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Abstract. The paper considers free vibration characteristics of stiffened composite hyperbolic 

paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element 

code is developed for the purpose by combining an eight noded curved shell element with a three 

noded curved beam element. The size of the cutouts and their positions with respect to the shell 

centre are varied for different edge conditions of cross-ply and angle-ply laminated shells. The 

effects of these parametric variations on the fundamental frequencies and mode shapes are 

considered in details to conclude a set of inferences of practical engineering significance. 

Notations 

a ,b  length and width of shell in plan 
/ /,a b   length and width of cutout in plan 

bst  width of stiffener in general 

bsx, bsy  width of x and y stiffeners respectively 

Bsx, Bsy  strain displacement matrix of stiffener elements 

dst  depth of stiffener in general 

dsx, dsy  depth of x and y stiffeners respectively 

{de}  element displacement 

esx, esy  eccentricities of x and y -stiffeners with respect to shell mid-surface respectively 

E11, E22 elastic moduli 

G12, G13, G23 shear moduli of a lamina with respect to 1, 2 and 3 axes of fibre 

h  shell thickness 

Mx, My  moment resultants 

Mxy  torsion resultant 

np  number of plies in a laminate 

N1-N8  shape functions 

Nx, Ny  inplane force resultants 

Nxy  inplane shear resultant 

Qx, Qy  transverse shear resultant 

Rxx, Ryy, Rxy  radii of curvature and cross curvature of shell respectively 

u, v, w  translational degrees of freedom 

x, y, z  local co-ordinate axes 

X, Y, Z  global co-ordinate axes 

zk  distance of bottom of the kth ply from mid-surface of a laminate 

,  rotational degrees of freedom 

x, y  inplane strain component 

xy ,xz, yz shearing strain components 

12, 21  Poisson’s ratios 

, ,   isoparametric co-ordinates 

  density of material 
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x, y  inplane stress components 

xy, xz, yz shearing stress components 

  natural frequency 

   non-dimensional natural frequency  

  2/12

22

2 / hEa   

Introduction 

Composite shell structures are extensively used in aerospace, civil, marine and other 

engineering applications. In practical civil engineering applications, the necessity of covering large 

column free open areas is often an issue. It is advantageous to use thin shells instead of flat plates to 

cover large column free open spaces as in airports, parking lots, hangers, and the like. Such areas in 

medical plants and automobile industries prefer entry of north light through the roofing units. Quite 

often, to save weight and also to provide a facility for inspection, cutouts are provided in shell 

panels. In practice the margin of the cutouts must be stiffened to take account of stress concentration 

effects. In civil engineering construction, conoidal hyperbolic paraboloid (among the anticlastic) and 

elliptic paraboloid (among the synclastic) shells are used as roofing units to cover large column free 

areas. The hyperbolic paraboloid shells are aesthetically appealing although they offer less stiffness 

than other doubly curved shells. Now-a-days, civil engineers use laminated composites to fabricate 

these shell forms as the high specific stiffness and strength properties of these materials result in 

less gravity forces and mass-induced forces (seismic force) on the laminated shells compared to 

their isotropic counterparts. All these taken together reduce the foundation costs to a great extent. 

Realizing the importance of laminated composite doubly curved shells in the industry, several 

aspects of shell behaviour such as bending, buckling, vibration, impact etc. are being reported by 

different researchers. The present investigation is however, restricted only to the free vibration 

behaviour of composite stiffened hyperbolic paraboloid shell panels with cutout. 

No wonder a number of researchers are working to explore different behavioral aspects of 

laminated doubly curved shells. Researchers like Ghosh and Bandyopadhyay [1], Dey et al. [2, 3], 

Chakravorty et al. [4, 5] reported static and dynamic behaviour of laminated doubly curved shells. 

Later Nayak and Bandyopadhyay [6-8], Das and Chakravorty [9-12] and Pradyumna and 

Bandyopadhyay [13, 14] reported static, dynamic and instability behaviour of laminated doubly 

curved shells. Application of doubly curved shells in structures often necessitates provision of 

cutouts for the passage of light, service lines and also sometimes for alteration of the resonant 

frequency. The free vibration of composite as well as isotropic plate with cutout was studied by 

different researchers from time to time. Reddy [15] investigated large amplitude flexural vibration 

of composite plate with cutout. Malhotra et al. [16] studied free vibration of composite plate with 

cutout for different boundary conditions. One of the early reports on free vibration of curved panels 

with cutout was due to Sivasubramonian et al. [17]. They analysed the effect of cutouts on the 

natural frequencies of plates with some classical boundary conditions. The plate had a curvature in 

one direction and was straight in the other. The effect of fibre orientation and size of cutout on 

natural frequency on orthotropic square plates with square cutout was studied using Rayleigh-Ritz 

method. Later Sivakumar et al. [18], Rossi [19], Huang and Sakiyama [20] and Hota and Padhi [21] 

studied free vibration of plate with various cutout geometries. Chakravorty et al. [22] analysed the 

effect of concentric cutout on different shell options. Sivasubramonian et al. [23] studied the effect 

of curvature and cutouts on square panels with different boundary conditions. The size of the cutout 

(symmetrically located) as well as curvature of the panels is varied. Hota and Chakravorty [24] 

published useful information about free vibration of stiffened conoidal shell roofs with cutout. Later 

Nanda and Bandyopadhyay [25], Kumar et al. [26] studied the effect of different parametric 

variation on free vibration of cylindrical shell with cutout using first order shear deformation theory 

(FSDT) and higher order shear deformation theory (HYSD) respectively. 
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It is noted from the literature review that free vibration study of laminated composite 

hyperbolic paraboloid shell panels with cutout is not reported by any researcher so far although the 

importance of this shell form is mentioned. Thus the present study intends to study the free vibration 

behaviour of stiffened hyperbolic paraboloid shell panels with cutout by varying the size and 

position of the cutouts. 

