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Abstract

Background: Target enrichment is a critical component of targeted deep next-generation sequencing for the cost-

effective and sensitive detection of mutations, which is predominantly performed by either hybrid selection or PCR.

Despite the advantages of efficient enrichment, PCR-based methods preclude the identification of PCR duplicates and

their subsequent removal. Recently, this limitation was overcome by assigning a unique molecular identifier(UMI) to

each template molecule. Currently, several commercial library construction kits based on PCR enrichment are available

for UMIs, but there have been no systematic studies to compare their performances. In this study, we evaluated and

compared the performances of five commercial library kits from four vendors: the Archer® Reveal ctDNA™ 28 Kit,

NEBNext Direct® Cancer HotSpot Panel, Nugen Ovation® Custom Target Enrichment System, Qiagen Human

Comprehensive Cancer Panel(HCCP), and Qiagen Human Actionable Solid Tumor Panel(HASTP).

Results: We evaluated and compared the performances of the five kits using 50 ng of genomic DNA for the library

construction in terms of the library complexity, coverage uniformity, and errors in the UMIs. While the duplicate rates

for all kits were dramatically decreased by identifying unique molecules with UMIs, the Qiagen HASTP achieved the

highest library complexity based on the depth of unique coverage indicating superb library construction efficiency.

Regarding the coverage uniformity, the kits from Nugen and NEB performed the best followed by the kits from

Qiagen. We also analyzed the UMIs, including errors, which allowed us to adjust the depth of unique coverage and the

length required for sufficient complexity. Based on these comparisons, we selected the Qiagen HASTP for further

performance evaluations. The targeted deep sequencing method based on PCR target enrichment combined with UMI

tagging sensitively detected mutations present at a frequency as low as 1% using 6.25 ng of human genomic DNA as

the starting material.

Conclusion: This study is the first systematic evaluation of commercial library construction kits for PCR-based targeted

deep sequencing utilizing UMIs. Because the kits displayed significant variability in different quality metrics, our study

offers a practical guideline for researchers to choose appropriate options for PCR-based targeted sequencing and

useful benchmark data for evaluating new kits.
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Background
Cancer genome profiling by massively parallel sequen-

cing has rapidly advanced our understanding of the mo-

lecular characteristics underlying tumorigenesis [1–3].

Furthermore, cataloging the most frequently mutated

cancer genes across various cancer types [4, 5] has made

targeted resequencing an attractive option to

cost-effectively analyze genetic alterations in tumor spec-

imens [6, 7]. Whereas whole genome sequencing (WGS)

or whole exome sequencing (WES) provides additional in-

formation on genomic variants across broad regions of

the human genome, [8, 9] targeted sequencing offers dis-

tinct advantages over these methods by reducing costs

and simplifying data management/analysis. The advan-

tages of targeted deep sequencing are particularly obvious

in clinical settings where the selection of therapy is the

primary reason for genomic profiling and only a small

fraction of identified mutations are potentially responsive

to a therapy (i.e., actionable mutations) [10, 11]. While the

targeted sequencing method has been successfully

employed for clinical genomic profiling, sufficient sequen-

cing coverage was repeatedly suggested as a prerequisite

for the successful implementation of the method in clin-

ical cancer genome profiling [12, 13].

As we recently reported, significant proportions of

clinically actionable variants have allele fractions as low

as less than 5%, often because of low tumor purity, het-

erogeneity, and secondary tumor driver mutations

resulting from treatment [14, 15]. While the detection of

low variant allele fractions (VAFs) requires the sequen-

cing of a sufficient number of molecules, low quantity

and quality of DNA extracted from clinical tissue sam-

ples often pose obstacles. Clinical tissue specimens avail-

able for genetic profiling are often minute, which

regularly consist of several sections of formalin-fixed

paraffin embedded (FFPE) tissues or needle biopsy sam-

ples [16]. The technical challenge becomes even greater

when cancer somatic mutations are interrogated from li-

quid biopsies such as plasma cell-free DNA (cfDNA)

samples [17, 18]. The amount of cfDNA ranges from 1

to 100 ng/mL in the plasma [19], and the allele fre-

quency of tumor DNA in cfDNA is very low, often lower

than 1% [20]. The detection of low VAF variants in

cfDNA samples is particularly challenging because high

complexity sequencing libraries must be generated using

a limited amount of input DNA. In this regard, it is crit-

ical to construct sequencing libraries with a high recov-

ery rate of cfDNA molecules.

