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Abstract: This paper evaluates the performance of robust adaptive tracking techniques with the
direct-state Kalman filter (DSKF) used in modern digital global navigation satellite system (GNSS)
receivers. Under the assumption of a well-known Gaussian distributed model of the states and the
measurements, the DSKF adapts its coefficients optimally to achieve the minimum mean square
error (MMSE). In time-varying scenarios, the measurements’ distribution changes over time due
to noise, signal dynamics, multipath, and non-line-of-sight effects. These kinds of scenarios make
difficult the search for a suitable measurement and process noise model, leading to a sub-optimal
solution of the DSKF. The loop-bandwidth control algorithm (LBCA) can adapt the DSKF according
to the time-varying scenario and improve its performance significantly. This study introduces two
methods to adapt the DSKF using the LBCA: The LBCA-based DSKF and the LBCA-based lookup
table (LUT)-DSKF. The former method adapts the steady-state process noise variance based on the
LBCA’s loop bandwidth update. In contrast, the latter directly relates the loop bandwidth with the
steady-state Kalman gains. The presented techniques are compared with the well-known state-of-
the-art carrier-to-noise density ratio (C/N0)-based DSKF. These adaptive tracking techniques are
implemented in an open software interface GNSS hardware receiver. For each implementation, the
receiver’s tracking performance and the system performance are evaluated in simulated scenarios
with different dynamics and noise cases. Results confirm that the LBCA can be successfully ap-
plied to adapt the DSKF. The LBCA-based LUT-DSKF exhibits superior static and dynamic system
performance compared to other adaptive tracking techniques using the DSKF while achieving the
lowest complexity.

Keywords: global navigation satellite system (GNSS); scalar tracking loop (STL); direct-state Kalman
filter (DSKF); lookup table direct-state Kalman filter (LUT-DSKF); loop-bandwidth control algorithm
(LBCA); adaptive tracking techniques

1. Introduction

Global navigation satellite system (GNSS) receivers synchronize with GNSS signals
to decode the navigation message, measure the pseudo-range and pseudo-range rate,
and calculate a position, velocity, and time (PVT) solution [1,2]. The synchronization
consists of two stages: Acquisition and tracking. Acquisition performs a coarse estimate of
the synchronization parameters, whereas the tracking stage provides an improved estimate.
The latter stage uses the scalar tracking loop (STL) to refine the synchronization of the
incoming GNSS signals [3,4]. The STL replicates a synchronization parameter for every
loop iteration. The synchronization lock is achieved when the difference between the true
parameter and its replica (i.e., the estimation error) tends to zero [3]. The carrier phase
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θ, the carrier Doppler fd, and the code phase τ are the GNSS signal parameters in which
the GNSS receiver must synchronize. Therefore, a tracking channel comprises three STLs:
phase locked loop (PLL), frequency locked loop (FLL), and delay locked loop (DLL). A
correlator, a discriminator, a loop filter, and a numerically controlled oscillator (NCO)
compose the STL [5,6]. The STL’s configuration parameters are the type of discriminator,
the loop bandwidth B, the integration time τint, the order p, and the correlator spacing.
These parameters determine the robustness against noise and signal dynamics. The well-
known trade-off between noise filtering capabilities and signal dynamics resistance is the
main problem of standard STLs with fixed configurations [7]. For instance, a high-order
STL with wide loop bandwidth and short integration time is adequate to track rapidly
changing parameters. In contrast, a low-order STL with narrow loop bandwidth and long
integration time is preferable to track noisy parameters.

Time-varying scenarios are characterized by different realizations of signal dynamics,
noise, and fading effects. These changing effects challenge the synchronization capability
of the tracking stage [1,7]. Since traditional tracking lacks resilience due to its fixed configu-
ration, there has been significant research towards robust tracking solutions to solve this
problem [8,9]. However, there is still ample investigation to find the optimal technique in
terms of performance and complexity [7].

The Kalman filter (KF) is an optimal infinite impulse response (IIR) estimator under
the assumption of linear Gaussian error statistics [10–12]. Good knowledge of the process
noise covariance Q and measurement noise covariance R allows the KF to optimally adapt
its coefficients to achieve the minimum mean square error (MMSE) [13]. There are several
KF implementation methods in STLs [14] grouped into error-state Kalman-filter (ESKF) and
direct-state Kalman filter (DSKF) [15]. The former replaces the loop filter of the STL with a
KF whereas the latter considers the whole STL part of the KF. In the ESKF, the measurement
is the discriminator’s output, and the predicted measurement drives the NCO. A detailed
study of this architecture has been done in previous research [16–19]. The complexity of
the ESKF is a limiting factor but it can be reduced taking advantage of the Kalman gains’
convergence in the steady-state [19]. The DSKF is more straightforward to implement than
the ESKF since it considers the whole STL part of the KF. In this case, the measurement
is the synchronization parameter, the innovation is the discriminator’s output, and the
loop filter and the NCO are the core of the KF. This method benefits from the simplicity of
relating the coefficients of the standard STL with the Kalman gains of the DSKF [20].

The MMSE is only achieved if á priori knowledge of Q and R is available or if these
are accurately estimated [13]. If this is not the case, the KF tends to be a sub-optimal
solution [21]. The difficulty of finding the correct Q and R values increases even more in
time-varying scenarios since these parameters are continuously changing [20]. Different
methods to estimate the noise covariances of the KF have been summarized in a review
study [22]. One solution can be to implement a moving average filter to estimate Q and
R [23]. Moreover, it is possible to implement a carrier-to-noise density ratio (C/N0)-based
DSKF, in which R depends on the variance of the STL discriminator’s output [24]. Q
can also be adapted according to the dynamic stress error [25]. Another solution is the
implementation of an ESKF combining long non-coherent integrations to improve tracking
sensitivity [26]. Moreover, a weighted adaptive ESKF can be implemented for scenarios
with unknown C/N0 [27].

Figure 1 presents a roadmap of the studies. Previous research [7] evaluated three
adaptive tracking techniques in the standard STL: the loop-bandwidth control algorithm
(LBCA), the fast adaptive bandwidth (FAB), and the Fuzzy logic. The LBCA was superior
to the other techniques regarding tracking performance, system performance, and com-
plexity. This technique adjusts the STL’s loop bandwidth based on the statistics of the
discriminator’s output [28]. The current research extends the LBCA by implementing it
in the DSKF. The relationship between the STL and the DSKF, referred to as the dashed
red line, facilitates the LBCA’s implementation in the DSKF. The LBCA’s estimated loop
bandwidth can be related to Q and R in the steady-state. Suppose one of the covariances is
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set to a constant value. In that case, the remainder covariance can be updated based on the
LBCA’s bandwidth update.

