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The performance of an ultrasonic flaw detection system is valued by the success of
differentiating the flaw echoes from those echoes scattered by microstructures (e.g., grains in
polycrystalline metals). Microstructure noise (clutter) is stationary and will only vary when
the frequency ofthe ultrasonic beam is changed. In this paper, frequency diverse
microstructure information is obtained through the split-spectrum processing of broadband
ultrasonic backscattered echoes. The statistical difference between clutter and flaw echoes over
different frequency bands has led to the development ofa Bayes classifier that is quadratic and
can incorporate the correlation properties ofscattered echoes. The performance ofthe Bayes
classifier has been examined for both experimental and computer simulated data, and
compared to other commonly used techniques such as mean, minimum, median, and polarity

detectors. The Bayes classifier shows superior performance, and the flaw-to-clutter visibility
has been improved in the range of 5-15 dB when the measured flaw-to-clutter ratio is 0 dB or
Iess. These results confirm the feasibility ofgrain noise suppression by frequency diversity with

a subsequent statistical processor for flaw detection.

PACS numbers:43.40.Le

INTRODUCTION

Defect detection by ultrasonic techniques has been
proven to be an effective means to assure the quality of mate-
rials nondestructively. However, the performance of ultra-
sound is limited when the level of echoes from the surround-
ing unwanted reflectors (e.g., grains in polycrystalline

metals) is comparable to or larger than that of the defect

signal ( i.e., target to clutter ratio is less than 0 dB ) . Existing

conventional techniques, such as averaging, are only capable

of removing time-varying echoes and are ineffective when
the clutter is time invariant or coherent in nature. Frequency

diversity based on shifting the frequency of the transducer
can decorrelate coherent noise and proper postdetection
processing will result in flaw-to-clutter ratio enhance-
ment. l{

A practical method in implementing frequency diversi-
ty is by transmitting a broadband echo through the materials
and bandpass filtering the received echoes over many sub-
bands of frequencies. r'' Since the microstructure in the de-
tection cell consists of many unresolved and randomly dis-
tributed reflectors, the detected echoes exhibit randomness
in amplitude and are sensitive to shifts in the transmitted

frequency. In contrast, flaws are often larger in size and are
less vulnerable to variation in the transmitted frequency. In
general, flaw echoes exhibit different scattering distributions
as a function of frequency when compared with microstruc-
ture scattering. Therefore, at any given time, the outputs of
bandpass filters can be represented as a random feature vec-
tor that contains information related to flaw and microstruc-
ture echoes. The statistical approach for flaw detection, uti-
lizing the statistical properties of this feature vector, is to
design flaw detection algorithms.

In recent years, statistical methods have been used for
ultrasonic flaw detection and improved ultrasonic medical
imaging.3-ro In particular, minimum detection and polarity
thresholding have been studied extensively and have been
shown to be effective for flaw detection in metals.3'a A
suboptimal flaw detection algorithm, using flaw and micro-
structure scattering models, has been applied to a circular
crack in a plastic test specimen.5-8 In medical imaging relat-
ed to breast tissue classificatibn, ultrasound has been used to
generate a large set of potentially useful features sensitive to
benign and malignant tumors.e'ro

In this paper, we focus on the use ofthe Bayes classifier
designed for flaw detection and microstructure noise dis-
crimination based on information collected from the output
of bandpass filters of the split-spectrum processor (SSP).
The performance of the Bayes classifier is examined using
both computer simulation and experimental results.

I. THEORY OF OPTIMAL DETECTION

The performance of all ultrasonic flaw detection sys-
tems is limited by the presence of microstructure noise. Al-
though the system output signal contains information relat-
ed to flaw structure, this information is often masked by
unwanted echoes caused by microstructure scattering. Since
the output signals from the bandpass filters ofthe split-spec-
trum processor represent information related to the micro-
structure or flaw, in principle, it should be possible to extract
the flaw echo from those random, unwanted reflecting clut-
ter echoes (i.e., microstructure noise).

An effective method of obtaining frequency diverse in-
formation is through splitting the spectrum of broadband
echoes Figures I and2 summarize the steps involved in the
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where /oo (Z) is the likelihood ratio which serves as the dis-

criminant function for classification, P(I1o ) is the probabili-

ty of the presence of flaw, P(Ht) is the probability of the

absence of f law, and P(Ht)/P(Ho) is the detection thresh-

old. The term p(Z /Hs) is the probability density function

of flaw-plus-clutter echoes, andp(Z /Hr ) is the probability

density function ofthe clutter echoes.

A major barrier faced in the design of the discriminant

function is the estimation of the a priori probability density

function of each class. We examined the histogram of the

echoes at the output of each bandpass filter, and they were

found to be Gaussian in shape with reasonable accuracy (see

Ba.ndpasa Filters

r r ( r )

FIG. 2. The block diagram of the split-spectrum Bayes flaw detector.
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FIG. l. Split-spectrum processing ( SSP) technique; (a) an ultrasonic back-

scattered microstructure signal, (b) broadband spectrum ofthe signal, and

(c) split-spectrum windows.

frequency diverse Bayes flaw detection system. Figure 1(a)

and ( b ) presents an example of a broadband grain signal and

its power spectrum. Figure l(c) displays graphically the

split-spectrum schemes using Gaussian windows. Since the

power spectrum amplitude of the received echoes is not uni-

formly distributed, we use a set of weighting coefficiertS @1 r

a2,...,e4, in order to obtain the equally powered output sig-

nals. Then, the weighted, filtered outputs are passed to the

Bayes classifier for optimal detection. The entire split-spec-

trum Bayes classification procedure is illustrated in Fig. 2.