For target enrichment, hybrid selection-based capture

[21] and PCR amplification [22] are two major tech-

niques. In general, the hybrid selection-based capture

method using biotinylated oligonucleotides complemen-

tary to target regions and streptavidin-coated magnetic

beads is more expensive, involves more steps, and

requires more input DNA than PCR-based methods. In

contrast, capture-based enrichment methods are better

suited for identifying unique molecules and efficiently

removing PCR duplicates. Because capture-based enrich-

ment typically uses input DNA generated by random

fragmentation, PCR duplicates can be readily identifiable

by the unique start and end positions of each fragment.

In contrast, because PCR-based enrichment methods

generate fragments with the same genomic positions de-

fined by pairs of PCR primers, PCR duplicates and cop-

ies of unique molecules are virtually indistinguishable.

Because of their inability to remove PCR duplicates,

PCR-based enrichment methods are prone to false posi-

tives, particularly when calling low VAF variants. After

distinct short oligonucleotides with random sequences

tagging each template molecule were proposed as

unique molecular identifiers (UMIs, also known as mo-

lecular barcodes), [23–26] accurately distinguishing PCR

duplicates from copies of unique fragments generated by

a pair of PCR primer became possible. Consequently,

UMIs have reduced quantitative bias during experimen-

tal processes and, thus, can be adopted for the accurate

quantification of target templates. Strategies using UMIs

were also used to detect ultra-rare variants, as errors

arising from artifacts during library construction and se-

quencing runs could be eliminated by comparing the se-

quences of PCR duplicates identified with a UMI

sequence [27, 28]. PCR-based targeted sequencing utiliz-

ing UMIs became readily accessible to researchers, as

several vendors such as ArcherDx, NEB, Nugen, and

Qiagen developed and commercialized library construc-

tion kits. All kits use a target enrichment step involving

PCR amplification and adopt UMIs to tag each template

molecule, but the specific techniques creating library

molecules differ among vendors. For example, the en-

richment method of the NEBNext Direct Cancer Hotspot

Panel involves a combination of hybrid section-based cap-

ture and PCR amplification in which a hybridized bait se-

quence is used as a primer to enrich targets that are

distinct from the others. Adaptor ligation and subsequent

PCR amplification using combinations of primers target-

ing specific genomic regions and a universal adaptor se-

quence are used in the ArcherDx and Qiagen kits.

Nugen’s targeted enrichment method described as single

primer enrichment by the manufacturer is also similar to

the ArcherDx and Qiagen kits [29]. Each library construc-

tion kit differentially places their own UMI in the adap-

tors. As a result, the UMIs of the ArcherDx Reveal ctDNA

28 kit [30] are included in the read 1 fastq, while the UMIs

of the Qiagen kits are in the read 2 fastq. In contrast,

Nugen and NEB have UMIs in the sample index region.

The features of each kit including variant calling and the

method of UMI tagging and enrichment of each kit are

summarized (Additional files 1, 2 and 3).
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The performances of these commercial kits using a

PCR-based target enrichment method incorporated with

the UMI sequence have not been systematically com-

pared yet. In this study, we examined five kits: the

Archer® Reveal ctDNA™ 28 Kit, NEBNext Direct® Cancer

HotSpot Panel, Nugen Ovation® Custom Target Enrich-

ment System, Qiagen Human Comprehensive Cancer

Panel, and Qiagen Human Actionable Solid Tumor

Panel. The performance of each kit was evaluated and

compared in terms of library construction efficiency,

uniformity of the target region, and UMI sequence er-

rors. Next, we selected the Qiagen Human Actionable

Solid Tumor Panel kit and further evaluated its detec-

tion sensitivity to identify low VAF variants using a lim-

ited amount of genomic DNA in the range of 6.25–50

ng. Performance evaluations of these commercial kits

offer valuable benchmark data for the future evaluation

of PCR-based targeted sequencing methods.

Results

Evaluation of the library construction efficiencies of the

commercial kits utilizing UMIs

We first compared the library construction efficiency of

five commercial library kits exploiting UMI sequences.

We used 50 ng of genomic DNA purified from HapMap

cell lines for the library construction. Triplicated

libraries of each kit were constructed according to the

corresponding manufacturer’s protocol (Materials and

Methods). Aiming to achieve a raw read depth of no less

than 10,000×, we generated datasets (n = 3 for each kit)

where the depth of coverage varied from 13,337× to

43,048×, except for the Qiagen HCCP (Additional file 1).

