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Abstract

Various techniques have been developed to improve the per-
formance of wireless information services. Techniques such
as information broadcasting, caching of frequently accessed
data, and point-to-point channels for pull-based data re-
quests are often used to reduce data access time. To effi-
ciently utilize information broadcast, indexing and schedul-
ing schemes are employed for the organization of data
broadcast. Most of the studies in the literature focused ei-
ther on individual technique or a combination of them with
some restrictive assumptions. There is no study considering
these techniques working together in an integrated manner.
In this paper, we propose a dynamic data delivery model for
wireless communication environments. An important fea-
ture of our model is that data are disseminated through vari-
ous storage mediums according to the dynamically collected
data access patterns. Various results are presented in a set of
simulation studies, which give some of the intuitions behind
the design of a wireless data delivery system.

� Introduction

In a mobile computing environment, limited battery power,
scarce wireless bandwidth, and asymmetric communication1

impose a challenge to the design of a mobile system. A cri-
terion often used to measure the data access efficiency of a
mobile system is access time2. To reduce the access time,
three major classes of techniques, namely, data caching, in-
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�The downlink channels from a server to its clients have far more bandwidth ca-
pacity than the uplink channels from clients to the server.

�It is the time elapsed from the moment a mobile computer requests a data item
until that item is received.

formation broadcast (push-based), point-to-point data deliv-
ery (pulled-based), were investigated in [1, 9, 12]. Moreover,
research on balancing the push-based information broadcast
and pulled-based data delivery methods was conducted in
[2, 11, 16].

Broadcast schedule and cache management policies are
important for efficient utilization of broadcast channels on
the air and cache memory in mobile clients [1, 3, 13]. With
static data access patterns, it has been shown in [1] that the
broadcast disks outperformed the flat broadcast and the LIX
cache management policy did better than the LRU strategy.
In a previous paper [5], the broadcast disks were also shown
to have better performance than the flat broadcast when the
content of the broadcast channel and the client population
were not fixed.

When the database is very large, it is necessary to iden-
tify an appropriate subset of the database for broadcast.
Stathatos et al. investigated the dynamic adjustment of the
hot-spot for the broadcast program by monitoring “broad-
cast misses” [16]. Leong et al. investigated several mech-
anisms in selecting the proper database items for broadcast
and called these mechanisms air-storage management [14].
However, they did not consider the access probability collec-
tion mechanism together with the air-storage management.
The studies made in [14, 16] were for flat broadcast only
and data caching was not considered.

When data can be delivered by both broadcasting and
point-to-point services, the clients can select a delivery
method that will result in better access time. This requires
the server to inform the clients how the data items are sched-
uled for broadcast. One way to accomplish this is by broad-
casting an index of the data together with the data themselves
[2, 9, 16, 12, 13]. However, the index methods proposed are
mainly for power conservation based on the idea of selective
tune-in. Furthermore, many of the above studies assumed
one shared back channel for all users. As such, responses for
client requests are sent back to the clients on the broadcast
channels, thus requiring the clients to monitor the broadcast
channels for the results.

In this paper, we study a hierarchical data delivery
(HDD) model which integrates data caching, information



broadcasting, and pull-based point-to-point data delivering.
Compared to the previous studies, the focus of this paper is
how to achieve low access time by a combination of these
techniques. In particular, we assume that point-to-point
channels are available not only for sending queries from the
clients to the server but also for returning results from the
server back to the clients.

In HDD, the client cache and the broadcast schedule are
dynamically adjusted based on the clients’ access patterns
to minimize access time. For example, according to the ac-
cess frequencies, data can be stored in cache, broadcast on
broadcast channel, or passively stored on the server waiting
for pull requests to arrive. The hot spot of the uncached data
can be obtained by asking the clients to monitor the cache
misses and then piggyback the information to the server on
some subsequent pull requests.

The performance of HDD is evaluated by simulation.
The effects of various techniques on the overall performance
(e.g., the performance is compared under different broadcast
scheduling techniques and index techniques) are carefully
studied with our experiments. In summary, the main contri-
butions of our research includes:

� a hierarchical data delivery model integrating various
wireless data access techniques such as point-to-point
channels, broadcast channels and data caching;

� new data dissemination methods are defined for this
model;

� indexing methods are explored in this integrated envi-
ronment;

� both broadcast disks and flat broadcast scheduling
methods are studied in this integrated environment3

with various client population and dynamically chang-
ing access patterns.