In addition, the DSKF can be simplified considering the convergence of the Kalman
gains in the steady-state, referred to as the dashed blue line. This low-complexity tracking
scheme is the so-called lookup table (LUT)-DSKF. The LBCA can also be implemented
in the LUT-DSKF and directly update the Kalman gains based on the estimated loop
bandwidth. This paper evaluates the performance of the LBCA-based DSKF and the LBCA-
based LUT-DSKF. These adaptive techniques are compared with the C/N0-based DSKF,
a well-known state-of-the-art method that adapts R based on the estimated C/N0 [24]. The
DSKF, the LUT-DSKF, and the mentioned adaptive techniques are implemented in the
carrier phase synchronization tracking stage of the GOOSE© receiver [29]. Each adaptive
technique’s tracking performance and system performance are evaluated under simulated
scenarios with different dynamics and noise levels. These methods are also compared with
the LBCA-based standard STL [7].

TRACKING
SCHEMES

ADAPTIVE
TECHNIQUES

PREVIOUS RESEARCH [7] CURRENT RESEARCH

STL [1] DSKF LUT-DSKF

FAB FUZZY
LOGIC

LBCA LBCA C/N0-based [24] LBCA

Figure 1. Research roadmap and comparison to other publications.

This research expands a conference paper [20] by describing in detail the relationship
between STL and the DSKF, explaining the DSKF’s steady-state convergence that leads
to the LUT-DSKF, adapting the LUT-DSKF using the LBCA, and improving the scope of
the results.

The rest of the paper is organized as follows: Section 2 compares the standard STL
with the DSKF, analyzes the steady-state convergence and derives the tracking scheme
of the LUT-DSKF. Section 3 shows the architecture of the adaptive techniques used in
the DSKF and the LUT-DSKF. The experimental setup and implementation in an open
software interface GNSS hardware receiver are described in Section 4. Section 5 presents the
adaptive tracking techniques’ complexity, tracking performance, and system performance
results. These results are discussed in Section 6. Finally, Section 7 concludes and indicates
future work.

2. Tracking Scheme of Direct-State Kalman Filter

The DSKF considers the standard STL as part of the KF [15]. This section describes
the relation between standard STL and DSKF and analyzes the DSKF’s convergence in
the steady-state. First, an overview of the STL’s open-loop state space model (SSM) and
transfer function will facilitate the comparison of STL with the DSKF. Second, the DSKF
is explained, and the equivalence to a standard STL is proven. Third, the process noise
covariance matrix Q and measurement noise covariance matrix R are described. Fourth,
the Kalman filter’s discrete algebraic Riccati equation (DARE) solution leads to the relation
between the bandwidth B, the Kalman gains K, R, and Q. Finally, from the DARE’s
solution, the LUT-DSKF is presented.

2.1. Standard Scalar Tracking Loop

The STL’s tracking scheme must be revisited to understand the relationship between
the standard STL and the DSKF. Figure 2 shows the block diagram of the STL’s linear
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model. The comparator is a linearized discriminator that performs the difference between
the input signal’s synchronization parameter ε and the estimated smoothed error εs:

εu[n] = ε[n]− εs[n] (1)

where n is the sample index, and εu is the un-smoothed error that outputs the compara-
tor. The loop filter smooths εu and drives the smoothed error rate ε̇s to the NCO. Finally,
the NCO closes the loop, sending εs to the comparator. Depending on the type of discrimi-
nator, ε represents the carrier offset (PLL), the frequency Doppler (FLL), or the code phase
offset (DLL).

COMPARATOR

−

+

LOOP FILTER

NCO

+ F(z)

N(z)

ε[n] εu[n]

ε̇s[n]εs[n]

Figure 2. Linear model of the scalar tracking loop (STL).

Considering that the backward Euler transform (BET) is used to discretize the STL [30],
the open-loop digital SSM representation of a pth-order STL is expressed as follows:


x1[n]
x2[n]

...
xp[n]


︸ ︷︷ ︸

x[n]

=


1 τint τ2

int · · · τ
p−1
int

0 1 τint · · · τ
p−2
int

...
...

. . . . . .
...

0 0 0 · · · τint
0 0 0 · · · 1


︸ ︷︷ ︸

A


x1[n− 1]
x2[n− 1]

...
xp[n− 1]


︸ ︷︷ ︸

x[n−1]

+


αp−1
αp−2

...
α0


︸ ︷︷ ︸

α

τint εu[n] (2)

εs[n] =
[
1 0 · · · 0

]︸ ︷︷ ︸
H

A x[n− 1] (3)

x ∈ <p×1 H ∈ <1×p A ∈ <p×p (4)

where x is the state vector, A is the state transition matrix, α is the filter coefficients vector,
and H is the observation matrix.

To calculate the STL’s open-loop transfer function Ho(z), the z-transform Z(·) of
Equations (2) and (3) must be performed first:

Z(x) =
(

I−A z−1
)−1

α τint Z(εu) (5)

Z(εs) = H A z−1 Z(x) (6)

Second, Equations (5) and (6) are combined:

Z(εs) = H A
(

I−A z−1
)−1

α τint z−1 Z(εu) (7)
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Finally, the open-loop transfer function Ho(z) is expressed as:

Ho(z) = Z
(

εs

εu

)
= H A

(
I−A z−1

)−1
α τint z−1 (8)

=
p−1

∑
l=0

αlτ
p−l
int z−1

(1− z−1)p−l (9)

=
p−1

∑
l=0

αlτ
p−l−1
int

(1− z−1)p−l−1︸ ︷︷ ︸
F(z)

· τintz−1

1− z−1︸ ︷︷ ︸
N(z)

(10)

where F(z) and N(z) indicate the loop filter’s and NCO’s transfer function.
The closed-loop transfer function Hc(z) is related to Ho(z) considering the z-transform

of Equation (1):

Hc(z) = Z
(

ε

εu

)
=

Ho(z)
1 + Ho(z)

(11)

Figure 3 presents a particular case of the STL with p = 3.