Because its total target region (920 kb) is exceptionally

large compared to the other kits (15–48.1kb), an

average depth of coverage obtained using the Qiagen

HCCP was 8148 × .

After aligning the raw reads to the reference genome

hg19 using BWA-mem [31], deduplication based on the

UMI sequences was performed using the fgbio package

(https://github.com/fulcrumgenomics/fgbio) by compar-

ing the UMI sequences of fragments (i.e., pairs of reads)

with identical start/end genomic positions. In parallel,

deduplication by the genomic positions of DNA frag-

ments without using the UMI sequences was carried out

by PICARD. For each primer, the depth of coverage was

expected to be the highest at the position next to the 3′

end of the primer and to decrease as the position moved

away from the 3′ end of the primer. Thus, we examined

the mean depth by increasing the size of the target re-

gions from 50 to 250 base pairs (bp) adjacent to the 3′

end of each primer, as the mean depth of unique cover-

age can vary depending on how large the regions defined

as target regions were. As expected, the depth of cover-

age decreased as the target regions increased from the

end of the primer, which was consistently observed in all

kits tested (Additional file 4). However, we did not

examine the NEB kit because the manufacturer had

not made the genomic positions of the probes open

to the public.

To compare the rate of on-target reads among the dif-

ferent kits, we examined sequencing metrics by defining

the target regions as the adjacent 100-bp region to the

3′ end of each primer (Fig. 1a). For accurate compari-

sons, fastq files were down-sampled to 5000× raw read

coverage by randomly selecting reads. In a comparison

of the sequencing metrics for the five kits, the Qiagen

HASTP showed the highest on-target rate when UMIs

were used to identify unique molecules and PCR dupli-

cates (Fig. 1a). Without using UMIs, the Qiagen HASTP

Fig. 1 Comparison of kits using 50 ng of cell line genomic DNA. a Stacked bar plot showing the fractions of filtered reads (i.e., unaligned,

duplicated, and off-target reads) and reads remaining after filtering (i.e., on-target) during raw data processing for five commercial kits with and

without UMIs for deduplication. b Mean depth of unique coverage after filtering according to total raw read depth
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kit displayed only a 10.1% on-target rate when dedupli-

cation was performed based on the genomic positions of

the fragments. However, when UMIs were used for

deduplication, the on-target rate increased to 52.0%

(Fig. 1a). All five kits showed on-target rate increases of

1.7–41.9% by identifying unique molecules with the

UMIs, which concomitantly displayed a 1.19–5.13-fold

higher mean depth of unique coverage compared to

without the UMIs (Fig. 1). This UMI effect was primar-

ily driven by the reduction in duplicate rates because

the start/end positions of the fragments were not suffi-

ciently complex to identify most unique molecules.

To estimate the library construction efficiency depend-

ing on the data size, we down-sampled each raw fastq

data to various data sizes with 500 × − 10,000× coverage.

We adjusted the data size based on the depth of raw

read coverage (i.e., total bases divided by the sizes of the

total target regions) rather than on the total read counts

because the sizes of the total target regions were diverse

across the five kits. As described above, we could not

obtain 10,000× coverage data for the Qiagen HCCP. The

depth of unique coverage based on deduplication with-

out UMIs did not proportionally increase according to

the total data size, particularly when the depth of raw

read coverage was greater than a few thousand (Fig. 1b).

However, coverage depth after deduplication using UMIs

was not completely saturated at a 10,000× raw read

coverage, indicating that further data generation can

identify more unique molecules (Fig. 1b). Among the

five commercial kits using UMIs, the Qiagen HASTP

showed the highest mean depth of unique coverage

followed by the Qiagen HCCP (Fig. 1b).

Next, we compared the uniformity of coverage depth

across the target regions among the five kits. When we

examined the distribution of the read depth of each kit

using data sets adjusted to 5000× by in silico

down-sampling, the depth distributions from the

Nugen, NEB, and Qiagen HCCP kits were more uni-

form compared to the other kits (Additional file 5). In

the Nugen kit, the percent of positions at which the

depth of coverage was more than twice the average

depth was 14.3% and the percent of positions at which

the depth of coverage was less than a half of the aver-

age depth was 14.2%. These values from the NEB and

Qiagen HCCP kits were similar to those of the Nugen

kit. In contrast, the two observed values were relatively

elevated in the Qiagen HASTP and even further in the

ArcherDX, indicating a less uniform coverage depth

than the other kits. The uniformity of the coverage

depth was also visualized by plotting the coverage effi-

ciency of the percentage of total targeted bases covered

at specific depths, which consistently indicated the rela-

tive degree of uniformity of the depth distributions

among the kits (Additional file 5).

