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here is a continuous demand for a mission-critical Inter-
net that can provide various levels of quality-of-service
(QoS) guarantees and/or service differentiation to
voice, video, and data applications in a unified manner.

Realizing the potential benefits of being able to use the Inter-
net as a unified transport technology, the research community
and industry have been paying significant attention to enabling
QoS-based networking in the Internet. Users require tailor-
made services with high QoS and reliability, which a best-effort
paradigm cannot provide. On the other hand, Internet service
providers seek a more commercial Internet, which enables
them to provide differentiated services, optimize network
throughput, and possibly increase profit. To accommodate the
need for QoS, the research community has proposed a variety
of QoS-capable frameworks (e.g., IntServ, DiffServ, MPLS)
[1]. Since these frameworks largely rely on the underlying rout-
ing table, one of the key issues in QoS-proficient architectures
is how to determine efficient paths that can satisfy the QoS
requirements of multimedia applications. This problem is com-
monly known as constraint-based path selection and has been
shown to be NP-complete. Accordingly, the research commu-
nity has proposed many heuristics and only a few exact algo-
rithms. In this article we provide a descriptive overview of
these algorithms and focus on their performance evaluation
using extensive simulations. To the best of our knowledge, no
comparative study has been conducted before, except for the
limited simulation studies in the original papers describing
these algorithms.

Before giving the formal definition of the problem, we
describe the notation that is used throughout this article. Let
G(N, E) denote a network topology, where N is the set of
nodes and E is the set of links. With a slight abuse of nota-
tion, we also use N and E to denote the number of nodes and
the number of links, respectively. The source and destination
nodes are denoted by s and d. P denotes a path between s

and d, and h reflects the hopcount of a path. The number
of QoS measures (e.g., delay, hopcount) is denoted by m.
Each link (u, v) ∈ E is characterized by an m-dimensional
link weight vector, consisting of m nonnegative QoS weights
wi(u, v), i = 1, …, m. QoS measures can be roughly classified
into additive1 (e.g., delay) and non-additive (e.g., available
bandwidth). In case of an additive measure, the weight of a
path is equal to the sum of the corresponding weights of the
links along that path. For a non-additive measure, the weight
of a path is the minimum (or maximum) link weight along
that path. The QoS constraints are denoted by Li, i = 1, …, m.
In general, constraints on non-additive measures can be dealt
with by pruning from the graph all links (and possibly discon-
nected nodes) that do not satisfy the requested QoS con-
straint. For our performance evaluation we only consider the
more difficult, additive measures. Furthermore, the compared
algorithms assume that the network-state information (i.e.,
link weights) is accurately maintained at every node via QoS-
aware networking protocols. All algorithms that are evaluated
in this article were designed to solve (an instance of) the
multi-constrained path selection problem.

Definition 1 — Multi-constrained path (MCP) problem: Consid-
er a network G(N, E) . Each link (u, v) ∈ E is associated with
m additive weights wi(u , v) ≥ 0 , i = 1, …, m . Given m con-
straints L i , i = 1, …, m, the problem is to find a path P from
s to d such that:
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Abstract
Constraint-based path selection is an invaluable part of a full-fledged quality of
service (QoS) architecture. Internet service providers want to be able to select paths
for QoS flows that optimize network utilization and satisfy user requirements and as
such increase revenues. Unfortunately, finding a path subject to multiple constraints
is known to be an NP-complete problem. Hence, accurate constraint-based path
selection algorithms with a fast running time are scarce. Numerous heuristics and a
few exact algorithms have been proposed. In this article we compare most of these
algorithms. We focus on restricted shortest path algorithms and multi-constrained
path algorithms. The performance evaluation of these two classes of algorithms is
presented based on complexity analysis and simulation results and may shed some
light on the difficult task of selecting the proper algorithm for a QoS-capable
network.