The rest of the paper is organized as follows. Section 2
gives an overview of the individual techniques employed in
the hierarchical data dissemination system. Section 3 de-
scribes the basic ideas of hierarchical data dissemination.
Section 4 describes the simulation model developed for the
evaluation of the hierarchical data delivery system. Section
5 presents a set of experiments and the simulation results
obtained from the model. Finally, Section 6 concludes the
paper.

� Background

In this section, we provide an overview of the individual
techniques employed in the hierarchical data dissemination
system.

�In most of the previous work, broadcast disks and flat broadcast methods were
compared within a pure broadcast environment or a non-integrated environment con-
sisted of some data access methods we consider in this paper.

��� Channel Allocation

Three channel allocation methods, namely, exclusive broad-
cast, exclusive on-demand, and hybrid allocation (hereafter,
denoted as Pure Push, Pure PULL, and HDD, respectively)
were explored in [11]. Exclusive broadcast and exclu-
sive on-demand methods use all channels for either broad-
cast or on-demand services, respectively. For HDD, both
broadcast channels and on-demand channels4 are used. The
clients may obtain data from either broadcast channels or
on-demand channels but not both. That is, at any time, a
client either monitors the broadcast channels for the desired
data to appear or makes a pull request to the server for an
on-demand delivery of the data.

��� Broadcast Scheduling

To efficiently deliver data on broadcast channels, the content
organization and data broadcast scheduling could be deter-
mined based on client access patterns. A simple broadcast
scheduling method, called flat broadcast (denoted as FLAT),
broadcasts each data item only once in a broadcast cycle.
However, with a skewed access pattern, flat broadcast may
not perform well. In this situation, broadcast disks (denoted
as B DISK) [1] is an excellent broadcast scheduling method.
With broadcast disks scheduling, the server divides a broad-
cast cycle into groups called disks. Each disk is broadcast
with a different frequency in a broadcast cycle in order to im-
itate multiple disks spinning at different speeds. The broad-
cast frequencies of disks are in proportion to the probability
of access in order to gain the optimal access time of the sys-
tem. In this paper, broadcast disks and flat broadcast sched-
ules are referred to as broadcast programs.

��� Client Access Statistics Collection

To guarantee the success of the broadcast scheduling, a
server has to know the data access patterns in its user pop-
ulation, which may change with time. For example, during
rush hours, users normally have more interest in traffic in-
formation. At noon, some people may like to take a break to
check their stock portfolio. In the evening, some shoppers
may be engaged in an auction event. To obtain the dynam-
ically changing data access patterns of users, a bit vector
mechanism was proposed in [5]. By receiving piggyback
client access information along with the pull requests from
the clients, a server can record the number of pull requests
for each data item and the number of hits produced by its
broadcast programs.

In the following, we briefly describe the method we used
to capture data access patterns5. In this method, each data
item i is associated with a score, �i�j , where j represents j-th
broadcast evaluation cycle. An evaluation cycle is a broad-
cast cycle where the scores of data items are computed. As

�On-demand services are implemented with point-to-point channels. Thus, we use
on-demand channels to refer to the point-to-point channels where it’s appropriate.

�[14] proposed a similar method called EWMA.



a result, broadcast programs are adjusted based on the item
scores. The data items with higher scores are more likely
to be broadcast. The period of an evaluation cycle is called
the evaluation period (denoted as �). Let �i�j denote the
client access statistics accumulated for item i between (j-
1)-th and j-th evaluation cycles. The score is computed as,
�i�j � ��i�j�� � �i�j , where � � � is a decaying factor and
� � �. The � guarantees that the impact of an old access
frequency decreases with time.

��� Indexing and Schedule Caching

There are a few indexing methods for wireless data broad-
cast appeared or to appear in the literature [7, 8, 9, 12, 13].
The general idea is to interleave index information with data
on the broadcast channels such that the mobile clients, by
first retrieving the index information, are able to obtain the
arrival time of the desired data items on the broadcast chan-
nels . Based on the index information, the client may select
between broadcast and on-demand channels to obtain data
with a smaller access time.