 

Fig.1 Hyperbolic paraboloid shell with a concentric cutout stiffened along the margins 

Mathematical formulation 

A laminated composite hyperbolic paraboloid shell of uniform thickness h (Fig.1) and radius 

of curvature Rxx and Ryy is considered. Keeping the total thickness the same, the thickness may 

consist of any number of thin laminae each of which may be arbitrarily oriented at an angle  with 

reference to the x-axis of the co-ordinate system. The constitutive equations for the shell are given 

by (a list of notations is already given): 

F=E                                     (1) 

where,    Tyxxyyxxyyx QQMMMNNNF ,,,,,,, , 
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The force and moment resultants are expressed as 
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                            (2) 

The submatrices [A], [B], [D] and [S] of the elasticity matrix [E] are functions of Young’s moduli, 
shear moduli and the Poisson’s ratio of the laminates. They also depend on the angle which the 
individual lamina of a laminate makes with the global x-axis. The detailed expressions of the 

elements of the elasticity matrix are available in several references including Vasiliev et al. [27] and 

Qatu [28]. 
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The strain-displacement relations on the basis of improved first order approximation theory for thin 

shell [2] are established as 

     Tyzxzxyyx

T

yzxzxyyx

T

yzxzxyyx kkkkkz ,,,,,,,,,,,, 00000       (3) 

where, the first vector is the mid-surface strain for a hyperbolic paraboloid shell and the second 

vector is the curvature.  

Formulation for Shell 

An eight-noded curved quadratic isoparametric finite element is used for shell analysis. The 

five degrees of freedom taken into consideration at each node are u, v, w, , . The following 

expressions establish the relations between the displacement at any point with respect to the co-

ordinates  and  and the nodal degrees of freedom. 
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where the shape functions derived from a cubic interpolation polynomial are: 

Ni =(1+i)(1+i)( i+i-1)/4,   for i=1,2,3,4 

Ni =(1+i)(1-2
)/2,     for i=5,7    

Ni =(1+i)(1-2
)/2,    for i=6,8                               (5) 

The generalized displacement vector of an element is expressed in terms of the shape functions and 

nodal degrees of freedom as: 

    edNu                                      (6) 

i.e.,   
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Element Stiffness Matrix 

The strain-displacement relation is given by     edB ,                              (7) 

where  
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The element stiffness matrix is  

      dxdyBEBK
T

e                                    (9) 
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Element Mass Matrix 

The element mass matrix is obtained from the integral 

      dxdyNPNM
T

e  ,                                  (10) 

where,   
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Formulation for Stiffener 

Three noded curved isoparametric beam elements are used to model the stiffeners, which are 

taken to run only along the boundaries of the shell elements. In the stiffener element, each node has 

four degrees of freedom i.e. usx, wsx, sx and sx for x-stiffener and vsy, wsy, sy and sy for y-stiffener. 

The generalized force-displacement relation of stiffeners can be expressed as: 

x-stiffener:        sxisxsxsxsxsx BDDF   ; 

y-stiffener:        syisysysysysy BDDF                                 (12) 

where,    Tsxxzsxxsxxsxxsx QTMNF  ;     Txsxsxxsxxsxxsxsx wu ....    

and    Tsyyzsyysyysyysy QTMNF  ;     Tysysyysyysyysysy wv ....    

The generalized displacements of the x-stiffener and the shell are related by the transformation 

matrix     sxi xT  where 
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The generalized displacements of the y-stiffener and the shell are related by the transformation 

matrix    syi yT     where 

1

0 1

0 0 1

0 0 0 1

sy

yy
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R
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These transformations are required due to curvature of x-stiffener and y-stiffener. In the above 

equations, esx and esy are the eccentricities of the x-stiffener and y-stiffener.    is the appropriate 

portion of the displacement vector of the shell. 

Elasticity matrices are as follows: 
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where, ijijijij AeeBDD 2/ 2  ; ijijij eABB /
,                             (15) 

and Aij, Bij, Dij and Sij are as explained elsewhere [29]. 

Here the shear correction factor is taken as 5/6 for the stiffeners. The sectional parameters 

are calculated with respect to the mid-surface of the shell by which the effect of eccentricities of 

stiffeners is automatically included. The element stiffness matrices are of the following forms. 

for x-stiffener:        dxBDBK sxsx

T

sxxe ;  

for y-stiffener:        dyBDBK sysy

T

syye                               (16) 

The integrals are converted to isoparametric coordinates and are carried out by 2-point Gauss 

quadrature. Finally, the element stiffness matrix of the stiffened shell is obtained by appropriate 

matching of the nodes of the stiffener and shell elements through the connectivity matrix and is 

given as: 

       yexeshee KKKK  .                      (17) 

The element stiffness matrices are assembled to get the global matrices.  

Element mass matrix for stiffener element 

      [ ]
T

sxM N P N dx    for x- stiffener  

and    [ ]
T

syM N P N dy       for y- stiffener                             (18) 

Here,   N  is a 3x3 diagonal matrix. 
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 for y-stiffener 

The mass matrix of the stiffened shell element is the sum of the matrices of the shell and the 

stiffeners matched at the appropriate nodes.  

       yexeshee MMMM  .                               (19) 

The element mass matrices are assembled to get the global matrices. 
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Cutout consideration 

The code developed can take the position and size of cutout as input. The program is capable 

of generating non uniform finite element mesh all over the shell surface. So the element size is 

gradually decreased near the cutout margins. Such finite element mesh is redefined in steps and a 

particular grid is chosen to obtain the fundamental frequency when the result does not improve by 

more than one percent on further refining. Convergence of results is ensured in all the problems 

taken up here. 

Solution Procedure 

The free vibration analysis involves determination of natural frequencies from the condition 

    02  MK                                   (20) 

This is a generalized eigen value problem and is solved by the subspace iteration algorithm. 

Results and discussion 

First the validation study of the proposed finite element shell model in presence of cutout is 

carried out. The results of Table 1 show that the agreement of present results with the earlier ones is 

excellent and the correctness of the stiffener formulation is established. Free vibration of corner 

point supported, simply supported and clamped spherical shells of (0/90)4 lamination with cutouts is 

also considered. The fundamental frequencies of spherical shell with cutout obtained by the present 

method agree well with those reported by Chakravorty et al. [22] as evident from Table 2, 

establishing the correctness of the cutout formulation in doubly curved shells. Thus it is evident that 

the finite element model proposed here can successfully analyze vibration problems of stiffened 

composite hyperbolic paraboloid shell panels with cutout which is reflected by close agreement of 

present results with benchmark ones.  

