queries 
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As an intermediate step towards a fully 
integrated temporal DBMS, we built a prototype 
by modlfymg portions of the static DBMS Ingres 
[Stonebraker et al 19761, while still keeping the 
conventional access methods and query processmg 
algorithms Hence the performance of the proto- 
type was expected to be less than ideal, rapidly 
deteriorating for both temporal and non-temporal 
queries However, it IS still useful to identify prob- 
lems with conventional access methods and query 
processmg algorithms, and to suggest possible 
mechanisms for addressing those problems In 
addition, the prototype can serve as a comparison 
point for fully integrated DBMS’s developed m the 
future 

The prototype supports all the augmented 
TQuel statements retrieve, wPad* 
delete, replace and create The valid, 

when and aa of clauses are fully supported, 
though default values for these clauses are not 
supplied The copy statement was modified to 
perform batch input and output of relations having 
time attributes It also supports all four types of 
databases static, rollback, historical and temporal 

The parser was modified to accept TQuel 
statements and generate an extended syntax tree 
with subtrees for valid, when, and am-of 
clauses Some of the query evaluation modules 
were changed to handle the newly defined node 
types and lmphclt time attributes such as valad 
from, valrd to, traneactaon rtart and transactton 

stop Functions to handle temporal operators 
#tart of, end of, precede, overlap, and 
extend were added m the one-variable query pro- 
cessing interpreter 

The system relation wits modified to support 
various combmatlons of lmpllclt time attributes, 
which depend on the type of a relation as specified 
by its create statement A time attribute IS 
represented as a 32 bit integer with a resolution of 
one second It has a dlstmct type, so that input 
and output can be done in human readable form 
by automatically convertmg to and from the rnter- 
nal representation Various formats of date and 
time are accepted for Input, and resolutions rang- 
mg from a second to a year are selectable for out 

Put 

One of the most important decisions wss how 
to embed a four-dimensional temporal relation into 
a two-dimensional static relation as supported by 
Ingres There are at least five such embeddmgs 
[Snodgrass 1986] Our prototype adopts the 

scheme of augmentmg each tuple with two tran- 
saction time attributes for a rollback and a tem- 
poral relation, and one or two vahd ftme attributes 
for a historical and a temporal relation depending 
on whether the relation models events or intervals 

For a rollback relation, an append operation 
inserts a tuple with the traneactton etart and tran- 
sactron stop attributes set to the current time and 
“forever” respectively A delete operation on 
a tuple simply changes the transaction stop attn- 
bute to the current time A replace operation 
Brst executes a delete operation, then inserts a 
new version with the transaction start attribute set 
to the current time A historical relation follows 
similar steps for append, delete and replace 
operations with the valad from and valad to attn- 
butes as the counterparts of transaction start and 
transaction stop attributes Values of the valid 
from and valid to attributes are defaulted to the 
current time and “forever” respectively, but also 
can be speclfled by the valid clause 

For a temporal relation, an append opera- 
tion inserts a tuple with the transaction start of 
the current time, and transaction stop of “for- 
ever” Attributes valid from and valid to are set 
as specified by the valid clause, or defaulted if IS 
1s absent A delete operation on a tuple sets the 
transaction stop attribute to the current time mdl- 
catmg that the tuple was virtually deleted from 
the relation Next a new version with the updated 
valid to attribute IS Inserted mdicatmg that the 
version has been valid until that time A 
replace operation first executes a delete 
operation as above, then appends a new version 
marked with appropriate time attributes There- 
fore, each replace operation m a temporal rela- 
tion inserts two new versions This scheme has a 
high overhead m terms of space, but completely 
captures the history of retroactive and postactive 
changes In addition, all modification operations 
for rollback and temporal relations m this scheme 
are append only, so write-once optical disks can be 
utilized A more detailed discussions of these 
operations can be found elsewhere [Snodgrass 
1986] 

The prototype was constructed m about 3 
person-months over a period of a year; this Agure 
does not include familiarization with the Ingres 
internals or with TQuel Most changes were addi- 

tions, increasing the source by 2,999 lines, or 4 9 % 
(our version of Ingres IS approximately 58,809 lines 

low) 
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6. Benchmarking the Prototype 