The integrated signature method was discussed in details
in [12, 13]. In this method, a signature is broadcast before
a group of consecutive items from which that signature is
constructed. However the signature methods developed in
[12] are for energy efficient data retrieval. An access efficient
signature method is discussed in this paper.

To provide accurate broadcast schedule, the server inter-
leaves integrated signatures with data for broadcast. In this
paper, we propose to use a signature for indexingSigGroup
of the up-coming data frames. The number of items be-
tween two signatures, SigInterval, may be less or equal
to SigGroup. By selecting the appropriate SigInterval,
we may decide the degree of overlap between two consecu-
tive signature groups. On the client side, a query signature
is generated in a similar way based on the query specified by
the user. By checking the signatures broadcast, the mobile
computer can decide whether the forthcoming item group
contains the desired data or not. Although signatures incur
index overhead, such an overhead is low since the signature
size is usually very small.

An alternative approach for predicting the arrival of data
items is the cached schedule method. Instead of broad-
casting indexing information with data frames, the complete
broadcast schedule is broadcast at the beginning of each cy-
cle. The clients monitor the broadcast channels to retrieves
schedules into their caches. Based on the schedules, a client
can make selection between broadcast and on-demand ser-
vices to minimize access time. A major drawback of this
approach is the update of cache due to disconnected opera-
tions by mobile clients [4].

Contrast to the indexing approaches, a server may choose
to broadcast only the data on the broadcast channels. We
call this approach non-index. Since there is no index over-
head for the broadcast channel, the data management for

broadcast is simple. Since the mobile clients do not know
when the requested data frames will appear on the broadcast
channels, it may be difficult for them to determine a better
data access method between broadcast mode and on-demand
mode.

� Hierarchical Data Dissemination

In this section, we introduce a hierarchical data dissemina-
tion system for wireless data access. In this system, caching,
broadcasting and pull-based delivery are used together to
minimize the access time. Logically speaking, data are
stored in a hierarchy of media where the most frequently ac-
cessed data are cached in the client, the commonly requested
data subset is temporarily stored on broadcast channels, and
the rest of data must be pulled from server via explicit client
requests. Data caching and push-based data dissemination
alleviate pull-based request considerably, as most frequently
access data are retrieved either from the client’s cache or the
broadcast channel. On the other hand, requests for infre-
quently accessed data can always be served on point-to-point
channels.

When a user issues a query to the mobile client, the client
first searches its cache. If there is a valid copy in the cache,
an answer is replied immediately. Otherwise, the client at-
tempts to obtain the data item from the server site. The data
access operations at the client is dependent on the index-
ing methods supported by the server. When the non-index
method is used, the client first monitors the next Threshold
number of data frames on the broadcast channels. If the
desired data items are found, then they are retrieved into
the client cache. If they are not found after monitoring
Threshold data frames, the client turns to on-demand data
service and issues a pull request to the server. When the
cached schedule approach is adopted by the server, the client
checks the broadcast schedule in its cache. If the desired
data items will appear within the next Threshold number of
data frames on the broadcast channels, the client monitors
the broadcast channels. Otherwise, the client issues a pull
request to the server immediately. Finally, if the integrated
signature approach is adopted by the server, the client first
monitors the data items and the signatures on the broadcast
channels. If the signatures indicate that the desired data item
will be broadcast in the cycle and that the number of data
frames before the desired data item appears in the broadcast-
ing cycle is less than Threshold, then the client continues
to monitor the broadcast channels and retrieves the item into
the cache when it arrives. Otherwise, the client issues a pull
request to the server.

� Performance Model

In this section, we describe a simulation model used for eval-
uation of the HDD system. The simulation model consists of
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Figure 1: Simulation Model.

DataItemSize Size of a data item in bytes
NumClient Number of clients in a cell
DatabaseSize Number of data items in the database
NumChannel Number of channels in a cell
pullV Spush Ratio between the broadcast and the on-demand channels
DownlinkBW Channel bandwidth from the server to the client
UplinkBW Channel bandwidth from the client to the server

Table 1: System Parameter Description.

a single server, a set of clients, and a fixed number of chan-
nels (Figure 1). Some of the channels work in on-demand
mode, while the rest is in broadcast mode6.