COMPARATOR

−

+

LOOP FILTER

NCO

+ α0

α1

α2

τint
1−z−1 +

τint
1−z−1 +

τint
1−z−1z−1

ε[n] εu[n] x3[n] x2[n]

ε̇s[n]

x1[n]

εs[n]

Figure 3. Linear model of a third-order STL.

The open-loop SSM of a third-order STL is derived from Equations (2) and (3):x1[n]
x2[n]
x3[n]

 =

1 τint τ2
int

0 1 τint
0 0 1

x1[n− 1]
x2[n− 1]
x3[n− 1]

+

α2
α1
α0

 τint εu[n] (12)

εs[n] =
[
1 τint τ2

int
]

x[n− 1] (13)

Suppose the third-order STL is used for carrier phase synchronization. In that case, x1,
x2, and x3 represent the carrier phase, carrier Doppler, and carrier Doppler rate.

Moreover, based on Equation (10), the open-loop transfer function of the third-order
STL Ho3 is expressed as:

Ho3(z) =
α2τint(1− z−1)2 + α1τ2

int(1− z−1) + α0τ3
int

(1− z−1)3 (14)
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Consequently, the closed-loop transfer function Hc3 is calculated based on
Equation (11):

Hc3(z) =
α2τint(1− z−1)2 + α1τ2

int(1− z−1) + α0τ3
int

(1− z−1)3 + α2τint(1− z−1)2 + α1τ2
int(1− z−1) + α0τ3

int
(15)

2.2. Direct-State Kalman Filter

The DSKF, as in the KF [10–12], is divided into two stages: prediction and update.
The prediction step estimates the predicted state x̂[n] and predicted error covariance P̂[n].
x̂[n] and P̂[n] are calculated based on the previously updated state x[n− 1], the previously
updated error covariance P[n− 1], and the process noise covariance matrix Q[n]:

x̂[n] = A x[n− 1] (16)

P̂[n] = A P[n− 1] AT + Q[n] (17)

x̂ ∈ <p×1 {
P̂, P, Q

}
∈ <p×p (18)

where the superscript (·)T is the transpose.
The update stage calculates the updated state x[n] based on x̂[n], the measurement

residual εu[n], and the Kalman gains K[n]. εu[n] comes from the difference between
the observations ε[n] and the estimated measurement based on x̂[n]. The Kalman gains
K[n] indicate how accurate the measurements are. K[n] depends on the predicted error
covariance P̂[n] and the measurement noise covariance R[n].

εu[n] = ε[n]−H x̂[n] (19)

S[n] = H P̂[n] HT + R[n] (20)

K[n] = P̂[n] HT S−1[n] (21)

x[n] = x̂[n] + K[n] εu[n] (22)

P[n] = (I−K[n] H) P̂[n] (23)

{εu, ε} ∈ <m×1 {S, R} ∈ <m×m H ∈ <m×p K ∈ <p×m I ∈ <p×p (24)

where S[n] is the innovation covariance matrix, and I is the identity matrix. The order p
and the number of measurements m determine the dimension of the presented variables.
This paper assumes only one measurement (i.e., m = 1) to compare the DSKF with the STL.
In that case, Equation (1) is the same as Equation (19).

Figure 4 shows the linear model of the DSKF considering only one measurement. The
innovation block of the DSKF is equivalent to the STL’s comparator of Figure 2. The state
prediction and update block marked in green correspond to the STL’s loop filter and NCO.
The main difference between the standard STL and the DSKF is the addition of the Kalman
gains’ calculation depicted in the dashed yellow block of Figure 4.
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INNOVATION (19)

−

+

STATE PREDICTION (16) + UPDATE (22)

+ KALMAN
GAIN

+ DELAY
z−1

STATE
MATRIX

A

OBSERVATION
MATRIX

H

PROCESS
NOISE

COVARIANCE

MEASUREMENT
NOISE

COVARIANCE

ERROR
COVARIANCE
PREDICTION

(17)

ERROR
COVARIANCE

UPDATE
(23)

KALMAN GAIN
CALCULATION

(21), (20)

ε[n] εu[n] x[n]

x[n− 1]
x̂[n]

εs[n]

R[n]Q[n]

P[n− 1]P[n− 1]

P̂[n]

K[n]

K[n]

Figure 4. Linear model of the direct-state Kalman filter (DSKF) with m = 1. ©IEEE. Adapted,
with permission, from [20].

The DSKF’s open-loop SSM representation are obtained combining Equations (16)
and (22):

x[n] = A x[n− 1] + K[n] εu[n] (25)

εs[n] = H x̂[n] = H A x[n− 1] (26)

The SSM of the DSKF is equivalent to the STL’s SSM presented in Equations (2) and (3).
From this equivalence, the Kalman gains K can be related to the STL’s filter coefficients
α as:

K = α τint (27)

Figure 5 shows the linear model of a third-order DSKF (i.e., p = 3). The open-loop
SSM, the open-loop transfer function Ho3 , and the closed-loop transfer function Hc3 are the
same as Equations (12)–(15) due to the relation presented in Equation (27).

COMPARATOR

−

+

LOOP FILTER

NCO

+ K0
τint

K1
τint

K2
τint

τint
1−z−1 +

τint
1−z−1 +

τint
1−z−1z−1

ε[n] εu[n] x3[n] x2[n]

ε̇s[n]

x1[n]

εs[n]

Figure 5. Linear model equivalence between a third-order DSKF and a third-order STL. ©IEEE.
Adapted, with permission, from [20].
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2.3. Process and Measurement Noise Covariance Matrix

The Kalman gains K are calculated for each loop iteration based on Equations (17), (20),
(21) and (23). K depends on the process noise covariance Q and measurement noise
covariance R. This paper calculates these matrices considering a third-order DSKF for
carrier phase tracking. In addition, a constant-acceleration model is assumed [31,32] for the
Q calculation. The BET is used to discretize the noise that is added in the acceleration state:

wk = A wτint = A

 0
0

wa

 τint =

waτ3
int

waτ2
int

waτint

 (28)

where w is the continuous noise vector, wk is the discretized noise vector, and wa is the
zero-mean Gaussian distributed perturbation that suffers the acceleration in cycles/s3.

Q is obtained performing the variance of the discretized noise:

Q = E
(

A w wT AT
)

τ2
int =

τ6
int τ5

int τ4
int

τ5
int τ4

int τ3
int

τ4
int τ3

int τ2
int

 q (29)

where q is the variance of wa in cycles2/s6 and determines the uncertainty of the states.
A higher q implies higher state uncertainty, leading to higher confidence in the incoming
measurements. On the contrary, a lower the q leads to higher confidence of the states and
less dependence on the measurement.