Table 1: Natural frequency (Hz) of centrally stiffened clamped square plate 

Mode no. Mukherjee and  

Mukhopadhyay [31] 

Nayak and 

Bandyopadhyay [32] 

Present method 

N8 

(FEM) 

N9 

(FEM) 

1 711.8 725.2 725.1 733 

a=b=0.2032 m, shell thickness =0.0013716 m, stiffener depth 0.0127 m, stiffener width=0.00635 m, 

stiffener eccentric at bottom, Material property: E=6.87x10
10

 N/m
2
, =0.29, =2823 kg/m

3
 

Table 2: Non-dimensional Fundamental Frequencies ( ) for laminated composite spherical shell 

with cutout 

a/b=1, a/h=100, a
/
/b

/
=1, h/Rxx= h/Ryy=1/300, CS=Corner point supported, SS=Simply supported, 

CL=Clamped 

In order to study the effect of cutout size and position on the free vibration response 

additional problems for hyperbolic paraboloid shell panels with 0/90/0/90 and +45/-45/+45/-45 

lamination and different boundary conditions have been solved. The positions of the cutouts are 

varied along both of the plan directions of the shell for different practical boundary conditions to 

study the effect of eccentricity of cutout on the fundamental frequency. 

a’/a CS  SS  CL  

Chakravorty 

et. al.[22] 

Present 

model 

Chakravorty 

et. al.[22] 

Present 

model 

Chakravorty 

et. al.[22] 

Present 

model 

0.0 34.948 34.601 47.109 47.100 118.197 117.621 

0.1 35.175 35.926 47.524 47.114 104.274 104.251 

0.2 36.528 36.758 48.823 48.801 98.299 97.488 

0.3 37.659 37.206 50.925 50.920 113.766 113.226 

0.4 39.114 39.412 53.789 53.788 110.601 110.094 
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Behavior of shell panel with concentric cutout 

Tables 3 and 4 furnish the results of non-dimensional frequency ( ) of 0/90/0/90 and +45/-

45/+45/-45 stiffened hyperbolic paraboloid shells with cutout. The shells considered are of square 

plan form (a=b) and the cutouts are also taken to be square in plan (a
/
=b

/
). The cutouts placed 

concentrically on the shell surface. The cutout sizes (i.e. a
/
/a) are varied from 0 to 0.4 and boundary 

conditions are varied along the four edges. The stiffeners are place along the cutout periphery and 

extended up to the edge of the shell. The boundary conditions are designated by describing the 

support clamped or simply supported as C or S taken in an anticlockwise order from the edge x=0. 

This means a shell with CSCS boundary is clamped along x=0, simply supported along y=0 and 

clamped along x=a and simply supported along y=b.  

 

Effect of cutout size on fundamental frequency 

From Tables 3 and 4 it is seen that when a cutout is introduced to a stiffened shell the 

fundamental frequency increases in all the cases. This increasing trend is noticed for both cross ply 

and angle ply shells. This initial increase in frequency is due to the fact that with the introduction of 

cutout, numbers of stiffeners are increase from two to four in the present study. It is evident from 

Tables 3 and 4 that in all the cases with the introduction of cutout with a
/
/a=0.3 the frequencies 

increase. But further increase in cutout size, fundamental frequencies decrease in few cases. When 

the cutout size is further increased, but the number and dimensions of the stiffeners do not change, 

the shell surface undergoes loss of both mass and stiffness as a result fundamental frequency may 

increase or decrease.  As with the introduction of a cutout of a
/
/a=0.3, in shell surface, the frequency 

increases in all the cases, this leads to the engineering conclusion that concentric cutouts with 

stiffened margins may be provided safely on shell surfaces for functional requirements upto 

a
/
/a=0.3. 

 

Table 3: Non-dimensional fundamental frequencies ( ) for laminated composite (0/90/0/90) 

stiffened hyperbolic paraboloid shell for different sizes of the central square cutout and different 

boundary conditions 

Boundary 

conditions 
Cutout size (

/a a ) 

0 0.1 0.2 0.3 0.4 

CCCC 103.94 118.21 142.85 155.42 157.23 

CSCC 82.21 97.37 117.73 133.23 129.29 

CCSC 84.52 96.86 115.87 133.89 137.92 

CCCS 81.95 96.1 117.23 132.71 129.06 

CSSC 66.1 77.91 94.04 109.39 109.2 

CCSS 66.04 77.73 94.02 109.38 109.17 

CSCS 92.07 91.93 114.27 130.15 127.7 

SCSC 90.59 93.61 114.08 131.02 132.55 

CSSS 61.19 73.11 90.99 104.18 104.03 

SSSC 62.26 74.04 94.4 103.78 102.22 

SSCS 61.19 73.18 90.99 104.18 104.03 

SSSS 66.21 68.82 88.25 97.8 96.83 

Point 

supported 

28.56 33.64 40.85 49.17 57.67 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 
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Effect of boundary conditions 

 The boundary conditions may be arranged in the following order, considering number of 

boundary constraints: CCCC, CSCC, CCSC, CCCS, CSSC, CCSS, CSCS, SCSC, CSSS, SSSC, 

SSCS, SSSS and Corner Point supported. Tables 5 and 6 show the efficiency of a particular 

clamping option in improving the fundamental frequency of a shell panel with minimum number of 

boundary constraints relative to that of a clamped shell. Marks are assigned to each boundary 

combination in a scale assigning a value of 0 to the frequency of a corner point supported shell and 

100 to that of a fully clamped shell. These marks are furnished for cutouts with a
/
/a=0.2 These 

tables will enable a practicing engineer to realize at a glance the efficiency of a particular boundary 

condition in improving the frequency of a shell, taking that of clamped shell as the upper limit. 