Table 1 describes the configuration and the physical re-
source parameters of a cell. The database is modeled as
a collection of DatabaseSize data items. Each item has
DataItemSize bytes. There are NumChannel channels
in a cell. For the exclusive channel allocation approach, all
NumChannel channels work in either on-demand mode or
broadcast mode. For HDD approach, the channel allocation
made between broadcast and on-demand modes is fixed such
that the ratio between the number of broadcast channels and
the number of on-demand channels is pullV Spush. The
downlink bandwidth DownlinkBW is greater than uplink
bandwidth client UplinkBW .

��� The Client Model

Each client is modeled by a process7, which consists of
a sub-process called query generator. After the current
query request is finished, query generator waits for a pe-

�The models for exclusive channel allocation are special cases of the HDD model.
�[2, 16] modeled a large client population by one client process. Since the client-

server model is not memoryless due to data caching, the interleaving of push and pull
slots, and the bounded server process capability, a single client process may not exactly
reflect the true contention on the uplink channels among the clients.

riod of ThinkT ime and then makes the next query request.
ThinkT ime is a parameter used to model workload pro-
cessing as well as the relative speeds of the CPU. Table 4.1
presents the parameters used to model the resource and the
data access pattern of each client.

Query generator runs a continuous loop that requests a
data item according to a specific distribution (Zipf or Gaus-
sian). Each client has CacheSize cache. Sub-process page
receiver keeps on monitoring the broadcast channels and be-
comes active when a data item arrives. For each client which
is monitoring the broadcast channels, it checks whether the
forthcoming item is the desired one for that client. If the
data item is the requested one, it is brought into the client’s
cache.

When the client finds that the desired items cannot be
obtained within the next Threshold items on the broad-
cast channels, it stops monitoring the broadcast channels and
turns to the on-demand service by activating a sub-process
called pull manager. Once activated pull manager issues a
pull request (size ofPullReqSizebytes) for a point-to-point
connection with the server. Upon receipt of the pull request,
the server tries to establish a connection with the client and
returns the data item to the client when the connection is es-
tablished.

Two different distributions, Zipf (also used in [10]) and



CacheSize Client cache size (in data items)
PullReqSize Size of a pull request in bytes
ThinkT ime Mean think time (in seconds) between queries for each client
Threshold Threshold for the client to select between broadcast and on-demand
AccessRange Queries access range
� Zipf distribution parameter
� Width of hot-spot for Normal distribution
� Center of hot-spot for Normal distribution

Table 2: Client Parameter Description.

ProgramSize Number of distinct data items in broadcast program
DiskNum Number of disks for B DISK

DiskSizei Size of disk i (in data items)
DiskFreqi Relative broadcast frequency of disk i
SigSize Integrated signature size (in bytes)
SigGroup Number of data items integrated in a signature
SigInterval Interval between two consecutive signatures
� evaluation period
� decaying factor for the computation of item scores

Table 3: Server Parameter Description.

Gaussian (used in [16] as well), are used to model the data
access patterns in the experiments. The Zipf distribution
(with parameter �) is frequently used to model skewed ac-
cess patterns where � is a parameter named access skew-
ness coefficient and can be varied from zero to one. The
distribution becomes increasingly “skewed” as � increases.
The Gaussian distribution, Normal��� ��, is used to model
the dynamic changes in the access patterns with the cen-
ter of hot-spot � and the width of hot-spot �. During the
experiments, the value of � can be varied to create the ef-
fect of dynamic workload and the value of � reflects the
skewness of client access patterns. Only data items within
� � AccessRange are accessed.

��� The Server Model

The server performance is modeled by the process broad-
cast manager. Table 4.1 gives the parameters used to de-
scribe the resource of the server, the structure of the broad-
cast program, and the index built on the broadcast data.
For B DISK, only the content of the broadcast program
is tailored to meet the access patterns collected. The struc-
ture of the program is determined by several parameters:
ProgramSize is the number of data items scheduled to be
broadcast in the program, DiskNum is the number of disks
in the program, and DiskSizei, i � ��� 	 	 	 � DiskNum�, is
the number of data items assigned to disk i which is broad-
cast at a speed of DiskFreqi. In addition to the broadcast
schedule, parameters for the estimation of data access pat-
terns and for the signatures are also described in the table.