The measurement noise covariance R determines the validity of the incoming measure-
ments. A high value indicates an increased uncertainty, whereas a low value defines high
confidence. An adequate model for R is the Cramér-Rao bound (CRB) of the STL since it
represents the minimum error variance of a time of arrival (ToA) unbiased estimator [33,34].
In this case, the measurement residual of the DSKF is the discriminator’s output εu of an
STL. The CRB of εu is achieved when the error estimation does not feedback on additional
noise. Only the thermal noise of the incoming error parameter ε is present. If the carrier
phase offset parameter (ε = θ) is taken as a measurement, and under the assumption of a
two-quadrant discriminator, R in cycles2 is represented as [28,34,35]:

R = VAR(θ) =
1

2τint(C/N0)l

(
1 +

1
2τint(C/N0)l

)
(30)

where (C/N0)l is the linear C/N0 in Hertz. This relation is commonly used in C/N0-based
DSKF [24,25].

2.4. Steady-State Analysis

In the steady-state region, the Kalman gains K converge to a steady-state value given
a constant q and R. The solution of the DARE presents the relation between K, q and R.
The expression of the DARE is [36,37]:

Pss = A Pss AT −A Pss HT(H Pss HT + R)−1H Pss AT + Q (31)

where Pss is the steady-state convergence of the error covariance matrix P. The following is
assumed to facilitate DARE’s solution [19]:

R� H Pss HT (32)

The resulting Pss for a third-order DSKF is symmetric and defined as:

Pss =

2q1/6R5/6τint 2q1/3R2/3τint q1/2R1/2τint
sym. 3q1/2R1/2τint 2q2/3R1/3τint
sym. sym. 2q5/6R1/6τint

 (33)
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Applying Equations (32) and (33) into Equation (21), the steady-state Kalman gains
Kss are represented as:

Kss = Pss HT R−1 =
[
2(q/R)1/6τint 2(q/R)1/3τint (q/R)1/2τint

]T (34)

2.5. Equivalent Noise Bandwidth

The digital one-sided equivalent noise bandwidth Bd is defined as [38–40]:

2Bdτint =
1

2πj

∮
|z|=1

Hc(z)Hc(z−1)z−1dz (35)

Assuming that the integration time τint tends to zero, the digital loop bandwidth
is equivalent to the analog loop bandwidth B [38–40]. The relation between B and the
coefficients of a third-order STL is expressed as:

lim
τint→0

Bd = B =
α2

2α1 − α2α0 + α2
1

4(α2α1 − α0)
(36)

Substituting Equations (27) and (34) in Equation (36), the relation between the steady-
state equivalent noise bandwidth of a third-order DSKF, q, and R is [5]:

Bss =
5
6

6
√

q
R

(37)

Figure 6 shows the relation between q and B for different values of R based on
Equation (37). This relationship eases the LBCA implementation in the DSKF since the loop
bandwidth update can be related with the covariances.

10
_3 10

_2 10
_1 100 101

0

5

10

15

20

25

30

Figure 6. Relation between steady-state loop bandwidth Bss and process error variance q in a third-
order DSKF. ©IEEE. Adapted, with permission, from [20].

Finally, the relation between the Bss and Kss is calculated based on Equations (34)
and (37):

Kss =
[
2 6

5 Bssτint 2
( 6

5 Bss
)2

τint
( 6

5 Bss
)3

τint

]T
(38)
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2.6. LUT-DSKF

Figure 7 shows the linear model of the LUT-DSKF. The LUT-DSKF is a simplified
version of the DSKF that considers the steady-state convergence of K. The loop bandwidth
B can be used to set the values of K using Equation (38). Alternatively, q and R can be
selected to define K based on Equation (34).

COMPARATOR

−

+
+ LOOP FILTER

KALMAN GAIN
CALCULATION

(34) or (38)

NCO

ε[n] εu[n]

Kss

ε̇s[n]εs[n]

Figure 7. Linear model of lookup table (LUT)-DSKF.

3. Adaptive Techniques in DSKF

This section describes the three adaptive tracking techniques under evaluation: the
C/N0-based DSKF, the LBCA-based DSKF, and the LBCA-based LUT-DSKF.

3.1. C/N0-Based DSKF

Figure 8 shows the non-linear model diagram of the C/N0-based DSKF. This technique
adapts the measurement noise covariance matrix R while fixing the process covariance
matrix Q. In the case of a Costas PLL, the measurement noise covariance R depends on the
C/N0 and the integration time τint (see Equation (30)).

There are several methods to calculate the C/N0. The Beaulieu’s method is used due
to its estimation accuracy and simplicity to estimate the C/N0 [41,42]. This method is
sub-optimal if the carrier phase lock is not achieved. However, it is assumed that the carrier
phase is in lock.

C/N0 =
1

τint

(
1
N

N

∑
v=1

Pn,v

Pd,v

)−1

(39)

where N is the number of observed correlation samples, Pn,v is the estimated noise power
in the correlation, and Pd,v is the signal-plus-noise power. Pn,v is represented as:

Pn,v =
(
|Ip[v]| − |Ip[v− 1]|

)2 (40)

Ip is the prompt correlation value of the in-phase component. Pd,v is defined as:

Pd,v =
1
2

(
Ip[v]2 + Ip[v− 1]2

)
(41)

If the noise contribution is small, the instantaneous signal-plus-noise power Pd,v
approximates to the signal’s power.
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Figure 8. Non-linear model of the carrier-to-noise density ratio (C/N0)-based DSKF.

3.2. LBCA-Based DSKF

Figure 9 shows the architecture of the adaptive DSKF using the LBCA. This technique
adapts the loop bandwidth B of the DSKF and, in turn, adapts q while setting R to a
constant value based on Equation (37).

LOOP-BANDWIDTH CONTROL ALGORITHM DIRECT-STATE KALMAN FILTER

DETECTOR LOOP FILTER
εu[n]

NCOREPLICA
GENERATOR

MEASUREMENT
NOISE

COVARIANCE

KALMAN GAIN
CALCULATION

(20), (21)

PROCESS NOISE
COVARIANCE

(29)

LOOP-BANDWIDTH
CONTROL

ALGORITHM
(43)–(47)

ERROR
COVARIANCE
PREDICTION

(17)

ERROR
COVARIANCE

UPDATE
(23)

y[m]

ε̇s[n]

R

K[n]

Q[n] P[n− 1] K[n]

εs[n]
ŷ[m]

P̂[n]

q[n + 1]

R

B[n]

Figure 9. Non-linear model of loop-bandwidth control algorithm (LBCA)-based DSKF. ©IEEE.
Adapted, with permission, from [20].