Table 4: Non-dimensional fundamental frequencies ( ) for laminated composite  

(+45/-45/+45/-45) stiffened hyperbolic paraboloid shell for different sizes of the central square 

cutout and different boundary conditions 

Boundary 

conditions 
Cutout size (

/a a ) 

0 0.1 0.2 0.3 0.4 

CCCC 101.36 119.09 123.64 126.15 129.41 

CSCC 91.93 108.2 114.13 115.26 113.36 

CCSC 94.41 108.5 113.84 116.84 119.99 

CCCS 91.7 107.51 113.95 115.13 113.35 

CSSC 84.44 96.76 105.31 108.66 108.55 

CCSS 83.77 96.27 105.06 108.64 108.7 

CSCS 90.06 105.92 111.18 112.05 110.86 

SCSC 92.44 106.55 111.01 113.69 116.84 

CSSS 82.22 93.92 102.95 105.28 105.35 

SSSC 81.12 95.43 102.26 105.14 105.35 

SSCS 82.35 94.2 102.95 105.28 105.35 

SSSS 73.24 90.05 96.76 99.26 99.61 

Point 

supported 

36.17 42.04 49.86 59.38 61.29 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Table 5: Clamping options for 0/90/0/90 hyperbolic paraboloid shells with central cutouts having 

a
/
/a ratio 0.2. 

Number of 

sides to be 

clamped 

Clamped edges Improvement of 

frequencies with respect 

to point supported shells 

Marks indicating 

the efficiencies of 

no of restraints 

0 Corner Point supported - 0 

0 Simply supported no edges 

clamped (SSSS) 

Good improvement 46 

1 a) hyperbolic edge along x=a  

(SSCS) 

Good improvement 49 

b)hyperbolic edge along x=0 

(CSSS) 

Good improvement 49 

b) One parabolic edge along  

y= b (SSSC) 

Good improvement 53 

2 a)Two hyperbolic edges  x=0 

and x=a (CSCS) 

Marked improvement 72 

b)Two parabolic edges along 

y=0 and y=b(SCSC) 

Marked improvement 72 
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c)Any two edges except the 

above option (CSSC,CCSS) 

Good improvement 52 

3 3 edges including the two 

hyperbolic edges  

(CSCC,CCCS) 

Marked improvement 75 

3 edges excluding the 

hyperbolic edge along x=a  

(CCSC) 

Marked improvement 74 

4 All sides    (CCCC) Frequency attains 

highest value 

100 

Table 6: Clamping options for +45/-45/+45/-45 hyperbolic paraboloid shells with central cutouts 

having a
/
/a ratio 0.2. 

Number of 

sides to be 

clamped 

Clamped edges Improvement of 

frequencies with respect 

to point supported shells 

Marks indicating the 

efficiencies of no of 

restraints 

0 Corner Point supported - 0 

0 Simply supported no edges 

clamped (SSSS) 

Marked improvement 64 

1 a) hyperbolic edge along x=a  

(SSCS) 

Marked improvement 72 

b)hyperbolic edge along x=0 

(CSSS) 

Marked improvement 72 

b) One parabolic edge along  

y= b (SSSC) 

Marked improvement 71 

2 a)Two hyperbolic edges  x=0 

and x=a (CSCS) 

Remarkable 

improvement 

83 

b)Two parabolic edges along 

y=0 and y=b(SCSC) 

Remarkable 

improvement 

83 

c)Any two edges except the 

above option (CSSC,CCSS) 

Marked improvement 75 

3 3 edges including the two 

hyperbolic edges  

(CSCC,CCCS) 

Remarkable 

improvement 

87 

3 edges excluding the 

hyperbolic edge along x=a  

(CCSC) 

Remarkable 

improvement 

87 

4 All sides (CCCC) Frequency attains highest 

value 

100 

 

It is seen from Table 5 and 6, that fundamental frequencies of members belonging to same 

number of boundary constraints may not have close values for all the cases considered here. So the 

boundary constraint is not the sole criteria for its performance. The free vibration characteristics 

mostly depends on the arrangement of boundary constrains rather than their actual number, is 

evident from the present study. It can be seen from the present study that if the hyperbolic edge 

along x=a is released from clamped to simply supported, the change of frequency is more in case of 

a cross ply shells than that for an angle ply shells. Again, if the two adjacent edges are released, 

fundamental frequency decreases more significantly than that of a shell in which two alternate edges 

are released. This is true for both cross and angle ply shells. For cross ply shells if three or four 

edges are simply supported, frequency values undergo marked decrease but for angle ply shells with 

the introduction of more number of simply supported edges the frequency value does not change so 
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drastically. The results indicate that two alternate edges should preferably be clamped in order to 

achieve higher frequency values. 

 

 
Fig.2: First mode shapes of laminated composite (0/90/0/90) stiffened hyperbolic paraboloid shell 

for different sizes of the central square cutout and boundary conditions. 

 

Mode shapes 

The mode shapes corresponding to the fundamental modes of vibration are plotted in Fig.2 

and Fig.3 for cross-ply and angle ply shells respectively. The normalized displacements are drawn 

with the shell mid-surface as the reference for all the support condition and for all the lamination 

used here. The fundamental mode is clearly a bending mode or torsion mode for all the boundary 

condition for cross ply and angle ply shells, except corner point supported shell. For corner point 

supported shells the fundamental mode shapes are complicated. With the introduction of cutout 

mode shapes remain almost similar. When the size of the cutout is increased from 0.2 to 0.4 the 

fundamental modes of vibration do not change to an appreciable amount.  
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Fig.3: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened hyperbolic paraboloid 

shell for different sizes of the central square cutout and boundary conditions. 