� Experiments and Results

Table 5 defines the system parameter settings used in the
experiments. We assume that there are 20 channels in a
cell. Therefore, there are 20 channels for on-demand ser-
vice or for broadcast service when exclusive channel alloca-
tion methods are used. For HDD, the number of broadcast
channels is equal to the number of on-demand channels (i.e.,
pullV Spush is 1:1).

The client population in a cell varies from 10 to 1000.
The server maintains a database of 3000 self-identifying data
items. All data items have the same size (1000 bytes). A pull
request size is 10 bytes. The downlink bandwidth is 10000
bytes/second and the uplink bandwidth is 100 bytes/second
(1% of the downlink bandwidth). The client cache size is
50 data items. LRU-K scheme is used to manage cache re-
placement [3]. In LRU-K scheme8, the cache management
keeps track of the times of the last K references to popular
data items and selection is based on the past K hits history.
The mean think time between two consecutive queries is 10
seconds.

The number of items grouped in a signature is 500. The
signature has the smallest size which still guarantees low
false drop probability of the signature. Through experi-
ments, 256 bytes were found to be the appropriate signature
size for 500 data items. The number of distinct data items in
the broadcast program (for both B DISK and FLAT) is 600,
while the client access range is � � ����. Two disks are

�In [6], LRU-K police is shown to outperform LIX policy proposed in [1] when
dynamic broadcast programs are used in the system.



Parameters Values Parameters Values
DataItemSize 1000 bytes NumClient ��� � � � � ����
DatabaseSize 3000 data items SigSize 256 bytes
AccessRange 1000 data items SigInterval 100 data items
PullReqSize 10 bytes GroupSize 500 data items
NumChannel 20 DownlinkBW 10000 bps
pullV Spush 1:1 UplinkBW 1 % of downlink bandwidth
ThinkT ime 10 seconds Threshold ��� data items
ProgramSize 600 data items DiskSizei DiskSize�=200,DiskSize�=400
DiskNum 2 DiskFreqi DiskFreq�=2,DiskFreq�=1
CacheSize 50 data items � 0.95
� 100 data items � randomly selected winthin AccessRange
� 10 cycles � 0.9

Table 4: Parameter Settings for the Experiment.

used in B DISK where the fast disk size is 200 data items,
while the slow disk size is 400 items, with the relative spin
speeds being two and one, respectively.

We examine the performance of the exclusive channel al-
location approaches and HDD for the dynamic workload en-
vironments. There are two circumstances when the dynamic
workload happens. The first case is when the clients join
the system with empty cache and the server does not know
the client access patterns. In the second case, the existing
clients change their access hot-spots with time. For HDD,
the server first randomly selects a data set for the broadcast
program. Obviously, for the the exclusive channel allocation
approach, dynamic workload only affects the client cache;
for HDD, dynamic workload has influences on not only the
client cache but the content of the broadcast program as well.

We define a client to be in the stable stage if the client
has performed at least 4000 accesses after the client cache
is filled. A cell is at stable stage when all clients in the cell
are in the stable stage. Otherwise the cell is in the initial
stage. Unless otherwise specified, the access time results
are obtained when the cell reaches a steady state such that
the warm-up effects in the client cache and the broadcast
program are eliminated. In the experiments, the primary
performance metric employed is the average access time,
measured in seconds. The simulation is implemented using
CSIM [15].

In what follows, we investigate the system performance
subjected to client populations, index methods, threshold
values, hybrid channel allocation schemes, and data access
patterns. The purpose is to examine the adaptiveness of the
system for different workloads and system parameter set-
tings. The client access patterns are assumed to follow the
Zipf distribution with the default Zipf parameter set to 0.95.
Finally, we evaluate the influence of dynamically changed
client access spots to the system performance. The client
access patterns are assumed to follow the Gaussian distribu-
tion.

��� Client Performance

In this set of experiments, the adaptiveness of HDD for
firstly joined clients is evaluated. To provide comparison
baselines, we introduce the ideal HDD: ideal Flat and ideal
broadcast disks with respect to FLAT and B Disk. For the
ideal ones, the system (both the clients and the server) knows
the exact client access patterns and HDD disseminates in-
formation according to the optimal access distribution such
that the most frequently accessed data subset is cached in
client, the less frequently accessed data subset is provided
by broadcast, and the rest is pulled from the server by ex-
plicit requests. The broadcast program for broadcast disks
is also constructed according to the access probability of the
data subset. The ideal HDD is the ultimate performance goal
of our system.