In previous studies, the LBCA has been implemented in the standard STL [28]. The
LBCA-based STL presented superior tracking and system performance compared to other
state-of-the-art techniques while achieving the lowest complexity [7]. This technique adapts
the loop bandwidth based on a normalized bandwidth-dependent weighted difference
between estimated noise and estimated signal dynamics. The normalized bandwidth BN is
the product between the integration time τint and the loop bandwidth B:

BN = B τint (42)
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First, the absolute mean |µεu | and the standard deviation σεu of the discriminator’s
output are estimated. Second, the normalized dynamics D̄ are calculated:

D̄[n] =
|µεu [n]|

|µεu [n]|+ σεu [n]
(43)

Third, the difference between the normalized dynamics and a normalized-bandwidth-
dependent weighting function g[n, BN ] is performed:

c[n] = gMax · D̄[n]− g[n, BN ] (44)

where c is the control value and gMax indicates the maximum value of g[n, BN ]. Finally,
the control value updates the current normalized bandwidth BN :

B̂[n] =
BN [n] + c[n]

τint
(45)

where B̂ is the updated loop bandwidth. The noisy mean and standard deviation estimates
can induce some noise instabilities into the updated loop bandwidth. Therefore, a Schmitt
trigger is included to reduce these noise instabilities. The Schmitt trigger changes the
next loop bandwidth B[n + 1] by ∆B if the absolute difference between the updated loop
bandwidth B̂[n] and the actual B[n] exceed ∆B:

B[n + 1] =


0 if n = 0
B̂[n] + ∆B if B̂[n]− B[n] ≥ ∆B

B̂[n]− ∆B if B[n]− B̂[n] ≤ ∆B

B[n] otherwise

(46)

Based on the relationship between R, q, and the steady-state loop bandwidth Bss from
Equation (37), the updated q can be calculated:

q[n + 1] = 2.986 B6[n + 1] R (47)

3.3. LBCA-Based LUT-DSKF

The convergence of the DSKF’s Kalman gains at the steady-state region can reduce
the complexity of the algorithm. From the DARE equation (see Equation (31)), the relation
between the steady-state Kalman gains Kss, q, and R can be derived (see Equation (34)).
This relation simplifies the algorithm as shown in Figure 7. Figure 10 presents the LBCA-
based LUT-DSKF. The same steps as in the LBCA-based DSKF to calculate the updated loop
bandwidth B[n + 1] are followed (see Equations (43)–(46)). In contrast to the LBCA-based
DSKF, the mapping between Kalman gains and loop bandwidth is directly done using
Equation (38).
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Figure 10. Non-linear model of LBCA-based LUT-DSKF.

4. Experimental Setup

This section describes the GNSS receiver under test, the configuration of each presented
adaptive algorithm, the metric used to determine the tracking and system performance,
and the simulated scenarios.

4.1. Receiver and Algorithm Implementation

The GOOSE© platform, developed by Fraunhofer IIS and marketed through TeleOrbit
GmbH, is a GNSS receiver with an open software interface [29,43]. A picture of the
receiver is shown in Figure 11. The receiver contains a customized tri-band radio-frequency
front-end (RFFE), a Xilinx Kintex7 field-programmable gate array (FPGA), and a dual-
core ARM processor. The RFFE amplifies, filters, downconverts, discretizes the GNSS
signals, and sends the digital samples to the FPGA. The analog-to-digital converter (ADC)
discretizes each frequency band at a sample rate of 81 MHz and a resolution of 8 bits. The
FPGA includes one acquisition module and sixty tracking channels, which the processor
can control. The processor performs the acquisition of the incoming digital samples using
the acquisition module of the FPGA. The tracking starts once the acquisition achieves
a rough estimate of the frequency Doppler fd and code phase τ. The tracking stage of
this GNSS receiver is partially implemented in the FPGA (e.g., correlators and NCO) and
software (e.g., discriminators and loop filters). This stage consists of three steps. First,
the FLL and the DLL refine the acquired fd and τ estimates. Second, the PLL starts and
synchronizes with the carrier phase. Finally, the FLL stops and the PLL works unaided
when the latter successfully achieves a good lock with the carrier phase. The receiver
synchronizes with the navigation data at this stage, and the integration time increases to
the symbol period. In the case of Global Positioning System (GPS) L1 C/A, the integration
time is increased to 20 ms.

The C/N0-based DSKF, the LBCA-based DSKF, and the LBCA-based LUT-DSKF are
implemented in the third-order Costas PLL of the GOOSE receiver in software.



Sensors 2022, 22, 420 14 of 24

Figure 11. Photo of the GOOSE receiver @Fraunhofer IIS/Paul Pulkert.

4.1.1. C/N0-Based DSKF Configuration

The time of response of the C/N0 estimation determines the agility of the measure-
ment’s covariance update. This parameter changes according to the accumulated correlation
samples N (see Equation (39)). This study evaluates this method’s tracking and system
performance with N = 100 samples and N = 500 samples. Using an integration time
τint of 20 ms, the response time of the C/N0’s estimate is 2 s and 10 s, respectively. The
steady-state process variance q is set to a constant value. Different values of q are evaluated
since this parameter directly impacts on the robustness to signal dynamics.

4.1.2. LBCA-Based DSKF and LUT-DSKF Configuration

The selected weighting function g[n, BN ] is a linear combination of two Sigmoid
functions and has the following expression:

g[n, BN ] =

[
0.014
0.086

]T [ Sig(50(BN − 0.06))
Sig(250(BN − 0.36))

]
(48)

where Sig(·) is the Sigmoid function [44]. Figure 12 shows the graphical representation of
Equation (48). TLBCA is the normalized dynamic threshold and indicates the sensitivity of
the algorithm to signal dynamics. In this case, gMax is set to 0.1 and TLBCA to 0.14. This
weighting function presented the best results in the LBCA-based PLL [7].

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Figure 12. Selected Normalized weighting function in LBCA-based techniques.
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In the LBCA-based DSKF, R is set to 10−7 cycles2. From Figures 6 and 12, one can
observe that q varies between 10−3 cycles2/s6 and 10 cycles2/s6, considering τint = 20 ms.