We define the update count for a tuple as the 
number of update operations on the tuple, and the 
avetoge updofe counf for a relation as the average 
of the update counts over all tuples m the relation 
We hypothesized that, as the average update 
count increases, the performance of our prototype 
with conventional access methods would 
deteriorate rapidly not only for temporal but also 
for static queries We postulated the maJor factors 
to affect the performance of a temporal DBMS 
were the type of a database, the query type, the 
access methods and loading factors, and the 
update count 

A benchmark was run to co&m these 
hypotheses in various situations, and to determine 
the rate of performance degradation as the aver- 
age update count increased. This section describes 
the details of the benchmark, presents its results, 
and analyzes the performance data from the 
benchmark 

6.1. The Benchmark 

To compare performance on different types of 
databases, we needed test databases of all four 
types described in Section 2 For each of the four 
types, we created two databases, one with a 100% 
loading factor and the other with a 50 % loading 
factor As the sample commands for a temporal 
database m Figure 3 show, each database contains 
two relations, 2’gpe-h and Type-i, where Type w 
one of Static, Rollback, Historical, and 
Temporal 

create persiatent interval Temporal-h 
(id = 14. amount = 14, 

=eq = 14, string = c96) 
modify Temporal-b to hash cm id 

where fillfactor = 100 

create perrimtent interval Temporal-i 

(id = 14, amount = 14, 

=eq = 14, string = c96) 
modify Temporal-i to imaa on id 

where fillfactor = 100 

Figure 8: Creating a Temporal Database 

Type-h IS stored m a hashed file, and Type-i 1s 
stored m an ISAM file The loading factor of the 
files are specified with the fillfactor parame- 
ter m a modify statement [Woodfill et al 19811 

Each tuple has 108 bytes of data in four 
attributes, id, amount, seq and string 
Id, a four byte integer, 1s the key m both relations 
Amount and string are randomly generated as 
integers and strings respectively, and seq IS ml- 
tlallzed as zero In addition, rollback and histon- 
cal relations carry two time attributes, while tem- 
poral relations contain four time attributes Attn- 
butes transaction start and valid from are ran- 
domly mltlallzed to values between Jan 1 and Feb 
15 in 1980, while attributes transaction stop and 
valid to are set to “forever” indicating that they 
are the current versions The evolution of these 
relations will be described shortly 

Each relation is mltmhzed to have 1024 
tuples using a copy statement The page size m 
our prototype IS 1024 bytes With 100 % loading, 
there are 9 tuples per page m static relations, and 
8 tuples per page m rollback, historical, or tem- 
poral relations Therefore, we need at least 114 
pages for each static relation, and 128 pages for 
each of the others The actual size depends on the 
database type, the access method, the loading fac- 
tor, and the average update count 

Twelve sample queries with varying charac- 
teristics comprise the benchmark as shown in Fig- 
ure 4 These queries were chosen m an attempt to 
represent the characteristic queries m databases 
with temporal support, to isolate the effects of 
various TQuel clauses, to exercise the access 
methods available in Ingres, and to demonstrate 
the posslblhty of performance enhancement The 
number of output tuples were kept constant 
regardless of the update count, except for queries 
QOl, Q02 and Q12 

QOl retrieves all versions of a tuple (uerglon 
ecan) from a hashed Rle given a key Q03 is a roll- 
bock query, applicable only to rollback and tem- 
poral databases, retrieving the state of a relation 
as of some moment m the past QOS retrieves the 
most recent version of a tuple from a hashed file 
given a key, while Q07 retrieves the most recent 
version of a tuple from a hashed file without a key, 
resultmg m a sequential scan of the whole file 

Queries Q02, Q04, QOS and QOS are counter- 
parts of QOl, Q03, &OS, and Q07 respectively, 
where even numbered queries access an ISAM file 
and odd ones access a hashed file Both QO9 and 
QlO Join current versions of two relations, QO9 
goes through the primary access path of a hashed 
file and QlO goes through an ISAM file 
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range of h in temporal-h 

range of i ia temporal,1 

01: retrieve (h.ld, h.seq) 
where h.id = 500 

02: retrieve (i.id, i.seq) 

where i id = 500 

03: retrieve (h.id, h.seq) 

a8 of ~08.00 1/1/m” 
04: retrieve (i.id, i seq) 

e8 of “08:oo l/1/80” 