����� Adaptiveness under Di�erent Index Schemes

To study the influence of client population on performance,
the average access time is evaluated as a function of the
client population. Figure 2 compares B DISK and FLAT us-
ing different index methods (i.e., cached schedule, signature,
and non-index) with the ideal HDD (labeled as OPT BD and
OPT FLAT). For clarity and brevity, only the system perfor-
mance in the stable stage is shown. As an aside, experiments
showed that the system performs better in the stable stage
than in the initial stage because of better cache performance
and more accurate estimate of access statistics when the sys-
tem is operating beyond the initial stage.

For different index methods, the cached schedule always
does the best while non-index always does the worst for both
FLAT and B DISK. This is because the cached schedule can
provide precise broadcast schedule and as such allows the
clients to immediately decide whether to monitor the broad-
cast channel or go uplink for point-to-pint connection with-
out monitoring the broadcast channels. At the other extreme,
the non-index approach provides no broadcast schedule in-
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formation to the clients and the clients have to monitor the
broadcast channels first. The signature provides index infor-
mation to the clients and hence, by retrieving the signatures,
the clients are able to make selection between broadcast and
on-demand services ahead of time. Thus, the performance
for signature index does significantly better than non-index
approach.

It is obvious that both FLAT and B DISK manage to fol-
low the ideal ones very well. There is a certain gap between
the real approaches with the ideal approaches due to the mi-
nor imprecision of the access patterns collected by the server
comparing to the ideal access patterns. Moreover, the non-
ideal LRU K page replacement strategy may introduce some
hit-misses for cache management. For the signature and the
non-index methods, the need to monitor the broadcast chan-
nels for the desired pages increases the gap. Although FLAT
and B DISK may never achieve the ideal performance, the
dynamic broadcast program is still an effective approach be-
cause of its adaptiveness to the system.

When the cell is not under heavy-loaded (i.e., clients pop-
ulation less than 700 in Figure 2), B DISK always gives
a better performance than FLAT approach. This is consis-
tent with the results obtained for static broadcast program
[2]. However, for heavy-loaded cells, the performance of
B DISK is worse than that of FLAT. In Figure 2, we can see
that FLAT outperforms B DISK when the client population
is greater than 800 for the non-index and the signature meth-
ods and 700 for the cached schedule method. There are two
possible reasons for that. First, the accuracy of client ac-
cess patterns is more important to B DISK than to FLAT. As
mentioned above, the access information collected becomes
less precise when the cell is heavy-loaded. Second, within

the same Threshold slots of the broadcast channels, FLAT
provides more distinct data items than B DISK. Thus, there
are more query requests turning to the pull based services in
B DISK than in FLAT.
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Figure 3 contrasts the performance of the index methods
with the exclusive broadcast (Pure-Push) and exclusive on-
demand methods (Pure-Pull). For clarity, we only include
the performance of the signature method under FLAT and
B DISK since its performance is in between the non-index
and cached schedule methods. As expected, the Pure-Pull
approach is good only when the system workload is light
(left side of the figure). The access time for this method
degrades rapidly as the client population grows. When the
number of clients is beyond 600, Pure-Pull performs worse
than B DISK and FLAT for any index methods. Since the
page replacement algorithm for client caching is the same for
HDD and Pure-Pull, the improvement of the performance
for HDD over Pure-Pull is a result of the tailored broadcast
program. The performance of Pure-Push is not affected by
client population and always does the worst. Compared with
Pure-Push, HDD manages to broadcast only the hot-spot on
the channel and hence avoids wasting broadcast bandwidth.

����� Evaluation of Signature Schemes

To find out the influence of the number of items grouped in
a signature, we vary the number of items in the group from
100 to 600 while the signature period is fixed to 100 (see Fig-
ure 4). Three different client populations, light-loaded cells
(i.e., 100 clients), medium-loaded cells (i.e. 500 clients), and
heavy-loaded cells (i.e., 1000 clients), are evaluated. For any
client population, the greater the number of items in a sig-
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nature group the better the system performance. However,
when the number of items in a group reaches 500, the im-
provement becomes flat. This is because when the broadcast
program consists of 600 items most of items are already in-
cluded in the group.
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Figure 5: Signature Interval vs Access Time.