4.2. Performance Metric

The metric to evaluate the PLL tracking and system performance is the same as in
previous studies [7]. The tracking performance PTracking evaluates the tracking of a single
satellite vehicle (SV), whereas the system performance PSystem considers all the visible SVs.
PTracking in meters is characterized as:

PTracking = (σu
θ − σu

LB) · λL1 (49)

where λL1 is the wavelength of the GPS L1 C/A signal, σu
θ is the average of the last ten

minutes un-smoothed carrier phase error’s standard deviation, and σu
LB is the square root

of the CRB [7]. σu
θ in cycles is defined as:

σu
θ =

1
Ksim

Ksim

∑
k=1

σu
θ [k] (50)

where Ksim is the number of evaluation epochs in samples. The total evaluation time Tsim
in seconds is:

Tsim =
Ksim

flog
(51)

where flog is the data-logging rate in Hertz.
σu

LB in cycles is represented as:

σu
LB =

(
1

2π

)√
1

2τintC/N0

(
1 +

1
2τintC/N0

)
(52)

where the
(

1 + 1
2τintC/N0

)
term is the squaring loss [1].

The three-sigma rule-of-thumb conservative upper threshold σth
θu is considered in the

tracking performance evaluation. For a two-quadrant phase discriminator, σth
θu in cycles is

expressed as:

σth
θu =

1
24

(53)

A low value of PTracking denotes good tracking performance. If the measured PTracking

from σu
θ is less than PTracking considering σth

θu , one can ensure stable tracking and no cycle
slips [1]. On the contrary, if the measured PTracking is bigger than the conservative threshold,
the probability of losing the lock increases.

The metric used for the system performance PSystem is expressed as:

PSystem = PLI×Nsat (54)

where PLI is the average of the phase-lock indicator (PLI) with respect Ksim and the
accumulated number of tracked SVs NAcc

sat , and Nsat is the normalized average number of
visible satellites being tracked.

The expression of PLI is:

PLI =
1

Ksim NAcc
sat

Ksim

∑
k=1

NAcc
Sat

∑
l=1

PLIl [k] (55)
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and PLIl [n] is calculated based on the prompt in-phase Il
p and prompt quadrature Ql

p

correlation samples of the corresponding lth SV:

PLIl =
(Il

p)
2 − (Ql

p)
2

(Il
p)

2 + (Ql
p)

2 (56)

The second term of Equation (54), Nsat, is defined as:

Nsat =
1

KsimNtotal
sat

Ksim

∑
k=1

Nsat[k] (57)

where Ntotal
sat is the total number of SVs during the simulation.

PLI and Nsat are normalized. Consequently, PSystem is also normalized. A value near
to one of PSystem refers to good system performance, whereas a value near zero indicates
poor system performance and the possibility of not achieving a PVT solution. The average
of PSystem with respect to the C/N0 levels leads to a comprised metric PSystem that evaluates
the overall system performance of an adaptive tracking technique:

PSystem =
1

NC/N0

NC/N0

∑
n=1

Pn
System (58)

where NC/N0 is the number of C/N0 levels.

4.3. Evaluation Setup

The evaluation setup is the same as in previous studies [7,20,28]. The Spirent GSS9000
radio-frequency constellation simulator (RFCS) generates controlled scenarios at different
C/N0 and signal dynamics levels. The simulator is configured to perform 20 min sim-
ulations of a specific scenario at eight different C/N0 levels (NC/N0 = 8). In contrast to
previous studies, the selected C/N0 levels are {25, 29, 33, 37, 41, 45, 48, 52} dBHz. The
simulation always starts at the highest C/N0 level of 52 dBHz to ensure successful signal
acquisition. Next, the C/N0 level is reduced in 30 second intervals until reaching the
desired C/N0 level. The tracking and system performance are measured considering the
last ten minutes of the simulation, Tsim = 600 s, in which the correct C/N0 level is assured.

A static scenario and a dynamic scenario are selected to evaluate the adaptive tracking
techniques. The static scenario represents stationary use-cases such as GNSS reference
stations, and the dynamic scenario presents harsh vehicular conditions. Figure 13 shows
the sky-plots of both scenarios. In the static scenario there are nine SVs during the entire
simulation (see Figure 13a). However, SV G1 disappears behind the horizon after two min-
utes of the simulation. The dynamic scenario shows ten visible SVs (see Figure 13b). As in
the static scenario, SV G1 disappears after two minutes of the simulation. Moreover, SV G30
rises above the horizon near the end of the simulation. Therefore, to avoid these transient
SVs, SV G1 and SV G30 are not considered, and Ntotal

sat is set to eight for both scenarios.
The same SVs as previous research are selected to evaluate the tracking performance [7].

The GPS L1 C/A signal of SV G4 is selected to evaluate the static tracking performance,
and the GPS L1 C/A signal of SV G17 is assigned for the dynamic tracking performance.
The maximum line-of-sight (LOS) signal dynamics for the dynamic simulated scenario is
8.7 g/s [7].
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(a) (b)
Figure 13. Sky-plot of simulated scenario. (a) Static Scenario. (b) Dynamic Scenario.

5. Results

This section evaluates the tracking performance, system performance, number of
operations, and time complexity of the adaptive tracking techniques in the DSKF. The
dataset used to plot the presented results are available on the cloud [45].

5.1. Static Scenario

Figure 14 presents the tracking performance PTracking and system performance PSystem
of the implemented adaptive techniques in a stationary scenario. Four configurations of the
C/N0-based DSKF using different steady-state process noise variances (q = {10, 100, 1000})
and different correlation samples (N = {100, 500}) are evaluated. Moreover, the LBCA-
based DSKF, and the LBCA-based LUT-DSKF are analyzed using the weighting function
defined in Equation (48). These adaptive tracking techniques are compared with the
LBCA-based STL using the same weighting function.