05: retrieve (h.id, h seq) 
where h.id = 500 

when h werlap “now” 

06. retrieve (i.id, i.seq) 
where l.id = 500 
when i werlap “now” 

07 retrieve (h.id, h.seq) 
vhere h.amount = 69400 
when h overlap “now” 

08. retrieve (l.id, i seq) 
where i.amount = 73700 

rhen f werlap "now" 

09: retrieve (h.ld, i.id, i.amount) 
where h.id = i.amount 
when h OVerl&Bp i and 

i overlap “now” 
10. retrieve (i id, h id, h.amount) 

where i id = h.amount 
when h werlap i and 

h overlap "now" 

11. retrieve (h.id, h.seq, i.ld, 
i . seq, i amount) 

valid from start of h 
to end of i 

when atart of h precede i 

a8 of “4:oo l/l/ao” 

12. retrieve (h.id, h.seq, i id, 

i.seq, i.amount) 
valid from l tart of (h overlap 1) 

to end of (h extti 1) 

where h.id = 500 amI 
i.amount = 73700 

when h werlap i 
am of “now” 

Figure 4: Benchmark Queries 

Querres Q05 through QlO all refer to only 
the most recent versions They are termed etatac 
queries m the sense that they retrieve the current 
state of a database as if from a static database. 
For a static database, the rhcw clause in these 
queries are neither necessary nor applicable For a 
rollback database, we use the am of clause 
instead of the uhen clause For example, when 
x overlap “now” will become a8 of "now" 

Qll is a query mvoivmg a temporal horn, a 
Join of two tuples based on temporal mformatlon 
In this query, the am of clause specifies the rolf- 
bock operation shlftmg the reference point to a 
past moment The when clause specliles a tem- 
poral relationship between two versions, where the 
value of valid from attribute m the version from 
T8pe-h relation IS earlier than the correspondmg 
value m the version from Type-1 relation The 
valid clause specifies that transaction start attrr- 
bute of the result tuple be set to the value of tran- 
saction start attribute m the version from Tgpe-h 
relation, and that transaction stop attribute of the 
result tuple be set to the correspondmg value m 
the version from Type,i relation Q12 contains 
all types of clauses in TQuel, mqurrmg the state of 
a database as of “now” given both temporal and 
non-temporal constraints Obviously, Qll and 
Q12 are relevant only for a temporat database 

These twelve queries were run on each of 
eight test databases as described earlier, two data- 
bases, with the loading factor of 100 % and 50% 
respectively, for each of Static, Rollback, 

Historical, and Temporal We focused solely 
on the number of disk accesses per query at a 
granularity of a page, as this metric 1s highly 
correlated with both CPU time and response time 
There are a few pitfalls to be avoided with this 
metric Disk accesses to system relations are rela- 

tively independent of the database type or the 
characterlstlcs of queries, but more dependent on 

how a particular DBMS manages system relations 
Also, the number of disk accesses varies greatly 
depending on the number of internal buffers and 

the algorithm for buffer management To ehm- 
mate such variables, which are outside the scope of 
this paper, we counted only disk accesses to user 

relations, and allocated only 1 buffer for each user 
relation so that a page resides m main memory 
only until another page from the same relation IS 

brought m 

Once performance statlstrcs were collected 
for all sample queries, we simulated the uniformly 
distributed evolution of a database by 
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mcrementmg the value of seq attribute m each of 
the current versions. The time attrrbutes were 
appropriately changed for this replace operation 
using the default of valid from “now” to 
“forever” as described III Section 4. Thus a new 
version (two new versions for temporal relations) of 
each tuple IS inserted, and the average updote 
count of the database IS increased by one Perfor- 
mance on the sample queries were measured after 
determining the size of each relation appended 
with new versions This process was repeated until 
the average update count reached 15, which we 
believed high enough to show the relationship 
between the growth of I/O cost and the average 
update count The benchmark was run on a Vax 
11/780, consummg approximately 20 hours of CPU 
time 

5.2. Performance Data 

Space requirements m various databases were 
measured as the average update count ranged 
from 0 to 15, and were useful for analyzing the 
I/O cost measured m the benchmark Figure 5 
shows the data for the average update count of 0 
and 14 along with the gtorut/~ pet update It also 
shows the grorvtb rute, obtained when divldmg the 
growth per update by the size for the update count 
of 0 From this table, we find that 