Performance Evaluation of
Constraint-Based Path Selection Algorithms

1 Multiplicative measures can be transformed into additive measures by
taking their logarithm.
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A path obeying the above condition is said to be feasible.
Note that there may be multiple feasible paths between s and
d. A modified (and more difficult) instance of the MCP prob-
lem is to retrieve the shortest path among the set of feasible
paths. This problem is known as the multi-constrained optimal
path (MCOP) problem and is attained by adding a second
condition on the path P in Definition 1: l(P) ≤ l(Q) for any
feasible path Q between s and d, where l(.) is a path length
function. A solution to the MCOP problem is also a solution
to the MCP problem, but not necessarily vice versa. Consider-
able work in the literature has focused on a special case of the
MCOP problem known as the restricted shortest path (RSP)
problem. In this problem the goal is to find the least-cost path
among those that satisfy only one constraint denoted by ∆,
which bounds the permissible delay of a path. The MCP prob-
lem and its variants are known to be NP-complete [2].

In this article, we compare most QoS algorithms based on
extensive simulations. For these algorithms, we investigate:
• How often the algorithms return feasible paths.
• Their complexity.
Complexity refers to the intrinsic minimum amount of
resources needed to solve a problem or execute an algorithm.
Complexity can be divided into computational-time complexity
and space complexity. Here we focus on the computational-
time complexity. We consider both the worst-case complexity
and the empirical execution times. Table 1 summarizes the
worst-case time and space complexities of all considered algo-
rithms. All algorithms have been implemented with the same
data structure, namely Fibonacci heaps. The simulations pre-
sented in this article consisted of creating a Waxman topology
or a square lattice, through which the algorithms computed an
RSP or MCP path. Waxman graphs belong to the class of ran-
dom graphs where the probability of existence of a link
between two nodes decays exponentially with the geographic
distance between those two nodes. Such graphs are often cho-
sen because of their resemblence to the actual network
topologies, and also because they are easy to generate, allow-
ing for the evaluation of a large number of topologies. This
last property is crucial in an extensive algorithmic study,
where it is necessary to evaluate many scenarios in order to be
able to draw confident conclusions. We have chosen the Wax-
man parameters such that the longest minimum hopcount
between two nodes in a 100-node graph is around 7. The class
of lattices was chosen to reflect a hard topology class, as moti-
vated in [3]. All simulations are based on 104 generated
topologies, leading to an accuracy of roughly two digits.

The remainder of this article is organized as follows. In the
next section, we consider the RSP problem, present the algo-
rithms that target this problem, evaluate their performance
using simulations, and provide conclusions. The third section
adopts the same approach for the MCP problem. The fourth
section concludes with a summary and discussion.

RSP Algorithms
In this section, we first briefly describe the most important
RSP algorithms. For a more in depth discussion we refer the
reader to [4] and the references therein. After our description
of the RSP algorithms, we present the simulation results fol-
lowed by conclusions.

Description of RSP Algorithms
Exact Algorithms — Widyono [5] presented an exact solution
to the RSP problem called Constrained Bellman-Ford (CBF).
CBF maintains a list of paths from s to every other node,
ordered in increasing cost and decreasing delay. It selects a
node whose list contains a path that satisfies the delay con-

straint ∆ and that has the minimum cost. CBF then explores
the neighbors of this node using a breadth-first search, and (if
necessary) adds new paths to the list maintained at each
neighbor. This process continues as long as ∆ is satisfied and
there exists a path to be explored.

∈-Optimal Approximation — One general approach for dealing
with NP-complete problems is to look for an approximation
algorithm with a polynomial time complexity. An algorithm is
said to be ∈-optimal if it returns a path whose cost is at most
(1 + ∈) times the cost of the optimal path, where ∈ > 0.
Approximation algorithms perform better in minimizing the
cost of a returned feasible path as ∈ goes to zero. However,
the computational complexity is proportional to 1/∈, making
these algorithms impractical for small values of ∈. In our sim-
ulations, we consider Hassin’s algorithm [6] as a representa-
tive ∈-optimal approximation algorithm.