Errors in the UMIs

The identification of PCR duplicates by UMIs enables

researchers to filter out random errors introduced dur-

ing library construction and the sequencing run. How-

ever, these random errors arise not only in sequences

from template fragments but also in UMI sequences. If

errors occurred in the UMIs, then PCR duplicates would

be mistaken for copies arising from unique molecules

tagged by different UMIs, resulting in the overestimation

of the depth of unique coverage. To estimate the levels

of errors in the UMIs, we analyzed our data using

UMI-tools, [32] which was developed to accurately iden-

tify unique molecules by accounting for UMI errors.

The method infers errors based on the topologies of

UMI sequence networks. Applying UMI-tools, we esti-

mated the UMI error rates of the five kits to be 0.1–0.4%

(Additional file 6), demonstrating that only a minor frac-

tion of reads had the wrong UMI sequence due to sequen-

cing errors. For all the kits, unique on-target read rates

decreased after the UMI-tools process because duplicated

reads with different UMI sequences due to errors were re-

moved. While the result from NEB displayed the

smallest decrease (0.04%), the unique on-target read

rates were adjusted to less than 6.4% in the tested

kits based on the UMI error estimations (Fig. 2a).

Nevertheless, after correction, the Qiagen HASTP still

showed the highest mean depth of unique coverage

followed by the Qiagen HCCP (Additional file 6).

Length of the UMIs

Next, we examined the most suitable length of the UMI

sequence. Using raw data from the Qiagen HASTP,

which contains 12-bp UMI sequences, the UMIs were

cut to different lengths increasing from 2 to 12 bp in

2-bp steps, and deduplication was executed with each of

the UMIs of different lengths. The results showed that

the depth of unique coverage increased according to the

length of the UMI from 2 to 6 bp (Fig. 2b). However,

when the UMI length varied from 6 to 12 bp, there was

no significant difference in the depth of unique coverage.

These results indicated that 6 bp is the minimum length

necessary to create sufficient complexity in the sequen-

cing data at this depth level. When unique molecules

were identified by UMI-tools, the minimum UMI length

increased from 6 to 8 bp, which is consistent with the re-

sults of a previous study [32]. Because the lengths of the

UMIs directly correlate with their diversity, the minimal

required length may increase depending on the number

of unique molecules. Because we estimated the UMI

length with a data set generated using 50 ng of genomic

DNA and down-sampled to 5000× coverage, the minim-

ally required length would increase if more genomic

DNA was used and/or if more data were generated.
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Performance of the selected library preparation method

using PCR-based enrichment technology with UMI sequences

After comparing the commercial kits, we selected the

Qiagen HASTP and evaluated the analytical perform-

ance of the kit using varying amounts of genomic DNA

(6.25, 12.5, 25, and 50 ng), which was technically dupli-

cated to ensure repeatability. To evaluate the detection

sensitivity for somatic mutations, we used the Horizon

cfDNA reference standard set, which contains hotspot

mutations at a frequency of 0.1–6.3%. On average, 17.1

million reads were generated from each sample; the

number of reads varied between 12.2 and 22.9 million.

To remove the variability related to data size differences,

all raw fastq data were in silico down-sampled to 11.5M

reads (35,000× raw read depth). First, we examined the

sequencing metrics depending on the initial genomic

DNA amounts (Fig. 3a, Additional file 7). As the amount

of input genomic DNA decreased, the duplicate rate

increased and the on-target rate decreased, which was

similar to our previous results obtained by capture-based

targeted sequencing [33]. However, the depth of unique

coverage was higher than the previous result. By using

the UMIs, a 3052× mean depth of unique coverage was

achieved when 11.5M sequencing reads were generated

using 6.25 ng of genomic DNA as the input material.

Second, we analyzed the depth of unique coverage de-

pending on the generated data sizes and initial genomic

DNA amounts (Fig. 3b). The depth of unique coverage

increased as more raw data was generated, regardless of

the input DNA amount. However, the rate of change in

the unique coverage varied at a given interval of data

size depending on the input DNA amounts. For ex-

ample, when 50 ng was used, the increased trend of

unique coverage depth was not dramatically attenuated

at the data endpoint (35,000× coverage), indicating that

the library complexity was significantly larger than the

observed depth of unique coverage. In contrast, the

increase curve was saturated at the same endpoint when

6.25 ng was used as an initial amount. Even if more data

are generated over 35,000× using 6.25 ng, the target

depth over 3000× would not considerably increase.