The rollback and the historical databases have 
the same space requirements 

The temporal database consumes the same 
amount of space as the rollback and the histori- 
cal databases for the update count of 0 

The temporal database, followmg the embed- 
ding scheme described m Section 4, requires 
almost twice the additional pages as the update 
count increases 

The growth per update for a hashed file varies 
slightly due to key collisions m hashing 

I/O costs for sample queries on each data- 
base were measured as the average update count 
increased from 0 to 15 Output costs account for 
storing temporary relations, which remam constant 
because the size of temporary relations IS the same 
for the sample queries regardless of the update 
count Since they are negligible compared with the 
input costs, being 56 pages for QO9 and QlO each 
and 4 pages for Ql2 on the hlstorlcal and the tem- 
poral databases, and 0 for the others, we concen- 
trate on the analysis of the input costs Figure 6 
shows the input costs for the temporal database 
with 100% loading 

Similar tables, a total of 8, were obtained for 
each database of different types and loading fac- 
tors We summarize the input costs for sample 
queries on various databases with the average 
update count of 0 and 14 in Figure 7 

Figure 7 shows that the rollback and the his- 
torical databases exhibit similar performance, while 
the temporal database is about twice more expen- 
sive than rollback and hlstorrcal databases for the 
update count of 14 If we draw a graph for the 
input costs shown m Figure 7, we get Figure 8 (a) 

Figure 8 (b) IS a srmrlar graph for the rollback 
database with 50% loading, showmg Jagged lines 
caused by the odd numbered updates filling the 
space left over by the previous updates before 
adding overflow pages 

6.3. Analyrla of Performance Data 

The graphs m Figure 8 show that input cost 
increases almost linearly with the update count, 
but with varying slopes for different queries A 
question is whether there are any particular rela- 
tionships independent of query types between the 
input cost and the average update count, and 
between the input cost and the database type To 
answer this question, we now analyze how each 
sample query IS processed, and identify the dom- 
inant operations which can characterize each 

query 

Though queries QOl and QO5 are functionally 
different from each other, one bemg the uets;en 
8can and the other a efotre query, our prototype 
built with conventional access methods uses the 
same mechanism to process them Both queries 
are evaluated by accessing a hashed file given a 
key (hashed accecu) Likewise, QO2 and QOS 
requires the access to an ISAM Rle given a key 
(ISAM access) Queries Q03, Q04, Q07 and QO8 
all need to scan a file, whether hashed or ISAM 
(eequenkol ucdn) 

Processing &OS Brst scans an ISAM file 
sequentially doing selection and proJection into a 
temporary relation (one uatrabfe detachment) It 
then performs one hashed access for each of 1024 
tuples m the temporary relation (tupfe substrtu- 
kon). Here the dominant operation IS the hashed 
access, repeated 1024 times QlO is similar to &OS 
except that the roles of the hashed file and the 
ISAM file are reversed Hence the dominant 
operation for QlO IS the ISAM access 

Qll IS evaluated by sequentially scannmg one 
file to find versions satlsfymg the am of clause 
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For such a version, the other file 1s sequentrally 
scanned for versions satisfying both the aa of 
clause and the v&en clause Here the dominant 
operation IS the sequential scan Processing Q12 
requires a sequential scan and a hash access to find 
versions satisfying the where clause, then Joins 
them on time attributes accordmg to the whea 
clause Since the number of versions extracted for 
the Join IS small enough to fit into one page each, 
the dominant operation IS the sequential scan 

From this analysis, we can divide the input 
cost into the fized portion and the uotrabfe portion 
The fixed cost IS the portion which stays the same 
regardless of the update count It accounts for 
traversing the directory m the ISAM, or for creat- 
mg and accessing a temporary relation whose size 
IS independent of the update count The variable 
cost IS deflned to be the result of subtracting the 
fixed cost from the cost of a query on a database 
with no update Operations contrrbutmg to the 
variable cost will grow more expensive as the 
number of updates on the relation increases 

Now we can define the pro&h tefe of the 
input cost on a database with the update count of 
nas. 