Backward-Forward Heuristic — The backward-forward heuristic
(BFH) first determines the least-delay path (LDP) and the
least-cost path (LCP) from every node u to d [7]. It then starts
from s and explores the graph by concatenating two segments:
• The so-far explored path from s to an intermediate node u.
• The LCP or the LDP from node u to d. 
BFH simply uses Dijkstra’s algorithm with the following modi-
fication in the relaxation procedure: a link (u, v) is relaxed if
it reduces the total cost from s to v, while its approximated
end-to-end delay obeys the delay constraint.

Lagrangian-based Linear Composition — The Lagrangian-based
linear composition algorithm combines the delay and cost of
each link into a link weight w(u, v) = α d(u, v) + βc(u, v) and
finds the shortest path with respect to w(u, v). The parameters
α and β are called the multipliers, and a key issue is how to
determine appropriate values for them. This can be done by
iteratively finding the shortest path with respect to the linear
combination and adjusting the multipliers’ values in the direc-
tion of the optimal solution [8]. Several refinements have
been proposed to the basic Lagrangian-based composition
approach. For example, one can use the k-shortest path algo-
rithm2 to close the gap between the optimal solution and the
returned path. For our simulations, we use the approach of
Juttner et al. [8].

Hybrid Algorithms — Hybrid algorithms use combinations of
the aforementioned approaches. One such heuristic called
DCCR was provided in [9]. DCCR tries to solve the RSP
problem through the minimization of a nonlinear length func-
tion and using a k-shortest path algorithm. In order to improve
the performance with small values of k, the search space is
reduced using a Lagrangian-based algorithm (with y itera-
tions) before applying DCCR. This final hybrid algorithm is
called SSR+DCCR.

Performance Evaluation of RSP Algorithms
In this subsection, we compare the RSP algorithms by simula-
tions using Waxman graphs and lattices. In each Waxman
graph the delay and cost of every link (u, v) are taken as
independent uniformly distributed random variables in the
range [1, 100]. In the class of lattices the delay and the cost
of every link (u, v) are negatively correlated: the delay is cho-
sen uniformly from the range [1, 100] and the corresponding

2 A k-shortest path algorithm does not stop when the destination has been
reached for the first time, but continues until it has been reached through k
different paths succeeding each other in length.
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cost is set to 101 minus the delay. In each simulation experi-
ment we generate 104 graphs and select node 1 and node N
as the source and destination node. For the lattices this cor-
responds to a source in the upper left corner and a destina-
tion in the lower right corner, leading to the largest minimum
hopcount.

We select the delay constraint ∆ as follows. First, we com-
pute the least-delay path (LDP) and the least-cost path (LCP)
between the source and the destination using Dijkstra’s algo-
rithm. If the delay constraint ∆ < d(LDP), then there is no
feasible path. If d(LCP) ≤ ∆, then the LCP is the optimal
path. Since these two cases are easy to deal with, we compare
the algorithms under the more difficult cases where d(LDP)
< ∆ < d(LCP). To investigate how the different values of the
delay constraint affect the performance of the compared algo-
rithms, for each graph we select five different values for ∆ in
the range (d(LDP), d(LCP)), as follows:

(1)

All considered RSP algorithms were found capable of find-
ing a feasible path that satisfies the delay constraint ∆. There-
fore, the challenging part of the RSP problem is not to find a
feasible path, but the ability of the algorithm to minimize the
cost of a selected feasible path. We compare the algorithms

based on how inefficient they are in minimizing the cost of a
returned feasible path, when compared to the exact algorithm
(CBF) that finds a feasible path with the minimum cost. The
inefficiency of an algorithm A is defined as

where c(·) is the average cost of the feasible paths that are
returned by an algorithm. We also report the execution time
of the compared algorithms. To make the results machine-
independent, the execution times are normalized by the execu-
tion time of Dijkstra’s algorithm (LDP).