Figure 14a shows that all the presented configurations of the C/N0-based DSKF
do not lose the lock at any C/N0 level. The number of correlation samples N does not
impact the static tracking performance. In contrast, q has an effect at low C/N0 levels.
An intermediate value of q = 100 cycles2/s6 achieves the lowest results, meaning the
best tracking performance. In the LBCA-based DSKF, q starts with an initial value of
10 cycles2/s6 and is adapted based on the LBCA’s loop bandwidth update, while R is fixed
to 10−7cycles2. At high C/N0 levels, this method presents the same tracking performance
as the other techniques. However, at low C/N0 levels, PTracking increases significantly,
until finally losing the lock at 25 dBHz. The LBCA-based LUT-DSKF does not lose the
lock at low C/N0 levels, but it does not perform better than the C/N0-based DSKF. The
LBCA-based STL performs best at high C/N0 levels, but the performance deteriorates at
low C/N0 levels. The weighting function of the LBCA is configured to be robust to signal
dynamics, with the cost of a worse performance at low C/N0 levels.

Figure 14b discloses each adaptive tracking technique’s system performance (see
Equation (54)). All the configurations show a good system performance above 0.8, except for
the LBCA-based DSKF at 25 dBHz. While the system performance of this technique at
25 dBHz is lower than 0.6, the PVT has not been lost.
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Figure 14. Static performance of adaptive tracking techniques in third-order Costas phase locked
loop (PLL) at different C/N0 levels. (a) Tracking performance of satellite vehicle (SV) G4. (b) Sys-
tem performance.

5.2. Dynamic Scenario

Figure 15 displays the tracking and system performance of the adaptive techniques
in a dynamic scenario. SV G17 is challenging to track due to the high LOS jerk dynamics.
From Figure 15a, it is observed that a high q and N are required in the C/N0-based DSKF
to maintain the carrier phase synchronization lock. The C/N0-based DSKF achieves best
tracking performance with q = 1000 cycles2/s6 and a N = 500 samples, maintaining the
lock until 45 dBHz. The LBCA-based DSKF keeps the lock until 38 dBHz. However, this
technique presents an error bias compared to the other techniques. This bias exists due to
the transitions between the update of q and the Kalman gains’ convergence. In contrast to
the latter technique, the LBCA-based LUT-DSKF does not contain any error bias, and it
performs almost as well as the LBCA-based PLL, keeping the lock until 33 dBHz. The LBCA-
based PLL has a superior dynamic tracking performance than the other techniques due to
the direct relation between loop bandwidth and filter coefficients. This direct relationship
leads to a faster reaction of high signal dynamics.

The results of the dynamic system performance (see Figure 15b) are consonant with
the dynamic tracking performance. All the adaptive tracking techniques can achieve a
PVT solution at high C/N0 levels (38–52 dBHz). The LBCA-based LUT-DSKF and the
LBCA-based PLL have the best system performance results, whereas the C/N0-based
DSKF technique shows poor performance. At low C/N0 levels, the LBCA-based techniques
almost achieve a continuous PVT at 33 dBHz. In contrast to the LBCA-based methods,
the C/N0-based DSKF only achieves a continuous tracking of one SV.
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Figure 15. Dynamic performance of adaptive tracking techniques in third-order Costas PLL at
different C/N0 levels. (a) Tracking performance of SV G17. (b) System performance.
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5.3. Total System Performance

Table 1 summarizes the obtained results from Figures 14b and 15b using the average
system performance PSystem presented in Equation (58). The labels column of this table
is used for further analysis in the discussion. Furthermore, the best static and dynamic
system performance is marked green.

Table 1. Overall system performance of adaptive tracking techniques.

Tracking Configuration Label PSystem PSystem

Technique Static Dynamic

C/N0-based DSKF
q = 1000, N = 100 T1 0.910 0.535

q = 1000, N = 500 T2 0.909 0.538

LBCA-based DSKF gMax = 0.1 , TLBCA = 0.14 T3 0.877 0.583

LBCA-based LUT-DSKF gMax = 0.1 , TLBCA = 0.14 T4 0.912 0.628

LBCA-based PLL gMax = 0.1 , TLBCA = 0.14 T5 0.911 0.627

5.4. Complexity

Table 2 shows the added number of additions, multiplications, and divisions required
for each adaptive technique in the DSKF compared to the standard STL. The total number
of operations is marked as red, orange, and green, depending on the level of complexity.
The colors vary from the most complex one, marked in red, to the simplest one, marked
in green.

Table 2. Complexity of adaptive tracking techniques based on the added number of operations.

Tracking Sub- Added Number of Operations:
Technique Module Additions Multiplications Divisions

C/N0-based DSKF

Error Cov. Prediction (17) 27 18 -
Kalman Gain Calculation (20) and (21) 1 3 1

Error Cov. Update (23) 9 9 -
Measurement Noise Cov. (30) 1 5 2

Total 38 35 3

LBCA-based DSKF

Error Cov. Prediction (17) 27 18 -
Kalman Gain Calculation (20) and (21) 1 3 1

Error Cov. Update (23) 9 9 -
LBCA + PLAN [7] 6 7 1

q and B relation (47) 0 6 0

Total 45 37 2

LBCA-based LUT-DSKF
LBCA + PLAN [7] 6 7 1

K and B relation (38) 0 9 0

Total 6 16 1

LBCA-based PLL
LBCA + PLAN [7] 6 7 1

Total 6 7 1

The presented equivalence between the DSKF and the standard STL (see
Figures 4 and 5) shows that only the Kalman gain calculation (i.e., yellow block of Figure 4)
must be included. The C/N0-based DSKF adapts R based on Equation (30), being q a
constant value. In contrast, the LBCA-based DSKF set R to a constant value, while adapting
q using the LBCA. This technique needs additional complexity to map the loop bandwidth
with the steady-state process variance q (see Equation (47)).

The LUT-DSKF significantly reduces the complexity by calculating the convergence
of the Kalman gains K in the steady-state. In the LBCA-based LUT-DSKF, the relation
between the B and K is used (see Equation (38)) to update the filter coefficients.
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In all the LBCA-based techniques, the weighting function of the LBCA technique is
approximated using the piecewise linear approximation of nonlinearities (PLAN) tech-
nique [7].

Table 3 shows the time complexity of the standard PLL and each adaptive tracking
technique. The time complexity measures the algorithm’s processing time in software on
the processing platform. The same procedure as in previous research is carried out [7].
An Intel Skylake micro-architecture with a clock speed of 3700 MHz is used to evaluate
the time complexity of each technique. The code is implemented in C++, and a for-loop
is used to iterate the operation of a loop filter 3× 108 times. The processing time of each
method is measured using the chrono library [46], and the operf Linux profiler tool is used
to analyze the utilization of the used libraries during the algorithm’s execution [47]. In
addition, the taskset command is used to bind the application process to one single core [48].