Growth Rate, - 
C” - co 

(uoriabfe tort) X n 

where 
C, - rnput coet for updote count o/n 
C, = anput tort for update count of 0 

The growth rate IS the key aspect of an rmplemen- 
tatron, characterlzmg the performance degradation 
as the update count increases Clearly the ideal 
would be a growth rate close to 0 

Fixed costs, variable costs and growth rates 
for sample queries on various types of databases 
were calculated The growth rate was relatively 
independent of the update count n, as indicated by 
the linearity shown m Figure 8 Figure 9 shows 
fixed costs, variable costs and growth rates for 
sample queries on the rollback and the temporal 
databases with the loading factor of 100% and 
50% each The hlstorlcal database shows the same 
variable costs and the growth rates as the rollback 
database, except for QO8 and Q04 which are not 
applicable to hrstorical databases But Its llxed 
costs are the same as the temporal database, 
except for Q03, QO4, Qll & Q12 which are not 
applicable 

Rather surprrsmgly, the growth rate turned 
out to be independent of the query type and the 

access method as far as access methods of sequen- 
tial scan, hashmg or ISAM are concerned. It was, 
however, dependent on the database type and the 
loading factor For example, the growth rates for 
operations such as sequential scan, hashed access, 

and access of data pages m ISAM are all 2 0 m 
case of the temporal database with 100% loadmg 
On the other hand, the growth rates for similar 
operations are approxrmately 0 5 m case of the 
rollback or the hlstorlcal database with 50% load- 
ing 

From these analyses, we can make several 
observations as far as access methods of sequential 
scan, hashing or ISAM are concerned 

The Bxed and the variable costs are dependent 
on the query type, the access method and the 
loadmg factor, but relatively independent of the 
database type 

The growth rate IS approxrmately equal to the 
loadmg factor of relations for rollback or hrs- 
torlcal databases 

The growth rate of input cost 1s approxrmately 
twice the loadmg factor of relations for tem- 
poral databases 

The growth rate IS independent of the query 
type and the access method 

The fact that the growth rate can be deter- 
mined given the database type and the loading fac- 
tor without regard to the query type or the access 
method has a useful consequence From the 
deflmtron of the growth rate, we can derive the fol- 
lowing formula for the cost of a query when the 
update count IS n 

C, - C, + (growth rate) X (vanable cost) X (nj 

- f&red tort) + (ucrtabte cost) + 

(growtA rote) X (vartoble cost] X (n) 

- (fized cost) + fuanobte co8t) X 

/ 1 + (growth rote) X n / 

Therefore, when the cost of a query on a 
database with the update count of 0 IS known and 
its fixed portion IS Identified, it is possible to 
predict future performance of the query on the 
database when the update count grows to n Note 
that the fixed cost, and hence the variable cost, 
can even be counted automatrcally by the system, 
except when the size of a temporary relation varies 
greatly depending on the update count 

102 



6.4. Non-uniform DiaMbution 

Thus far, we have assumed umform dlstnbu- 
tlon of updates where each tuple WI!! be updated 
an equal number of times as the average update 
count Increases Smce the assumption of umform 
distribution may appear rather unrealistic, we also 
ran an experiment with a non-uniform distribution 
To simulate a maximum variance case, only 1 
tuple was updated repeatedly to reach a certain 
average update count We measured performance 
of queries on the updated tuple and on any of 
remaining tuples, then averaged the results 
weighted by the number of such tuples Smce it 
takes 0 (n”) page accesses to update a single tuple 
for n times, owing to the overflow cham ever 
lengthening, we repeated the process only up to the 
update count of 4, which was good enough to 
confirm our subsequent analysis 

Performance of a query 1s highly dependent 
upon whether the tuple partlclpatmg in the query 
has an overflow cham We hypothesized that 
updating tuples with a high variance would alIect 
the growth rate slgnlficantly, owing to the presence 
of long overflow chains for some tuples and the 
absence of such chains for others However, the 
growth rate averaged over all tuples turned out to 
remain the same as the uniform distribution case 
For example, if we update one tuple m a temporal 
relation 1024 times, the average update count 
becomes one For a query like QOl, a hashed 
access to any tuple sharmg the same page ss the 
changed tuple costs 257 page accesses, while a 
hashed access to any tuple residing on a page 
without an overflow costs Just one page access 
Therefore, the average cost becomes three page 
accesses, the same as the umform distribution case 