The simulation results indicate that for the considered
graphs, the execution times of the ∈-optimal approximation
algorithms (even when ∈ = 1) are much larger than those
of the other compared algorithms. Therefore, we exclude the
∈-approximations from our plots. We compare the following
algorithms: the exact CBF, the least delay path (LDP),
Lagrangian-based Linear Composition (LLC), Backward-for-
ward heuristic (BFH), DCCR with k = 2 and k = 5 (where k
refers to the maximum number of paths that can be stored at
a node), and SSR+DCCR with k = 5. Since the relative dif-
ferences between the algorithms (in terms of inefficiency and
execution time) do not vary significantly with x in ∆(x), we only

inefficiency
c A c CBF
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n Figure 1. Scaling of the performance measures with N. The inefficiency and normalized CPU time are shown for the class of Waxman
graphs (above) and for the class of square lattices (below).
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report the average of the inefficiency and the execution time
of the algorithms.3

The results are shown in Fig. 1 as a function of the number
of nodes N. In all cases the basic LDP algorithm has the high-
est inefficiency and the lowest execution time. With a slight
increase in execution time, BFH gives a significantly lower
inefficiency than the LDP algorithm. Actually, BFH also has a
lower inefficiency (even with less computational time) than
LLC and DCCR with k = 2. Since the inefficiency of DCCR
and SSR+DCCR is controlled by the value of k, they can give
a lower inefficiency if k increases. However, this will result in
a longer execution time. Moreover, in some cases (e.g., the
lattices with negatively correlated link delay and cost) no sig-
nificant improvement can be obtained with the small values of
k (e.g., k ≤ 5). In this case, many subpaths with small cost and
high delay will initially be stored. These subpaths are likely to
lead to infeasible paths. Only if k is high enough, the paths
with higher cost and lower delay will be stored, which may
lead to the optimal solution. The BFH concept is more valu-
able in this scenario because it foresees whether a path may
be able to improve the cost or obey the constraint.

RSP Conclusions
Our conclusions for the RSP problem are confined to the con-
sidered classes of graphs with the specified link weight distri-
bution.

The simulation results indicated that a lower inefficiency is
generally only obtained at the expense of increased execution
time. Therefore, a hybrid algorithm similar to SSR+DCCR
seems to be a good solution for the RSP problem. The main
advantage of a hybrid algorithm would be to initially deter-
mine a good path with a small execution time (e.g., by using
BFH) and to improve the inefficiency with a k-shortest path
approach while controlling the complexity with the value of k.
From this, we conclude that rather than using a single
approach, a combination of key concepts (e.g., a nonlinear
length function, search space reduction, tunable accuracy
through a k-shortest path algorithm, and backward-forward
search) leads to efficient algorithms for the RSP problem.

MCP Algorithms
In this section we start with a brief description of the MCP

algorithms considered in our performance study. A more in
depth discussion of these algorithms can be found in [4, 10],
and the references therein. Subsequently, we present the sim-
ulation results and conclusions.

Description of MCP Algorithms
Jaffe’s Approximation — Jaffe [11] proposed a Lagrange-based
approximation for the MCP problem based on minimizing a
linear combination of the link weights: 

where di are positive multipliers. By choosing di = (1/Li) , the
largest volume inside the constraints volume is scanned,
before a possibly infeasible path can be selected.

Iwata’s Fallback Algorithm — Iwata et al. [12] proposed a
heuristic that first computes one (or more) shortest path(s)
based on one QoS measure and then checks if all the con-
straints are met. If this is not the case, the procedure is
repeated with another measure until a feasible path is found
or all QoS measures are examined. In our simulations we only
consider one shortest path per QoS measure.