In Figure 5, the number of items in a group is fixed to 500
while the signature broadcast period is varied. Obviously,
period 100 is the best choice. In these two sets of exper-
iments, except heavy-loaded cells, B DISK always outper-
forms FLAT.

����� Impact of Threshold

Since the frequently accessed data set is cached in clients
and the rarely accessed part of the database is explicitly
pulled from server database, the broadcast program can be
made very compact. For example, in our model, 600 data
items are broadcast. Compared with broadcasting the entire
database approach (i.e., Pure-Push), this effectively avoids
wasting scarce broadcast bandwidth. Furthermore, it im-
poses an upper bound to the waiting time for data retrieval
from the broadcast. For FLAT, the average waiting time is
half of the entire broadcast program, while for B DISK it is
less than half of the entire broadcast program.

In addition to tailored broadcast programs and index
methods, a proper threshold mechanism is needed for the
effectiveness of the broadcast channels. While the broad-
cast channels are the second hot-spot (next to the cache)
where mobile clients may receive the desired data items, the
threshold mechanism allows a client to determine whether it
should stay with the broadcast channels patiently or switch
to on-demand service. If the desired data usually appears
on the broadcast channel within the preset threshold period,
a considerable number of explicit pull requests can be re-
duced because of high air hits. Consequently the workload
of the server is alleviated and on-demand channel congestion
is avoided. Figures 6 and 7 give the experimental results re-
lated to the threshold mechanism. In this set of experiments,
the signature index is used.
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Figure 6: Access Time vs Client Population with Various
Threshold Values.

Figure 6 shows the impacts of client population on the
access time for three threshold values: 100, 300, and 600,
which control the utilization of the air cache from low to
high level. The thresholds are given as the number of data
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Figure 7: Threshold Value vs Access Time.

items in a broadcast cycle. For example, a threshold 100
would restrict the client from sending pull requests for any
items that would appear within the next 100 data items of
the broadcast program. For small threshold (i.e., 100), the
performance is similar to Pure-Pull approach and is very
bad. The reason is that only a small percentage of cache
misses can get their answers within the next ��� pages of the
broadcast cycle and most of the cache misses goes uplink to
the server. Due to the low utilization of the broadcast data
service, HDD has a similar performance as the Pure-Pull
approach. In general, the larger is the threshold value, the
shorter is the access time. The only exception is when the
cell is light-loaded where HDD with small threshold value
tends to yield a good performance as in Pure-Pull. This is
because there is plenty of on-demand bandwidth to satisfy
the requests of a small client population and small threshold
lets the client spends less time in estimating the arrival time
of the desired data.

Figure 7 shows the results of the threshold values as
a function of the access time. For medium-loaded cells
(500 clients) and heavy-loaded cells (1000 clients), the ac-
cess time decreases as the threshold values are increased.
However, after the threshold values reach a certain value
(around 600, the whole broadcast cycle), further increase
would degrade the performance. For light-loaded cells (100
clients), the access time always increases as the threshold
values are increased. However, the amount of increment is
small. Hence, it can be concluded that a large threshold
value should be used in HDD to efficiently utilize the data
on the broadcast channel.

����� The In�uence of Channel Allocation

Intuitively the percentage of the channels allocated between
broadcast and on-demand data services has direct impact on
the relative performance of HDD. In the previous experi-
ments, the percentage of on-demand channels (or broadcast
channel percentage) is set to 50% of the total number of
channels in a cell. Figure 8 compares the performance of
HDD with different channel allocation schemes. For exam-
ple, on-demand bandwidth takes up 30%, 50%, and 70% of
the total channel bandwidth. In the experiments, the same
signature index is used (i.e., item group size is 500 and sig-
nature interval is 100) and the threshold is set to 600 for both
B DISK and FLAT.
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Figure 8: Impacts of Bandwidth Allocation.