We can extend this result to a more general 
case If the number of primary pages IS z with 
100% loading, there WI!! be approximately $2 
overflow pages for the average update count of one 
m a temporal relation Let y be the number of prr- 
mary pages which have overflow pages, and z be 
the number of primary pages which do not have an 
overflow, then y + z - z Since the average 

length of overflow chains IS 22 pages, the average 

cost of a hashed access to suchy a relation WI!! be 

VX(& +1)+2x1 
-1X F+ m-3 

If+2 2 2 

showing the same result as the more restricted 
case discussed above 

This reasoning can be generalized for other 
database types, access methods, loading factors, 
query types, and update counts m a similar 
fashion Now one more observation about the 
growth rate can be added 

l The growth rate IS independent of the dlstrrbu- 
tron of updated tuples 

We conclude that the results from the benchmark 
we ran under the assumption of umform dlstribu- 
tion are still valid for any other distribution 

6. Performance Enhancement 

As the results of the benchmark indicate, 
sequential scans are expensive Access methods 
such as hashing and ISAM also suffer from rapid 
performance degradation due to ever-growing 
overflow chains Reorganization does not help to 
shorten overflow chains, because all versions of a 
tuple share the same key 

Since lower loadmg reduces the number of 
overflow pages in hashing and ISAM, it results m a 
lower growth rate Hence better performance IS 
achieved with a lower loading factor when the 
update count IS high But there IS an overhead for 
mamtammg a lower loading factor, which may 
cause worse performance than a higher loading 
when the update count 1s low Lower loading 
requires more space for primary pages Scanning 
such a file sequentially (c g for query Q07 or Q08) 
IS more costly Especially for ISAM, lower loading 
requires more directory pages, which may increase 
the height of the directory For example, query 
QlO for the update count of 0 in Figure 7 reads in 
3385 pages with 50% loading, slgmllcantly hrgher 
than 2233 pages with 100% loading 

We conclude that access methods such as 
hashing or ISAM are not suitable for a database 
with temporal support There are other access 
methods that adapt more gracefully to dynamrc 
growth, such as B-trees, dynamic hashing, extendr- 
ble hashing, and grid files [Nlevergelt & Hmter- 
berger 19841 These methods require complex 
algorithms and slgmficant overheads to maintain 
certain structures as new records are added But 
the performance IS still dependent on the count of 
all versions, which may be sigmtlcantly higher than 
the count of current versions Furthermore, a 
large number of versions for some tuples will 
require more than a bucket for a single key, caus- 
ing slmllar problems exhibited m conventional 
hashing and ISAM It IS also difficult to maintain 
secondary indices for these methods, whrch often 

103 



spilt a bucket and rearrange its records, and to 
utlhze write-once storage medmm like optrcal 
disks Therefore, new storage structures and 
access methods tailored to the particular charac- 
terlstrcs of temporal databases are needed to 
enhance performance sigmficantly 

Databases wrth temporal support muntam 
both the current and the history data on line But 
the current and the history data exhibit clear 
differences m their charactenstrcs, such as the 
number of versrons, storage reqmrements, access 
frequency and update patterns These dlflerences 
make It natural to process them separately explort- 
mg their umque characterlstrcs Therefore, we 
adopt the ttvo level store with separate storage 
aress for the current and the hrstory data [Ahn 
19861 The pttmaty store contams current versions 
which can satisfy all non-temporal querres and pos- 
sibly some of frequently accessed history versrons 
The htstory store holds the remuning history ver- 
srons Thus scheme to separate current data from 
the bulk of history data can mlmmlze the overhead 
for non-temporal queries, and at the same trme 
provide a fast access path for temporal queries 

In addrtlon, queries retrrevmg records 
through non-key attributes (e g QOO and QO8) can 
be facilitated by secondsty tndeztng There are 
several alternative structures for a secondary index 
on a relation wrth multiple versions The Index 
may be stored mto a single file for all the versrons 
(1 level), or may itself be mamtamed as a t-level 
structure having a current Index for the current 
data and a history index for the hrstory data In 
each case, any storage structure such as the heap, 
hashing or ISAM may be chosen for the index 