SAMCRA and TAMCRA — Both TAMCRA [13] and its suc-
cessor SAMCRA [14] incorporate three fundamental con-
cepts:
1 A nonlinear measure for the path length

2 A k-shortest path approach.
3 The principle of non-dominated paths4 to reduce the

search-space.
SAMCRA also includes a fourth “look-ahead” concept. Simi-
lar to BFH, the look-ahead concept precomputes one or
multiple shortest path trees rooted at the destination and
then uses this information to reduce the search-space. In
TAMCRA, k is fixed (giving it a polynomial complexity), but
with SAMCRA this k can grow exponentially in the worst
case. For the simulations with TAMCRA we set k = 2. A bet-
ter performance can be achieved when k is increased (if k is
unrestricted, all paths between s and d are returned, ordered
according to their lengths).

Chen’s Approximate Algorithms — Chen and Nahrstedt [15]
provided two heuristics for the MCP problem: EDSP based
on Dijkstra and EBF based on Bellman-Ford. In these algo-
rithms the MCP problem is simplified by scaling down m – 1
(real) link weights. The user has to provide m – 1 values for
x i , i = 1, …, m – 1, that are used as scaling factors. The algo-
rithms then adopt a dynamic programming approach to return
a path that minimizes the first (real) weight provided that the
other m – 1 (scaled down integer) weights are within the con-
straints. We have chosen to implement the EBF version for
our simulations. Unfortunately, to achieve a good perfor-
mance, high x i’s are needed, which makes this approach com-
putationally intensive for practical purposes.

Randomized Algorithm — Korkmaz and Krunz [16] proposed a
randomized heuristic for the MCP problem that uses the con-
cept of look-ahead. Based on look-ahead information, the algo-
rithm randomly selects nodes that are likely to lead to a feasible
path. Under the same network conditions, multiple executions
of the randomized algorithm may return different paths between
the same source and destination pair. For our simulations, we
execute only one iteration of the randomized heuristic.

H_MCOP — Korkmaz and Krunz [17] also provided a heuris-
tic called H_MCOP. This heuristic tries to find a path within
the constraints by using the nonlinear path length function of
TAMCRA and the concept of look-ahead. In addition,
H_MCOP tries to simultaneously minimize the weight of a
single “cost” measure along the path. H_MCOP uses two
modified Dijkstra executions.

Limited Path Heuristic — Yuan [18] presented two heuristics for
the MCP problem. The first “limited granularity” heuristic
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3 Although not plotted here, the inefficiency of all algorithms except for
SSR+DCCR increases as ∆ increases. As ∆ increases, more paths with
small cost become feasible and the search space becomes larger. Since
most algorithms do not reduce their search space, the chance of finding an
optimal path is often decreased as ∆ increases. SSR+DCCR can some-
times circumvent this situation by reducing the search space at the cost of
increasing the execution time.

4 A path P is dominated by a path Q if wi(Q) ≤ wi(P), for i = 1, … m,
with inequality for at least one i. 
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resembles the algorithm of Chen and Nahrstedt [15]. There-
fore, we only consider the second heuristic, known as “limited
path” heuristic (LPH). LPH is an extended Bellman-Ford
algorithm that uses concepts (2) and (3) of TAMCRA. To
conform with the queue-size allocated for TAMCRA, we let
k = 2 for LPH.

A*Prune — Liu and Ramakrishnan proposed A*Prune [19]
and considered the problem of finding not only one but K
shortest paths satisfying the constraints. For our simulations,
we take K = 1. A*Prune uses the concept of look-ahead and
then starts extracting/pruning nodes in a Dijkstra-like fashion
until K feasible paths are found. A*Prune uses Jaffe’s length
function

on the predicted (look-ahead) end-to-end path weights. 

Performance Evaluation of MCP Algorithms
In this subsection we present and discuss the simulation
results for the MCP problem. For the Waxman graphs and
lattices, the weights of a link are sampled from independent
and uniformly distributed random variables in the range (0,
1]. For the lattices, we consider two negatively correlated QoS
measures, for which the link weights are assigned as follows:
w1 is uniformly distributed in the range (0, 1] and w2 = 1 – w1.