Based on this result, it is possible to predict how much

data will be obtained when only a small amount of gen-

omic DNA is available for library construction. Third,

we evaluated the detection sensitivity of the method

using a reference sample that contained eight variants

(six single nucleotide variants (SNVs) and two insertion

and deletions (InDels)) at three different allelic fractions

between 0.1–6.3% as described by the manufacturer

(Additional file 8). We used the web-based Qiagen data

analysis center to detect the variants (Additional file 9) by

removal of duplicated reads with UMI and sequencing

error corrections [34, 35]. When 25 or 50 ng was used for

the library construction, all variants present at a fre-

quency ≥ 1% were detected. However, two SNVs present

at a 1% frequency were not detected when 12.5 or 6.25 ng

was used. All variants (six SNVs and two InDels) present

at a frequency less than 1% were not detected using any

amount of initial genomic DNA. To compare the number

of false positive calls, we first excluded 36 variant candi-

dates including the eight SNVs listed by the manufacturer

and 28 SNVs in the wild-type sample of the Horizon

cfDNA reference set (HD776). More false positive variants

were detected as the amount of input DNA decreased

(Additional file 10). Furthermore, the number of false

positive calls (VAF > 0.01) decreased after deduplication

with the UMIs compared to that without the UMIs. In

addition to the Qiagen web-based analysis, we detected

variants with LoFreq and Pindel after filtering out dupli-

cated reads with the UMIs. The result was not much dif-

ferent from the Qiagen web-based analysis as described in

the discussion section (Additional file 9). We also exam-

ined the correlation between the expected allele frequency

and the observed allele frequency of the detected variants

Fig. 2 Analysis of UMIs. a Stacked bar plot showing the fractions of unique on-target reads that are authentic (i.e., unique) and inflated

(duplicated) due to UMI errors. Estimation was performed using UMI-tools. b Mean depth of unique coverage according to the length of the

UMI sequence
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according to the initial genomic DNA amount (Fig. 3c,

Additional file 11). When a greater amount of input DNA

was used, the correlation between the expected and ob-

served allele frequencies was improved. These results indi-

cated that a high depth of coverage increases the accuracy

of predicting variant allele frequencies when large initial

amounts are used. However, when using 6.25 ng as the

starting amount, mutations present at a frequency as

low as 1% could be detected. These results suggest

that the efficient recovery of template molecules with

this library construction kit resulted in the sensitive

detection of low VAF variants.

Discussion

Various target enrichment methods have been developed

and improved for massively parallel sequencing, which

has played a central role in allowing targeted deep se-

quencing to be a routine test for detecting alterations in

cancer-associated genes in clinical laboratories. While

each technique has advantages and disadvantages, the

two most commonly used enrichment approaches are

based on hybrid selection or highly multiplexed PCR.

Hybrid selection-based target enrichment easily

increases the number of targeted sites covering relatively

broad genomic regions, but this method generally re-

quires additional experimental procedures including

hybridization for a relatively long time using synthesized

oligonucleotide baits. The enrichment efficiency of PCR

nearly always exceeds that of hybrid capture, but con-

ventional PCR-based methods such as AmpliSeq, TruSeq

Amplicon, and HaloPlex have no way of deduplication

because of the identical position coordinates determined

by each pair of PCR primers. Because deduplication

helps to mitigate a potential skew in allele frequency es-

timation due to the inherent variability in the PCR amp-

lification steps, the methods are more likely to generate

false positives, particularly when calling low VAF vari-

ants. By introducing the UMI technology, the multiplex

PCR-based enrichment technique may overcome the dis-

advantage of the absence of an efficient deduplication

process, which clearly offers more choices for using tar-

geted enrichment sequencing.

The sensitivity, specificity, accuracy, and precision of

variant detection are tightly related to the mean depth of

unique coverage. Because it correlates with molecular

complexity and, in turn, the amount of input DNA,

Fig. 3 Performance evaluation of Qiagen HASTP kit. a Stacked bar plot showing the fractions of filtered reads (i.e., unaligned, duplicated, and off-

target reads) and reads remaining after filtering (i.e., on-target) during raw data processing for five commercial kits with and without UMIs for

deduplication. b Mean depth of unique coverage after filtering with UMIs according to the initial genomic DNA amount. c Correlation between

expected allele frequencies of variants in reference material and observed allele frequencies of variants from Qiagen HASTP
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achieving a high depth of unique coverage is demanding,

particularly when a small amount of DNA is used for li-

brary construction. In fact, tissue biopsies and plasma

samples often produce only limited amounts of DNA to

be used in analyzes. Thus, we evaluated the performance

of commercial kits using a relatively small amount of

DNA (50 ng or less) for the library construction. Fur-

thermore, the mean depth of unique coverage may not

be well correlated with library complexity, unless the

majority of unique molecules in the libraries are se-

quenced. Sequencing the most unique molecules in a li-

brary might not be practical if the library is constructed

with a large amount of DNA. The range of the initial

amount of genomic DNA we tested was based on the

situation of limited material or cfDNA collected from 5

mL of plasma.