Frgure 10 shows the estimated Input costs for 
the sample queries on the temporal database with 
the two level store and the secondary indexing, 
where ‘-’ indicates no change from the conven- 
tional case The advantage of the two level store 
IS evident m processmg static querres such as Q05 
through QlO The cost remams constant for any 
update count As shown under the column Sample 
in Figure 10, QlO on the temporal database with 
the update count of 14 costs 2233 pages instead of 
34493 pages Versron scan (QOl and QO2) can also 
be improved by clustering history versions of the 
same tuple into a mmlmum number of pages, e g 
28 history versions mto 4 pages ss the column 
Cludered in Frgure 10 shows 

Columns under 48 f-&eve1 m Frgure 10 show 
the estimated Input cost when an Index IS 

mamtamed as a single file on the amount attrl- 
bute for the temporal relation The index needs 
erght bytes for each entry, four for the secondary 
key and four for a tuple id, and hence can store 
101 entrres in a page of 1024 bytes Since there 
are 29 versions multrphed by 1024 tuples, 295 
pages are needed for the index If we store them 
m a heap, it costs 324 pages, 295 index plus 29 
data pages, to evaluate Q07 This IS m fact more 
expensive than the simple Zlevel store without any 
Index, though better than the conventronal struc- 
ture itself If we use hashmg for the index, the 
cost is reduced to 30 page accesses wrth 1 index 
page and 29 data pages 

If we use the Zlevel Indexing wrth a separate 
index for current data, there are only 1024 entries 
m the Index, requrrmg 11 Index pages Q07 costs 
12 pages wrth the heap index, whrle it costs only 2 
pages w&h the hashed Index, as shown m columns 
under 08 d-Level m Figure 10 Note the difference 
between 3717 pages and 2 pages for processmg the 
same query 

7. Summary 

We built a prototype of a temporal databsse 
management system by extending the statrc DBMS 
Ingres It supports the temporal query language 
TQuel, a superset of Quel, handhng all four types 
of databases static, rollback, hrstorrcal and tem- 
poral A benchmark with a set of queries was run 
to study the performance of the prototype on the 
four types of databases with two loading factors 
We analyzed the results of the benchmark, and 
Identified major factors that have the greatest 
impact on the performance of the system As far 
as the access methods of sequential scan, hashing 
or ISAM are concerned, the growth rate IS deter- 
mined by the database type and the loading factor, 
but Independent of the query type, the access 
method, or even the drstrlbutron of updated tuples 
A formula wss obtamed to estrmate the cost of a 
query on a database with multiple temporal ver- 
srons, when the cost of a query on the database 
with a single version IS known and its fixed portion 
IS Identified We also drscussed possible perfor- 
mance enhancements using two-level storage struc- 
tures and secondary mdexmg mechamsms tailored 
for databases wrth temporal support 
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Type 
Loading 

Static !! Rollback !! Histor1ed !! Temporal 

100% 50% 190% 50% 100% 50% 100% 50% 

Relation jlHlIjI=IlI HI1 HII HII HII HII HI1 

Notes. 
Relation H I a hashed file ‘UC’ denotes Update Count 

Relation I I an ISAM file ‘-’ denotes not spplrcable 

Figure 5: Space Requirements (m Pages) 
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Ftgure 6: Input Costs for the Temporal Database wrth 100% Loading 
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Figure 7: Input Costs for Four Types of Databases 
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(a) Temporal Databw wth 100!?6 Loadmg (b) Rollback Databae with so$J Loadmg 

FS9ure 8: Graphs for Input Pages 

Type Rollback Temporal 

Loadmg 100% 50% 100% 50% 

Cost (III Pages) Growth Cost (m Pages) Growth oet (m Pages) Growth Cost (III Pages) Growth 
Query Fued Vmsble Rate Fued Variable Rate ued Variable Rate Fued Variable Rate 

QOl 0 1 1 0 1 05 0 I 2 0 I 1 
1 1 1 2 1 05 1 1 2 2 1 1 

:: 0 129 1 0 257 05 0 129 199 0 257 1 
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QO5 0 1 1 0 1 05 0 1 2 0 1 1 
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Figure 9: Flxed Costs, Variable Costs and Growth Rates 
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Fiwre 10: Improvements for the Temporal Database with 100% Loading 
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