The choice of the constraints is important, since it deter-
mines how many (if any) feasible paths exist. We experiment-
ed with strict as well as loose constraints. In the case of loose
constraints, our simulation results (not shown here) indicate
that all MCP algorithms provide near-optimal success rates
with small execution times. Accordingly, we focus our attention
on the case of strict constraints. Note that for MCOP algo-
rithms, loose constraints increase the number of feasible paths
and hence the search space. This makes it difficult to find the
optimal path. Fortunately, MCOP algorithms can be easily
adapted to solve only the MCP part of the problem, by stop-
ping as soon as a feasible path is reached.

The set of strict constraints is chosen as follows:

Li = wi(P) , i = 1, … , m

where P is the path for which max j =1 , … , m (wj(P)) is mini-
mum. In this case, only one feasible path is present in the
graph (hence, MCP ≡ MCOP). This also allows us to fairly
compare MCP and MCOP algorithms.

We report the success rate and the normalized execution
time. The success rate of an algorithm is defined as the num-
ber of times that an algorithm returned a feasible path divided
by the total number of iterations. The normalized execution
time of an algorithm is defined as the execution time of the
algorithm (over all iterations) divided by the execution time of
Dijkstra’s algorithm.

Our simulations revealed that Bellman-Ford-based algo-
rithms (Chen’s algorithm and the Limited Path Heuristic)
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n Figure 2. Success rate (left) and normalized execution time (right) for the class of Waxman graphs (above) and lattices (below) as a
function of the number of nodes (m = 2 and strict constraints).
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require significantly more execution time than their Dijkstra-
based counterparts. Therefore, we do not include the former
algorithms in the comparisons below.

Figure 2 gives the success rate and normalized execution
time for the class of Waxman graphs and lattices (with nega-
tively correlated link weights), with m = 2 under strict con-
straints. The exact algorithms SAMCRA and A*Prune always
give a success rate of one. The difference in the success rate
of the heuristics under strict constraints is significant. Jaffe’s
algorithm and Iwata’s algorithm perform significantly worse
than the others. In the class of two-dimensional lattices, this
difference disappears as the success rates of all heuristics tend
to zero as N increases, even for fairly moderate values of N.

The same figure also displays the normalized execution
time that the algorithms used to obtain the corresponding suc-
cess rate. For the class of Waxman graphs, the execution time
of SAMCRA does not deviate much from the polynomial
time heuristics. In fact, all algorithms display a polynomial
execution time. For the class of lattices, the execution times of
the exact algorithms grow exponentially, which is the price
paid for exactness in hard topologies. SAMCRA and A*Prune
use different length functions. The choice of a proper length
function is very important, which opens the question of what
is the best length function?

We have also simulated the performance of the algorithms
as a function of the number of constraints m (m = 2, 4, 6, and
8) under independent uniformly distributed link weights. The
results for the class of Waxman graphs (N = 100) and Lattices

(N = 49) are plotted in Fig. 3. We can see that the algorithms
display a similar ranking in the success rate as in Fig 2. Some
algorithms display a linear increase in the execution time.
All these algorithms have an initialization phase in which
they execute the Dijkstra algorithm m times. Finally, we
can observe that if m grows, A*Prune slightly outperforms
SAMCRA. This can be attributed to the non-dominance prin-
ciple, which becomes of less significance as m increases. How-
ever, the time needed to check for non-dominance is only
manifested in a small difference between the execution times
of SAMCRA and A*Prune. 

MCP Conclusions
We now present our conclusions for the considered classes of
graphs, namely the Waxman graphs and the square lattices.
The simulation results indicated that SAMCRA-like algo-
rithms performed best at an acceptable computational cost,
which can be attributed to the following features.

Dijkstra-Based Search with a Nonlinear Length Function:
A nonlinear length function is a prerequisite for exactness.
When the link weights are positively correlated, a linear
approach may yield a high success rate in finding feasible
paths, but under different circumstances the returned path
may significantly violate the constraints. However, the choice
of the best length function is not trivial. Our simulations indi-
cated that, even on sparse graphs, a Dijkstra-like search runs
significantly faster than a Bellman-Ford-like search.