Behavior of shell panel with eccentric cutout 

Fundamental frequency 

The effect of eccentricity of cutout positions on fundamental frequencies, are studied from the 

results obtained for different locations of a cutout with a
/
/a=0.2. The non-dimensional coordinates 

of the cutout centre ( ,
x y

x y
a a

  ) was varied from 0.2 to 0.8 along each directions, so that the 

distance of a cutout margin from the shell boundary was not less than one tenth of the plan 

dimension of the shell. The margins of cutouts were stiffened with four stiffeners. The study was 

carried out for all the thirteen boundary conditions for both cross ply and angle ply shells. The 

fundamental frequency of a shell with an eccentric cutout is expressed as a percentage of 

fundamental frequency of a shell with a concentric cutout. This percentage is denoted by r. In Tables 

7 and 8 such results are furnished for a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, 

G13 = G12 = 0.5E22, 12 =21 =0.25. 
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Table 7: Values of ‘r’ for 0/90/0/90 hyperbolic paraboloid shells. 
Edge 

condition 
y  x  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

CCCC 

 

 

 

 

 

0.2 82.88 86.09 92.60 99.80 92.60 86.10 82.88 

0.3 81.62 84.83 91.57 99.64 91.57 84.83 81.62 

0.4 83.23 86.19 92.48 99.75 92.48 86.19 83.23 

0.5 85.60 88.38 94.14 100 94.14 88.38 85.60 

0.6 83.23 86.19 92.48 99.85 92.48 86.19 83.23 

0.7 81.62 84.83 91.57 99.64 91.57 84.83 81.69 

0.8 82.62 85.82 92.31 99.78 92.52 85.88 82.72 

CSCC 

 

 

 

 

 

 

0.2 91.49 96.28 100.95 105.01 100.95 96.31 91.51 

0.3 91.46 96.97 104.34 110.17 104.36 97.00 91.46 

0.4 91.09 95.56 103.48 112.01 103.62 95.62 91.01 

0.5 88.02 89.69 94.66 100 94.97 89.83 87.79 

0.6 84.01 84.46 88.60 93.32 88.84 84.59 83.72 

0.7 82.15 82.44 86.47 90.93 86.64 82.54 81.88 

0.8 81.98 82.37 86.32 90.59 86.51 82.48 81.78 

CCSC 

 

 

 

 

 

 

0.2 73.72 77.82 85.97 100.54 106.08 94.91 87.48 

0.3 73.16 77.31 85.52 100.21 105.48 94.52 87.44 

0.4 73.36 77.32 85.32 99.77 105.38 94.06 86.47 

0.5 73.88 77.79 85.71 100 105.75 94.03 85.90 

0.6 73.36 77.32 85.32 99.77 105.38 94.06 86.47 

0.7 73.16 77.31 85.52 100.21 105.48 94.52 87.44 

0.8 73.49 77.59 85.71 100.50 105.99 94.68 87.29 

CCCS 

 

 

 

 

 

 

0.2 82.11 82.75 86.69 90.77 86.69 82.75 82.11 

0.3 82.17 82.77 86.77 91.09 86.77 82.77 82.17 

0.4 84.01 84.80 88.91 93.41 88.90 84.80 84.01 

0.5 88.12 90.05 94.98 100 94.98 90.05 88.11 

0.6 91.38 95.94 103.84 113.05 103.84 95.94 91.38 

0.7 91.82 97.37 104.78 110.54 104.78 97.37 91.82 

0.8 90.00 95.75 101.33 105.46 101.35 96.32 90.68 

CSSC 

 

 

 

 

 

 

0.2 71.77 79.96 91.50 107.07 107.29 93.76 82.91 

0.3 76.23 85.35 98.03 113.08 112.28 98.86 87.59 

0.4 75.40 82.61 93.92 112.04 116.08 101.45 89.19 

0.5 68.44 73.67 83.16 100 107.26 92.77 81.94 

0.6 62.08 66.80 76.05 93.07 99.39 85.43 75.41 

0.7 58.92 63.95 73.64 91.03 95.87 81.94 72.16 

0.8 58.21 63.64 73.59 91.04 94.92 80.97 71.21 

CCSS 

 

 

 

 

 

 

0.2 58.25 63.72 73.68 91.06 94.76 80.91 71.20 

0.3 58.90 63.97 73.65 91.02 95.64 81.83 72.12 

0.4 62.06 66.82 76.06 93.08 99.06 85.29 75.37 

0.5 68.42 73.69 83.16 100 106.87 92.61 81.89 

0.6 75.41 82.63 93.93 112.05 116.01 101.38 89.16 

0.7 76.25 85.36 98.05 113.10 112.30 98.88 87.60 

0.8 71.32 79.61 91.38 107.05 107.30 93.70 82.78 
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CSCS 

 

 

 

 

 

0.2 82.39 82.75 86.02 89.24 86.02 82.75 82.39 

0.3 83.15 83.62 87.24 90.99 87.24 83.62 83.15 

0.4 85.43 86.25 90.30 94.62 90.30 86.25 85.43 

0.5 89.61 90.53 95.16 100 95.16 90.53 89.46 

0.6 85.43 86.25 90.29 94.62 90.30 86.25 85.43 

0.7 83.15 83.62 87.24 90.99 87.24 83.62 83.15 

0.8 82.33 82.71 85.99 89.25 86.01 82.76 82.38 

SCSC 

 

 

 

 

 

 

0.2 71.41 76.93 86.16 101.86 86.16 76.93 71.41 

0.3 71.56 76.94 86.05 100.83 86.04 76.94 71.56 

0.4 70.99 76.53 85.67 100.01 85.67 76.53 70.99 

0.5 70.69 76.48 85.81 100 85.81 76.48 70.69 

0.6 70.99 76.53 85.67 100.14 85.67 76.56 70.99 

0.7 71.56 76.94 86.05 100.56 86.04 76.94 71.56 

0.8 71.19 76.70 85.90 100.67 86.09 76.77 71.29 

CSSS 

 

 

 

 

 

 

0.2 51.72 59.07 70.82 89.60 92.64 77.23 65.92 

0.3 54.74 61.40 72.46 90.93 95.30 80.27 69.26 

0.4 59.74 66.11 76.46 94.37 100.12 85.32 74.24 

0.5 65.28 73.99 82.80 100 107.08 91.45 79.13 

0.6 59.74 66.11 76.46 94.37 100.12 85.32 74.24 

0.7 54.74 61.40 72.46 90.93 95.30 80.26 69.26 

0.8 51.71 59.06 70.79 89.58 92.61 77.22 65.90 

SSSC 

 

 

 

 

 

 

0.2 68.33 77.85 90.13 102.99 90.13 77.85 68.33 

0.3 72.36 82.73 96.11 107.63 96.11 82.73 72.36 

0.4 69.89 78.93 91.63 109.01 91.63 78.92 69.89 

0.5 62.18 69.81 80.99 100 80.99 69.81 62.18 

0.6 56.27 63.36 74.19 90.79 74.2 63.36 56.27 

0.7 53.77 60.90 71.95 88.98 71.95 60.90 53.77 

0.8 53.46 60.75 71.94 89.13 71.98 60.77 53.50 

SSCS 

 