Because the depth of unique coverage may be inflated

due to errors in the UMIs, we estimated UMI errors

using UMI-tools and subsequently adjusted the depth of

coverage. All kits displayed minor inflation of the cover-

age depth because of errors in the UMIs. However, these

adjusted coverage depths may be still somewhat inflated

because UMI-tools deals with nucleotide substitutions

but not InDels and chimeric sequences that arise from

recombination events. Although they may not comprise

a major fraction compared to substitution errors, InDels

and chimeric errors in UMIs remain to be evaluated.

The method of tagging template molecules with

UMIs differs among vendors. For the Nugen and NEB

kits, it is limited to increasing the length of the UMI at

the request of customers because the UMIs are placed

next to the sample index. In contrast, the control of

UMI length in the Qiagen and ArcherDx kits is rela-

tively easier. However, the short sequence is essential to

distinguish between the UMI and template to be se-

quenced, which forms a duplex region of y-shaped

adaptors required for double-stranded DNA ligation. In

addition, the usable read length is reduced because of

the position of the UMI and duplex region. Basically,

an increase in the coverage depth after deduplication

using UMIs is related to the library complexity gener-

ated from each kit using the same initial amount of

DNA. The difference of the library complexity might

result from the effectiveness of each step of the library

construction related to various elements including UMI

position, length, and tagging process. While longer

UMIs are more likely to accumulate errors, they may

be necessary to generate greater complexity, particu-

larly for higher sequencing depth experiments. As the

optimal length of the UMIs may vary depending on the

experimental conditions, such as input DNA amount,

library construction efficiency, and sequencing data

size, our study offers useful information for choosing

the length of the UMIs.

Compared to our previous results obtained using a hy-

brid capture-based enrichment method, [33] the mean

depths of unique coverage with the Qiagen kits consid-

erably increased. The data indicated superior library

construction efficiency, although the two methods were

not compared in controlled experiments. This may

occur partly because enrichment with the Qiagen kits

targets both strands, while the capture-based enrichment

method inevitably recovers only one strand. The differ-

ence in the library construction efficiency results be-

tween the two Qiagen kits might be due to the efficiency

of the multiplex PCR with different numbers of primers

and the primer design of each target region. More im-

portantly, the targeted deep sequencing data generated

from 6.25 ng of initial genomic DNA using the Qiagen

kit resulted in sufficient depth of unique coverage for

detecting variants present at an allele frequency as low

as 1%. Because one diploid genome consists of 6.6 pg of

DNA, 6.25 ng of gDNA is equivalent to 1982 haploid ge-

nomes. However, over 3000× unique coverage was gen-

erated using 6.25 ng of initial genomic DNA. Although it

is theoretically possible to achieve 3964x by reading both

strands, there might be some degree of overestimation

due to overlaps between paired reads and/or errors in

the UMI sequences. In this study, we attempted to de-

tect SNVs/InDels using a web-based resource from the

vendor as well as LoFreq [36] and Pindel [37]. When we

used LoFreq and Pindel to detect variants without UMIs,

the detection sensitivity was compromised. When using

the UMIs, only one variant (1% AF of EGFR T790M

from 6.25 ng) was not detected in the 6.25 ng sample,

but more variants were missed without using UMIs: 1%

AF of EGFR L858R from 6.25 ng, 1.3% AF of NRAS

Q61K from 12.5 and 25 ng, and 1.3% AF of PIK3CA

E545K from 12.5 ng (Additional file 9). These results

were reproduced in a duplicate experiment.

Because the detection sensitivity of low VAF variants

also greatly depends on the variant calling algorithms,

more sophisticated methods involving the suppression

of background errors [27] may further improve the

detection sensitivity of the assay. Nonetheless, our re-

sults revealed significant variability in several per-

formance parameters among commercial library

construction kits for PCR-based targeted sequencing.