When most channels work in on-demand mode (i.e.,
curves labeled with pullBW 70%), the system performance
is similar to pure-push method. For example, both B DISK
and FLAT give similar performance regardless to the client
population, because the majority of the query requests is
answered by data cache and data broadcast and there are
enough channels for pull-based data delivery. In contrast,
when most of channels are in broadcast mode (i.e., curves la-
beled with pullBW 30%), the system has good performance
for light-loaded cells but poor performance for heavy-loaded
cells, because the small number of on-demand channels is
not able to satisfy the pull-based data delivery for heavy-
loaded cells. When the number of channels in broadcast
and on-demand modes is the same (i.e., curves labeled with
pullBW 50%), in general, the system performance is better
than the other two allocation schemes.



����� In�uence of Access Patterns
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Figure 9: Influence of Client Access Pattern.

Figure 9 shows the impact of client access patterns on the
performance of HDD. In the experiments, the Zipf distribu-
tion parameter � is varied while the number of clients is set
to 500. To make comparisons, Pure-Push and Pure-Pull are
also included in the figure. As the access pattern becomes in-
creasingly skewed (right part of the figure), all methods give
better performance. However, the amount of improvement is
different. For example, B DISK has much greater improve-
ment than the other methods. When the data access patterns
are flat (i.e., at the left part of the figure), FLAT has a bet-
ter performance than B DISK and the situation is reversed
when data access patterns become increasingly skewed (i.e.,
the right part of the figure). This is consistent with the in-
tuition that B DISK does better than FLAT only for skewed
data access patterns.

��� Performance for Changing Hot�Spot

To evaluate the performance of HDD in dynamic workloads,
a set of experiments is conducted under the assumption that
the client access patterns follow the Gaussian distribution
(refer to Figure 10). The effect of dynamic workload is cre-
ated by varying the focus of the client access patterns. This
is achieved by eliminating a hot-spot � and randomly gener-
ating a new hot-spot in the server database. To interpret the
impact of hot-spot migration on the system performance, we
assumed that all clients have the similar hot-spots and they
change access demand at the same time. Clients stay with
each hot-spot for Duration periods of simulation time.

In Figure 10, we show the results obtained as a function
of Duration minutes, where the client population is 500, the
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Figure 10: Migration of Hot-spot.

data access range is between � � ����, and � is set to 100.
To provide the comparison baseline, Pure-Pull is also in-
cluded in the figure. Obviously for all three methods, the
performances are improved when the Duration is increased.
Pure-Pull performs the worst compared with B DISK and
FLAT.

If we focus on B DISK and FLAT, FLAT does better than
B DISK for small Duration such as Duration � ��� min-
utes, but B DISK performs better when Duration is greater
than 600 minutes. This is because it takes time for the
server to learn the correct data access patterns. Furthermore,
B DISK has a stricter requirement on the precision of the
data access patterns than FLAT. With small Duration, the
broadcast program of B DISK may not reach steady state or
the matured broadcast program is obtained shortly before the
clients change access hot-spot to a new one. As a result, the
benefit of B DISK has no time to show. Only when the sys-
tem reaches steady state and stay there long enough would
B DISK gives better performance than FLAT.

	 Conclusion

In this paper, we evaluate the performance of a hierarchical
data delivery system for asymmetric communication envi-
ronments, where information can be retrieved from different
media (i.e., client cache, broadcast channels, and the server
database by pull requests) to achieve the maximum access
advantages. The way data are disseminated is determined
dynamically by the access patterns of the clients, not by pre-
compiled user profiles. The broadcast program is tailored ac-
cording to access patterns so that only the most desired data



subset is scheduled to broadcast. Pull requests are needed
only when the desired data cannot be found in the client
cache or from the broadcast program.

A simulation model was developed to evaluate the per-
formance of the data delivery system. We found that the
system adapts to the dynamically changing workload very
well. We demonstrated that with the appropriate threshold,
index methods and bandwidth allocation methods can im-
prove the performance and scalability of the system. In gen-
eral, broadcast disks and flat broadcast have better perfor-
mance than pure pull approach when data access patterns
are skewed. For skewed data access patterns and less dy-
namic workloads, broadcast disks outperform flat broadcast.
However, pure pull technique is a better choice for random
data access patterns or highly dynamic workloads.

As future work, we will investigate ways to dynamically
adjust the ratio between pull and push bandwidth according
to the server workload and the impact of different broadcast
program structure (i.e., the size of broadcast program etc.)
on the performance of data delivery. Moreover, we will in-
clude the dissemination of updates in the hierarchical data
delivery system.
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