 

 

 

 

 

0.2 65.92 77.23 92.64 89.60 70.82 59.07 51.72 

0.3 69.26 80.26 95.30 90.93 72.46 61.40 54.74 

0.4 74.24 85.32 100.12 94.37 76.46 66.11 59.74 

0.5 79.13 91.45 107.08 100 82.80 73.99 65.28 

0.6 74.24 85.32 100.12 94.37 76.46 66.11 59.74 

0.7 69.25 80.26 95.30 90.93 72.46 61.40 54.73 

0.8 65.90 77.22 92.63 89.58 70.79 59.05 51.70 

SSSS 

 

 

 

 

 

 

0.2 48.35 58.19 71.73 90.91 71.73 58.19 48.35 

0.3 51.21 60.39 73.30 92.10 73.30 60.39 51.21 

0.4 56.14 64.92 77.21 95.34 77.21 64.91 56.14 

0.5 62.58 72.14 83.37 100 83.37 72.14 62.57 

0.6 56.14 64.91 77.21 95.33 77.21 64.91 56.14 

0.7 51.21 60.38 73.30 92.10 73.30 60.39 51.21 

0.8 48.34 58.18 71.69 92.03 71.71 58.16 48.34 

CS 0.2 87.88 97.94 104.11 107.44 104.11 97.94 87.88 

0.3 88.96 95.74 101.44 104.94 101.42 95.74 88.94 

0.4 90.09 93.54 98.07 101.64 98.07 93.51 90.09 

0.5 90.55 92.51 96.53 100 96.52 92.51 90.53 

0.6 90.09 93.54 98.09 101.64 98.07 93.54 90.09 

0.7 88.94 95.74 101.42 104.94 101.42 95.74 88.94 

0.8 87.81 97.72 103.79 107.37 103.84 97.72 87.83 
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Table 8: Values of ‘r’ for +45/-45/+45/-45 hyperbolic paraboloid shells. 

Edge 

condition 
y  x  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 

CCCC 0.2 65.33 69.87 77.01 86.18 76.94 69.82 65.30 

0.3 68.42 73.41 81.02 89.94 80.91 73.34 68.38 

0.4 73.59 79.17 87.27 95.50 87.15 79.08 73.54 

0.5 80.82 86.29 93.83 99.99 93.83 86.30 80.82 

0.6 73.54 79.08 87.15 95.50 87.27 79.17 73.58 

0.7 68.38 73.34 80.91 89.95 81.02 73.41 68.42 

0.8 65.30 69.82 76.93 86.18 77.01 69.87 65.33 

CSCC 0.2 68.16 73.25 81.05 90.98 80.86 73.14 68.11 

0.3 71.86 77.24 85.42 95.23 85.21 77.12 71.80 

0.4 77.25 83.43 92.15 100.74 91.89 83.28 77.158 

0.5 73.80 81.40 91.44 100 91.51 80.99 73.14 

0.6 67.85 74.51 83.86 93.67 83.01 74.27 67.50 

0.7 64.65 70.70 79.37 89.27 79.35 70.50 64.44 

0.8 63.14 68.73 76.84 86.65 76.79 68.54 62.96 

CCSC 0.2 66.83 70.25 75.70 84.69 81.61 74.12 69.42 

0.3 69.50 73.43 79.50 89.00 85.70 77.71 72.51 

0.4 74.02 78.64 85.43 95.16 92.27 83.71 77.79 

0.5 79.35 85.01 91.52 100 99.77 92.15 85.30 

0.6 73.49 77.95 84.60 94.33 92.55 83.90 77.91 

0.7 69.02 72.80 78.68 88.04 85.93 77.85 72.60 

0.8 66.42 69.69 74.95 83.78 81.77 74.24 69.50 

CCCS 0.2 62.89 68.42 76.65 86.68 76.96 68.84 63.25 

0.3 64.33 70.32 79.12 94.53 79.49 70.81 64.75 

0.4 67.33 74.01 83.55 93.64 83.99 74.63 67.95 

0.5 72.89 80.62 91.07 100 91.58 81.53 73.91 

0.6 77.26 83.41 92.03 100.88 92.29 83.56 77.38 

0.7 71.92 77.24 85.34 95.38 85.56 77.36 71.97 

0.8 68.21 73.25 80.99 91.09 81.16 73.36 68.26 

CSSC 0.2 70.74 74.99 81.37 91.13 87.59 79.20 73.63 

0.3 74.11 78.70 85.59 95.80 92.22 83.45 77.51 

0.4 74.46 82.22 91.91 101.91 99.20 90.05 83.45 

0.5 69.20 76.62 87.32 100 98.33 86.96 77.50 

0.6 64.99 71.37 80.57 92.91 90.40 79.69 71.36 

0.7 62.67 68.23 76.47 88.23 85.58 75.63 68.27 

0.8 61.49 66.58 74.37 85.63 82.84 73.56 66.89 

CCSS 0.2 61.59 66.54 74.25 85.53 83.24 74.26 67.84 

0.3 62.68 68.11 76.35 88.25 85.96 76.40 69.40 

0.4 64.90 71.18 80.40 92.98 90.77 80.55 72.79 

0.5 68.99 76.33 87.09 100 98.65 87.98 79.22 

0.6 74.54 82.21 91.17 101.11 99.67 90.40 83.69 

0.7 73.79 78.07 84.68 94.79 92.65 83.76 77.73 

0.8 69.78 73.91 80.17 89.99 87.97 79.50 73.84 
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CSCS 0.2 63.68 69.60 78.21 88.23 78.50 69.99 64.04 