The Qiagen kit enabled the detection of variants

present as low as 1%, even when less than 10 ng of

genomic DNA was available.

In this study, most of the experiments for the compar-

isons were performed by using DNA extracted from cell

lines, which are not a realistic substitute in many clinical

situations. Testing the kits using clinical samples is

needed for further evaluation. In addition, although we

evaluated a number of the major available kits, the list of

kits tested in this study is not exhaustive leaving a
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number of kits of this type not tested. In addition, more

commercial PCR-based enrichment kits may become

available as the technology evolves. Nevertheless, our

study offers useful benchmark data for evaluating the

performance of new kits for targeted deep sequencing.

Conclusions
In this study, we compared commercial PCR-based tar-

get enrichment kits that include UMI sequences. The

portion of duplicates dramatically decreased with the

identification of unique molecules using UMIs in all kits.

However, the kits varied in quality metrics such as li-

brary complexity (i.e., depth of unique coverage), cover-

age uniformity, and errors in the UMIs. Although no

single kit outperformed the others in all aspects, the

Qiagen HASTP kit displayed the highest library com-

plexity and was chosen for further analytical perform-

ance evaluations. The targeted deep sequencing method

based on PCR target enrichment combined with UMI

tagging sensitively detected low VAF variants, even when

using a limited amount of initial genomic DNA, suggest-

ing the efficient recovery of template molecules. In sum-

mary, our results provide a practical guideline for

researchers to choose appropriate options for PCR-based

targeted sequencing. Furthermore, the data generated in

this study would be useful benchmark data for evaluat-

ing new kits in the near future.

Methods

Cell lines and DNA

To compare the library construction efficiency, purified

DNA from 10 normal HapMap cell lines

(Additional file 12) were purchased from the Coriell In-

stitute (http://ccr.coriell.org/). Genomic DNA was ex-

tracted from the cell lines using QIAamp DNA Mini

Kits (Qiagen, Hilden, Germany). DNA concentration

and purity were measured in a Picogreen fluorescence

assay using a Qubit 2.0 Fluorometer (Life Technologies,

Carlsbad, CA, USA) and a Nanodrop 8000 UV-Vis spec-

trometer (Thermo Scientific, Waltham, MA, USA). The

fragment size distribution was measured using a 2200

TapeStation Instrument (Agilent Technologies, Santa

Clara, CA, USA). To evaluate the performance of variant

detection, the Horizon cfDNA reference standard set,

HD777–800 (Horizon Discovery Group plc, Cambridge,

UK), was used.

Library preparation

A total of five library preparation kits were tested: the

Archer® Reveal ctDNA™ 28 Kit (ArcherDX Inc., Boulder,

CO, USA), NEBNext Direct® Cancer HotSpot Panel

(New England Biolabs, Inc., Ipswich, MA, USA), Nugen

Ovation® Custom Target Enrichment System (NuGEN

Technologies, Inc., San Carlos, CA, USA), Qiagen

Human Comprehensive Cancer Panel, and Qiagen Hu-

man Actionable Solid Tumor Panel. For the Nugen ana-

lysis, we used a custom-designed panel of 46.9 kb with

the Ovation Target Enrichment System. When request-

ing the custom design, the use of short fragments such

as cfDNA was considered as per the manufacturer’s de-

scription. Also, UMI sequences were included in that

Nugen kit to distinguish PCR-duplicated fragments like

the Ovation® Cancer Panel 2.0 Target Enrichment Sys-

tem. Thus, we thought that the Nugen custom kit

should be sufficient to detect low allele frequency vari-

ants even though the low AF variant detection capability

was not claimed on the specification sheet. Genomic

DNA was fragmented to 150–200 bp by sonication using

a Covaris S2 (7 min, 0.5% duty, intensity = 0.1, 50 cycles/

burst; Covaris, Inc., Woburn, MA, USA) for three library

preparation kits: the Archer® Reveal ctDNA™ 28, NEB-

Next Direct® Cancer HotSpot Panel, and Nugen Ovation®

Custom Cancer Panel. In the Qiagen HCCP and HASTP,

genomic DNA was fragmented in the fragmentation buf-

fer included in the kits. After fragmentation of the gen-

omic DNA, libraries were created according to the

manufacturers’ protocols. To evaluate the performances

of these kits, technically triplicated libraries were con-

structed and sequenced for each kit. In the assessment

of the selected kit, the Qiagen HASTP, duplicate experi-

ments were performed.