Table 3. Time complexity of adaptive tracking techniques, 3× 108 iterations.

Tracking Total Time Complexity Iteration Time Complexity Added Time Complexity
Technique TC [s] TIter [ns] TAdded [times]

Standard PLL 6.8 22.7 1
C/N0-based DSKF 41.5 138.3 6.1×
LBCA-based DSKF 61.1 203.7 8.9×

LBCA-based LUT-DSKF 25.8 86 3.8×
LBCA-based PLL [7] 16.1 53.7 2.4×

Three parameters are shown in Table 3. First, the total time complexity TC in seconds.
Second, the average time complexity at each iteration TIter in nanoseconds:

TIter =
TC

3× 108 × 109 [ns] (59)

Finally, the added time complexity TAdded compared to the standard loop filter
TStandard

C :

TAdded =
TC

TStandard
C

[times] (60)

While this approach depends on how exemplary the algorithm’s software imple-
mentation is, the results show a correlation between the number of operations and the
time complexity.

6. Discussion

Figure 16 compares the average system performance PSystem and the added time
complexity TAdded of the presented adaptive tracking techniques implemented in a third-
order DSKF for carrier phase tracking. These graphs summarize the collected results
combining Tables 1 and 3.

Figure 16a shows that the LBCA-based DSKF T3 have the worst PSystem and the
highest TAdded. In contrast, the LBCA-based LUT-DSKF T4 achieves the best static PSystem,
although its complexity is higher than the LBCA-based standard PLL T5. The state-of-the-
art C/N0-based DSKFs T1, T2 have similar PSystem, and TAdded is between T4 and T3. T5

presents the lowest TAdded with a slightly worse PSystem than T4.
In the dynamic scenario, the superior performance of the LBCA-based techniques is

clearly observed in Figure 16b. In this case, T1 and T2 present the worst PSystem. In a highly
dynamic event, the carrier tracking loop cannot follow the phase dynamics, leading to a
fast shift from in-phase to quadrature component. In such a moment, the C/N0 estimate
of Beaulieu’s method drops. Consequently, R increases, and the DSKF wrongly stops
trusting the incoming carrier phase measurement. This leads to a loss of the carrier lock. In
Figure 15a, a greater number of the accumulated correlation samples N and q improves the
robustness to dynamics. Then, a further evaluation with higher q and N should improve
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PSystem in the dynamic scenario. Among the LBCA-based techniques, T3 performs the
worst. Once T3 adapts q, time is needed to adjust the Kalman gains to the steady-state
values. Due to this latency, T3 is not fast enough to adapt its coefficients in time, leading to
a higher risk of losing the lock at high dynamic scenarios. T4 experiences no latencies since
the steady-state Kalman gains are directly set based on the loop bandwidth update. This
method achieves the best PSystem, followed by T5.
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Figure 16. System performance vs. added time complexity comparison. (a) Static scenario. (b) Dy-
namic scenario.

The scope of this research is to show the extension of the LBCA by applying it to
the DSKF. While this has been shown, adding the LBCA into the DSKF to adapt q while
fixing R does not present remarkable results, and the complexity increases significantly.
Therefore, other methods have been considered to improve the performance and reduce
the complexity. The LBCA-based LUT-DSKF presents superior static and dynamic PSystem
among the rest of the adaptive tracking techniques. However, the LBCA-based PLL is
less complex than the LBCA-based LUT DSKF, with a slight reduction of the total system
performance in both static and dynamic scenarios.

7. Conclusions

This study presents the first proof of the LBCA’s general applicability to any control
system by implementing it in the DSKF. First, the relation between the standard STL and
the DSKF is presented. Second, DARE’s solution relates the DSKF’s loop bandwidth,
the noise covariances, and the Kalman gains in the steady-state. This relationship eases
the implementation of the LBCA into the DSKF, and two approaches are presented: The
LBCA-based DSKF and the LBCA-based LUT-DSKF. The LBCA-based DSKF uses the LBCA
to adapt q for each loop iteration while setting R to a constant value. In contrast, the LBCA-
based LUT-DSKF directly relates the LBCA’s loop bandwidth update and the Kalman gains.
These adaptive tracking techniques have been evaluated in a third-order Costas PLL. These
techniques’ complexity and static and dynamic system performance are compared with the
state-of-the-art C/N0-based DSKF and the LBCA-based standard STL [7]. Results show the
superior performance of the LBCA-based LUT-DSKF compared to the other techniques. In
terms of complexity, the LBCA-based LUT-DSKF presents less complexity compared to the
other adaptive DSKFs. However, this method has greater added time complexity than the
LBCA-based standard PLL. In further research, Equation (38) will be merged into the STL
to achieve similar time complexity.

An extension of the presented tracking schemes is the implementation of a LUT-DSKF
that encloses the DLL, FLL, and PLL of a tracking channel. The use of the LBCA in this
tracking architecture can improve the tracking performance in scenarios with different
noise and signal dynamics. To cope with scenarios with multipath effects (e.g., in urban
scenarios), a multi-frequency LUT-DSKF will be proposed, and the addition of the LBCA
will be evaluated. Furthermore, an evaluation in real scenarios of all the LBCA-based
techniques will lead to the final verification of the LBCA.
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This paper opens the door to a range of applications of the LBCA where the KF is
involved. The LBCA can be implemented in the tracking stage, the interference mitigation
stage (e.g., adaptive notch filtering), and the post-processing stage (e.g., adaptive loose and
tightly coupling solutions) of a GNSS receiver.
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ADC analog-to-digital converter
BET backward Euler transform
C/N0 carrier-to-noise density ratio
CRB Cramér-Rao bound
DARE discrete algebraic Riccati equation
DLL delay locked loop
DSKF direct-state Kalman filter
ESKF error-state Kalman-filter
FAB fast adaptive bandwidth
FLL frequency locked loop
FPGA field-programmable gate array
GNSS global navigation satellite system
GPS Global Positioning System
IIR infinite impulse response
KF Kalman filter
LBCA loop-bandwidth control algorithm
LOS line-of-sight
LUT lookup table
MMSE minimum mean square error
NCO numerically controlled oscillator
PLAN piecewise linear approximation of nonlinearities
PLI phase-lock indicator
PLL phase locked loop
PVT position, velocity, and time
RFCS radio-frequency constellation simulator
RFFE radio-frequency front-end
SSM state space model
STL scalar tracking loop
SV satellite vehicle
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