0.3 65.52 71.78 80.89 91.10 81.26 72.28 65.96 

0.4 68.67 75.63 85.47 95.54 85.92 76.26 69.28 

0.5 73.12 81.73 92.91 100 92.91 81.73 73.41 

0.6 69.28 76.26 85.93 95.54 85.47 75.63 68.67 

0.7 65.96 72.28 81.26 91.10 80.89 71.78 65.52 

0.8 64.03 69.99 78.50 88.21 78.19 69.59 63.67 

SCSC 0.2 68.49 72.01 77.63 85.85 76.85 71.44 68.07 

0.3 71.21 75.28 81.50 89.85 80.67 74.62 70.71 

0.4 75.78 80.56 87.54 95.55 86.70 79.88 75.23 

0.5 81.15 86.92 93.58 100 93.58 86.92 81.15 

0.6 75.23 79.88 86.70 95.55 87.54 80.57 75.78 

0.7 70.71 74.62 80.67 89.85 81.51 75.27 71.21 

0.8 68.07 71.44 76.85 85.85 77.62 72.01 68.49 

CSSS 0.2 60.83 66.45 75.08 86.92 84.29 74.84 67.87 

0.3 62.69 68.44 77.35 89.77 87.21 77.24 69.87 

0.4 64.63 71.18 81.32 94.53 92.17 81.64 73.73 

0.5 66.22 73.75 86.32 100 98.45 87.71 77.97 

0.6 64.61 71.24 81.38 94.37 91.27 80.25 71.93 

0.7 62.24 68.23 77.26 89.64 86.45 76.05 68.40 

0.8 59.80 65.71 74.67 86.70 83.67 68.04 66.65 

SSSC 0.2 72.56 77.15 83.76 92.20 82.30 75.80 71.28 

0.3 76.08 80.93 88.07 96.76 86.86 79.98 75.31 

0.4 75.75 84.47 94.51 101.97 93.41 84.10 75.00 

0.5 69.58 78.21 89.51 100 88.70 77.13 68.11 

0.6 65.07 72.73 82.60 93.54 81.81 71.60 63.43 

0.7 62.89 69.52 78.40 89.06 77.65 68.44 61.36 

0.8 61.94 67.85 76.23 86.47 75.46 66.86 60.70 

SSCS 0.2 66.65 73.88 83.68 86.72 74.69 65.74 59.83 

0.3 68.40 76.05 86.45 89.64 77.26 68.23 62.24 

0.4 71.93 80.26 91.27 94.37 81.37 71.24 64.61 

0.5 77.97 87.71 98.45 100 86.32 73.75 66.22 

0.6 73.73 81.65 92.17 94.53 81.31 71.18 64.63 

0.7 69.89 77.24 87.23 89.77 77.35 68.44 62.69 

0.8 67.86 74.84 84.28 86.90 75.03 66.40 60.80 

SSSS 0.2 57.38 66.48 77.43 88.99 77.61 66.75 57.63 

0.3 59.29 68.18 79.58 91.81 80.01 68.85 59.97 

0.4 62.77 71.98 83.89 96.20 84.43 72.80 63.84 

0.5 68.08 78.21 91.21 100 91.21 78.21 68.08 

0.6 63.84 72.81 84.43 96.20 83.90 71.98 62.77 

0.7 59.97 68.85 80.01 91.81 79.58 68.18 59.29 

0.8 57.63 66.74 77.61 88.98 77.38 66.46 57.37 

CS 0.2 64.80 72.96 83.43 92.90 85.34 74.61 66.23 

0.3 66.53 74.248 84.50 95.15 86.34 76.11 68.49 

0.4 67.75 75.73 86.40 98.11 88.03 77.54 69.61 

0.5 68.95 77.16 88.29 100 88.29 77.16 68.95 

0.6 69.63 77.56 88.03 98.10 86.40 63.44 67.75 

0.7 68.51 76.13 86.34 95.17 84.52 74.25 66.53 

0.8 66.21 74.55 85.22 92.90 83.23 72.88 64.76 
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Table 9: Maximum values of r with corresponding coordinates of cutout centres and zones where 

r≥90 and r≥95 for 0/90/0/90 hyperbolic paraboloid shells 

Boundary 

Condition 

Maximum 

values of r 

Co-ordinate of 

cutout centre 

Area in which the value 

of r≥90 

Area in which 

the value r≥95 

CCCC 

 

100.00 (0.5,0.5) x =0.4, 0.6 

0.2≤ y ≤0.8 

x =0.5 

0.2 ≤ y ≤0.8 

CSCC 

 

105.01 (0.5,0.2) x =0.2,0.8 

0.2 ≤ y ≤0.4; 
x =0.5, 0.5≤ y ≤0.8 

0.3≤ x ≤0.7 

0.2≤ y ≤0.4 

CCSC 

 

106.08 (0.6,0.2) x =0.7, 0.2 ≤ y ≤0.8 0.5≤ x ≤0.6 

0.2≤ y ≤0.8 

CCCS 

 

113.05 (0.5,0.6) x =0.2,0.8, 0.6 ≤ y ≤0.8; 
0.3≤ x ≤0.7, y =0.5 

0.3≤ x ≤0.7 

0.6 ≤ y ≤0.8 

CSSC 

 

116.08 (0.6,0.4)  

Nil 

 

0.5≤ x ≤0.6 

0.2 ≤ y ≤0.5 

CCSS 

 

 

116.01 

 

(0.6,0.6) 

 

Nil 

 

0.5≤ x ≤0.6 

0.5 ≤ y ≤0.8 

CSCS 

 

100.00 (0.5,0.5) 0.4≤ x ≤0.6, 0.4 ≤ y ≤0.6 0.4≤ x ≤0.6 

y =0.5 

SCSC 

 

101.86 (0.5,0.2)  

Nil 

 

x =0.5 

0.2≤ y ≤0.8 

CSSS 

 

107.08 (0.6,0.5) x =0.5 

0.3 ≤ y ≤0.7 

x =0.6 

0.3 ≤ y ≤0.7 

SSSC 

 

109.01 (0.5,0.4) x =0.4, 0.6 

0.2 ≤ y ≤0.4 

x =0.5 

0.2 ≤ y ≤0.5 

SSCS 

 

107.08 (0.4,0.5) x =0.5 

0.3 ≤ y ≤0.7 

x =0.4 

0.3 ≤ y ≤0.7 

SSSS 

 

100.00 (0.5,0.5) x =0.5,0.2 ≤ y ≤0.8 x =0.5, y =0.5 

CS 107.37 (0.5,0.8) The whole area except 

corner points. 

 

0.4≤ x ≤0.6 

0.2 ≤ y ≤0.8 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22,12 =21 =0.25. 