Sequencing

The libraries were diluted to a final concentration of 2 nM

and pooled by equal molarity. To sequence using the

Hiseq 2500, all libraries were denatured by adding 0.2 nM

NaOH and diluted to 20 pM with hybridization buffer

from Illumina (San Diego, CA, USA). Sequencing was con-

ducted according to the Hiseq 2500 instruction manual.

Sequencing data process

Fastq files were aligned to the human reference sequence

hg19 by BWA v0.7.5a [31] and sorted by SAMtools

v0.1.18 [38]. Duplicated reads were marked by Picard

v.1.93 without UMIs. For marking duplicated reads with

UMIs, the fgbio package (https://github.com/fulcrumge-

nomics/fgbio) was used. Sequencing metrics were pro-

duced by Picard v1.93. To estimate and fix the error in

the UMI sequence, UMI-tools was used. To accurately

compare the kits, target regions in each kit were made

by adding 100 bp from the end positions of the

target-specific PCR primers, except for in the NEBnext

direct® Cancer HotSpot Panel. Because the manufacturer

policy did not reveal the genomic positions of the

target-specific PCR primers, we used the target regions

of the NEB kit indicated on their website. For the in

silico down-sampling of the fastq files carried out by

GATK v2.2 [39], we defined the raw read depth as the
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total number of bases divided by the total size (bp) of

the target regions. For calling variants from the Qiagen

HASTP, we used the Qiagen data analysis center and

LoFreq and Pindel after the BAM files, in which dupli-

cated reads were filtered out by UMIs. To calculate the

allele fractions of non-detected variant positions, mpi-

leup of SAMtools v0.1.18 was used.

Additional files

Additional file 1: Characteristics of the five kits and QC metrics of the

sequencing data. (XLSX 10 kb)

Additional file 2: Diagram of the library construction from four

manufacturers. (JPG 124 kb)

Additional file 3: Summary of the methods to detect variants from the

manufacturer. (XLSX 11 kb)

Additional file 4: Depth of unique coverage according to the size of

the target regions (x-axis). Target regions adjacent to the 3′ ends of the

gene-specific primers were expanded from 50 to 250 bp. (JPG 70 kb)

Additional file 5: Comparisons of uniformity across target regions. (a)

The depth of each bin divided by the average depth of unique coverage

was plotted across the entire target regions on a logarithmic scale. Red

dashed lines are twice and half the average depth of coverage. Values

(%) in red are the proportion of the target region out of the red line. (b)

Coverage efficiency was visualized as the percentage of the total

targeted bases covered at specific depths. (JPG 214 kb)

Additional file 6: Analysis of UMI errors. (a) The frequency of reads

tagged with erroneous UMIs was estimated by UMI-tools. (b) Sequencing

metrics obtained without UMIs, with UMIs, and with error-corrected UMIs

using UMI-tools. The stacked bar plot shows the fractions of filtered reads

(i.e., unaligned, duplicated, and off-target reads) and reads left after filter-

ing (i.e., on-target) during raw data processing for five commercial kits

with and without UMIs for deduplication. (JPG 149 kb)

Additional file 7: Sequencing metrics depending on input DNA amounts.

Sequencing metrics were obtained without UMIs, with UMIs, and with error-

corrected UMIs using UMI-tools. The stacked bar plot shows the fractions of

filtered reads (i.e., unaligned, duplicated, and off-target reads) and reads left

after filtering (i.e., on-target) during raw data processing for five commercial

kits with and without UMIs for deduplication. (JPG 87 kb)

Additional file 8: Variants in Horizon cfDNA reference material. (XLSX 9 kb)

Additional file 9: Detection of variants with each detection method

depending on various input DNA amounts. Success and failure of variant

detection are indicated by ‘O’ and ‘X,’ respectively. AF, allele frequency;

UMI, unique molecular identifier. (XLSX 10 kb)

Additional file 10: Summary of false negative calls when using various

input DNA amounts. Listed positions are not detected in each condition.

(XLSX 20 kb)

Additional file 11: Correlation between the expected allele frequency

of variants in the reference material and observed allele frequency of

variants obtained using the Qiagen HASTP. Because the variants present

at allele frequencies of 0.1% or 0.13% were not detected by the Qiagen

data analysis center or Lofreq/Pindel, the reads supporting the reference

and alternative nucleotides at the corresponding positions were counted

by mpielup to calculate the observed allele frequencies. (JPG 92 kb)

Additional file 12: List of HapMap cell lines used as the input DNA

sources for performance evaluations of library construction kits. (XLSX 9 kb)
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