Search-Space Reduction: Reducing the search-space is

n Figure 3. Success rate and normalized execution time as a function of m under strict constraints. The results above are for Waxman
graphs with N = 100 , and below for the lattices with N = 49. In both classes of graphs, the link weights are independent and uniformly
distributed random variables.
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always desirable because this reduces the execu-
tion time of an algorithm. The non-dominance
principle is a very strong search-space reducing
technique, especially when the number of con-
straints m is small. When m grows, the look-
ahead concept together with the constraint values
provide a better search-space reduction.

Tunable Accuracy through a k-shortest Path
Functionality: Routing with multiple constraints
and a nonlinear length function may require that
multiple paths be stored at a node, necessitating
a k-shortest path approach. By tuning the value
of k, a good balance between success rate and
computational complexity may be reached.

Look-Ahead Functionality: The look-ahead
concept is based on information from path trees
rooted at the destination, which are computed in
polynomial time. These path trees are used to
reduce the search-space and to facilitate the
search for a feasible path. In the latter functional-
ity, a predicted end-to-end path length may lead
the search sooner in the correct direction, there-
by saving in execution time.

The exactness of the TAMCRA-like algo-
rithms depends on the value of k. If k is not
restricted, then both MCP and MCOP problems can be solved
exactly, as done by SAMCRA. Although k is not restricted in
SAMCRA, simulations on Waxman graphs with independent
uniformly distributed random link weights show that the exe-
cution time of this exact algorithm increases linearly with the
number of nodes, providing a scalable solution to the MC(O)P
problem. Simulation results also show that TAMCRA-like
heuristics with small values of k render near-exact solutions.
The results for the class of two-dimensional lattices with nega-
tively correlated link weights are completely different. In such
hard topologies, the heuristics are useless, whereas the exact
algorithms display an exponential execution time. We believe
that the best approach for such (unrealistic) graphs is via a
hybrid algorithm that uses a good heuristic to make intelligent
choices about which path to follow, combined with an exact
SAMCRA-like algorithm that incorporates all of the four
above mentioned concepts. If a solution to MCP suffices, then
this algorithm should be stopped as soon as a feasible path is
encountered.

Summary and Discussion
Several researchers investigated the constraint-based path
selection problem and proposed various algorithms, mostly
heuristics. This article has evaluated several of the algorithms
that were proposed for the restricted shortest path and multi-
constrained (optimal) path problems, via simulations in the
class of Waxman graphs and the much harder class of two-
dimensional lattices. Table 1 displays the worst-case complexi-
ties of the algorithms evaluated in this article.

The simulation results show that the worst-case complexi-
ties of Table 1 should be interpreted with care. For instance,
the real execution time of H_MCOP will always be longer
than that of Jaffe’s algorithm under the same conditions, since
H_MCOP executes Dijkstra’s algorithm twice. In general, the
simulation results indicate that SAMCRA-like algorithms that
use a k-shortest path algorithm with a nonlinear length func-
tion while eliminating paths via the non-dominance and look-
ahead concepts, provide the better performance for the
considered problems (RSP, MCP, and MCOP). The perfor-
mance and complexity of these algorithms is easily adjusted
by controlling the value of k. When k is not restricted, the

SAMCRA-like algorithms lead to exact solutions. In the class
of Waxman or random graphs with uniformly distributed link
weights, simulation results suggest that the execution times of
such exact algorithms increase linearly with the number of
nodes. The exponential increase in execution time is only
observed in the class of two-dimensional lattices. Heuristics
perform poorly in such topologies, whereas exactness comes
at a high price in complexity. In our simulations the polynomi-
al-time ∈-approximation schemes displayed an extensive exe-
cution time and were therefore omitted from the plots. More
research is necessary to indicate whether these algorithms
might provide a good alternative for exact algorithms in large
and hard topologies.
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