It can be seen that eccentricity of the cutout along the length of the shell towards the 

clamped edges makes it more flexible. It is also seen that almost all the cases r value is maximum in 

and around 0.5x   and 0.5y  . When edge, opposite to a clamped edge is simply supported, r 

value first increases towards the simply supported edge then decreases. But, when two opposite 

edges are simply supported r value decreases towards the simply supported edges. Again in case of 

an angle ply shell, if the simply supported edge be the hyperbolic one then r value decreases towards 

the edge. So, for functional purposes, if a shift of central cutout is required, eccentricity of a cutout 

along the length or width should preferably be towards the simply supported edge which is opposite 
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to a clamped edge for cross ply shells. For angle ply shells eccentricity towards simply supported 

hyperbolic edge should be avoided. 
 

Table 10: Maximum values of r with corresponding coordinates of cutout centres and zones where  

r≥90 and r≥95 for +45/-45/+45/-45 hyperbolic paraboloid shells 

Boundary 

Condition 

Maximum 

values of r 

Co-ordinate of 

cutout centre 

Area in which the 

value of r≥90 

Area in which the 

value r≥95 

CCCC 

 

100.00 (0.5,0.5) 0.4≤ x ≤0.6, y =0.5 x =0.5, 0.4 ≤ y ≤0.6 

CSCC 100.74 (0.5,0.4) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.3 ≤ y ≤0.5 

CCSC 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, y =0.4, 0.5; 

x =0.6, y = 0.5 

CCCS 

 

100.89 (0.5,0.6) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.5 ≤ y ≤0.7 

CSSC 

 

101.91 (0.5,0.4) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.3 ≤ y ≤0.5; 
x =0.6, 0.4 ≤ y ≤0.5 

CCSS 

 

101.11 (0.5,0.6) No rectangular zone 

but some discrete 

points around centre 

0.5≤ x ≤0.6, 0.5 
≤ y ≤0.6 

CSCS 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.4 ≤ y ≤0.6 

SCSC 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.4 ≤ y ≤0.6 

CSSS 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.6 

y =0.5 

SSSC 

 

101.97 (0.5,0.4) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.3 ≤ y ≤0.5 

SSCS 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.4,0.5 

y =0.5 

SSSS 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.4 ≤ y ≤0.6 

CS 

 

100.00 (0.5,0.5) No rectangular zone 

but some discrete 

points around centre 

x =0.5, 0.3 ≤ y ≤0.7 

a/b=1, a/h=100, 
/ /a b =1, c/a=0.2; E11/E22 = 25, G23 = 0.2E22, G13 = G12 = 0.5E22, 12 =21 =0.25. 

Tables 9 and 10 provide the maximum values of r together with the position of the cutout. 

These tables also show the rectangular zones within which r is always greater than or equal to 90 

and 95. It is to be noted that at some other points r values may have similar values, but only the zone 

rectangular in plan has been identified. These tables indicate the maximum eccentricity of a cutout 
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which can be permitted if the fundamental frequency of a concentrically punctured shell is not to 

reduce a drastic amount. So these tables will help practicing engineers. 

 

Mode shapes 

 The mode shapes corresponding to the fundamental modes of vibration are plotted in Figs.4-

11 for cross-ply and angle ply shell of CCCC CCSC, SCSC and SSSC boundary conditions for 

different eccentric position of the cutout. All the mode shapes are either bending or torsion mode. It 

is found that for different position of cutout mode shapes are somewhat similar to one another, only 

the crest and trough position changes. 

 

 
Fig.4: First mode shapes of laminated composite (0/90/0/90) stiffened rectangular hyperbolic 

paraboloidal shell for different position of the central square cutout and CCCC boundary condition. 

 

 
Fig.5: First mode shapes of laminated composite (0/90/0/90) stiffened rectangular hyperbolic 

paraboloidal  shell for different position of the central square cutout and CCSC boundary condition. 
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Fig.6: First mode shapes of laminated composite (0/90/0/90) stiffened rectangular hyperbolic 

paraboloidal shell for different position of the central square cutout and SCSC boundary condition. 

 

 
Fig.7: First mode shapes of laminated composite (0/90/0/90) stiffened rectangular hyperbolic 

paraboloidal shell for different position of the central square cutout and SSSC boundary condition. 

CONCLUSIONS 

The finite element code used here is suitable for analyzing free vibration problems of 

stiffened hyperbolic paraboloid shell panels with cutouts, as this approach produces results in close 

agreement with those of the benchmark problems. Free vibration characteristics mostly depend on 

the arrangement of boundary constraints along the four edges rather than their actual number. If two 

edges are released for any functional reason, then two alternate edges must release instead of two 

adjacent edges. The relative free vibration performances of shells for different combinations of edge 

conditions along the four sides are expected to be very helpful in decision-making for practicing  
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Fig.8: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened rectangular hyperbolic 

paraboloidal shell for different position of the central square cutout and CCCC boundary condition.  

 

 
Fig.9: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened rectangular hyperbolic 

paraboloidal shell for different position of the central square cutout and CCSC boundary condition.  

 

engineers. For functional purposes, if a shift of central cutout is required, eccentricity of a cutout 

along the length or width should preferably be towards the simply supported edge which is opposite 

to a clamped edge for cross ply shells. For angle ply shells eccentricity towards simply supported 

hyperbolic edge should be avoided. The information regarding the behaviour of stiffened hyperbolic 

paraboloid shell with eccentric cutouts for a wide spectrum of eccentricity and boundary conditions 

for cross ply and angle ply shells may also be used as design aids for structural engineers. The 

present study provides the specific zones within which the cutout centre may be moved so that the 

loss of frequency is less than 5% and 10% with respect to a shell with a central cutout. That will 

help an engineer to make a decision regarding the eccentricity of the cutout centre that can be 

allowed. 
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Fig.10: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened rectangular 

hyperbolic paraboloidal shell for different position of the central square cutout and SCSC boundary 

condition. 

 

 
Fig.11: First mode shapes of laminated composite (+45/-45/+45/-45) stiffened rectangular 

hyperbolic paraboloidal shell for different position of the central square cutout and SSSC boundary 

condition. 
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