The design of the ultrasonic statistical flaw detection

system involves feature selection and the formation of a dis-

criminant function. The feature vector at any given time /

can be represented as

Z  :  l z r , z2 , . . . , z1 f r ,

wherez, : ri?) and is the fth filter's output signal afternor-

malization, and K is the total number of bandpass filters used

in the split-spectrum technique. The design of the discrimi-

nant function can be accomplished with the Bayes decision

rule which is optimum in the sense of minimizing the proba-

bility of error.rr The Bayes classifier in the flaw detection

problem is concerned with the following hypotheses at a spe-

cif ic t ime l,:

f/o: Flaw plus clutter echoes,

/1,: Clutter echoes.

Using the above hypothesis, the criterion for decision mak-

ing can be represented by

5
r 9 . ^
€ - 5  N
o =  S
E E E
U ' E  d
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Fig. 3 ). Furthermore, we have observed that an insignificant

correlation exists among the elements of feature vectors.

This has led to the assumption that the features from band-

pass filters are jointly normal with different mean vectors

and covariance matrices. Hence, thea prioriprobability den-

sity function of the feature vector becomes

P(Z,M;,2 i1 :  Q/2n)K/21; .1-  
t /2

x e x p [  -  i Q  -  M , ) D , ' ( z  -  M , ) f ;

i : 0 ,  o r  l ,  ( 4 )

where M,is the mean vector and ), is the covariance matrix

for the hypotheses Ho or Hr, which can be represented as

follows:

M  i  :  ( m  ; , r m  1 r r . . . , m 1 * ) T

and

s -

For a normal distributed feature vector, it is more conve-
nient to write the discriminant function in the log form,

ln g"r(Z)

:  - j [ ( z -M) r> ; ' ( z -M) )

+  t [ ( z  -  M) ry , '  ( z  -  M , ) ]  +  t  l n (  l >o l l l l r l ) .
( 7 )

The above equation is a second-order discriminant function.
With the assumption that the hypotheses llo and H, are

equally probable, the final decision rule is achieved by

l n Q " o ( Z ) > 0 - I l o ,  l n S " r ( Z ) a 0 - 1 1 ' .  ( 8 )

It is important to point out that the hypotheses I/o and I/,
may not be equally probable and the threshold value may not

be a zero. In practice, careful examination of the discrimi-
nant function will reveal the optimal value for threshold se-
lection.

II. COMPUTER SIMULATION AND DISCUSSION

The purpose of computer simulation is to form a pseu-
doclutter signal such that the performance ofthe Bayes clas-

FIG. 3. An example of SSP filter output amplitude histogram.

sifier can be evaluated for different flaw-to-clutter ratios.

The pseudo-clutter signal is generated by superimposing 512

Gaussian shape echoes with Gaussian-distributed amplitude

at the uniformly distributed positions. These Gaussian ech-

oes have a 5-MHz center frequency and a bandwidth of 2.5

MHz. The sampling rate for the simulated signal is 200

MHz. After the superposition of all returned echoes, the sig-

nal is normalized between I and - l. The flaw echo was

simulated by one single Gaussian echo with a desired ampli-

tude such that the ratio ofthe flaw echo to the largest possi-

ble clutter echo has a ratio less than or equal to unity Ii.e.,
flaw-to-clutter (F/C) ratio is about 0 dBl. Finally, superim-

posing the pseudoclutter signal and the flaw echo at a known

flaw location results in the simulated signal. The split-spec-

trum processor was implemented in frequency by using a set

of bandpass filters having a Gaussian spectrum.

To estimate the statistical parameters of the feature vec-

tor for the probability density function, we use the following

estimates: I I '12

( 5 )

( 6 )

d d d| | | ' | 2 , I K

d d dt2t  '22 '2K

: : :

d d d
f ( t  t x z  t K K
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,

l S

r ,  ( tn);  for i :  0,1; j  :  1,2,. . . ,K (9)

r ,  ( t n ) r , , ( t n )  -  t n i , f r i , i

for i :  0,1; j :  1,2,. . .Ki  l :  1,2,. . .K, (  l0)

where n is the time index, i is the class index,T or / is the filter
index and r'/ is the total number of observed samples. These
statistical parameters for the mean vector M, and covariance

matrix ), are estimated using simulated clutter and flaw
echoes. Once these parameters are obtained, the classifier is

designed and tested with different clutter signal patterns and
flaw-to-clutter ratios. An example of the output signal from

the Bayes detection system is presented in Fig. 4. The top

trace is the measured, unprocessed data and the lower trace

is the plot of the discriminant function. As shown in this

figure, the discriminant function clearly shows the flaw posi-

tion and makes detection possible.

Itrpu! Si8Dal 
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W

Procesed Output Signal

1 . ,
l l- i"r ' .L.;.rwt,

Input F/G=0.8090366, Output F/G=8,007ril

FIG. 4. An example of processed simulated output signal using Bayes flaw

detector.
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To observe the effect ofprocessed results on the flaw-to-

clutter (F/C) ratio, we use a window around a predicted

position of flaws with the length of 0.6ps (this width repre-

sents approximately three periods). Then, the flaw-to-clut-

ter ratios are obtained by finding the ratio ofthe largest peak

inside and outside the window. In the design of the Bayes

classifier, careful evaluation of the split-spectrum param-

eters are necessary. In this study, we have examined these

parameters in relation to correlation properties of the filter

output. Increasing the number of bandpass filters will irn-

prove the performance of the Bayes classifier. This improve-

ment is only possible to a certain extent when there is an

insignificant correlation from band to band. Since the trans-

mitted echoes cover only a finite band of frequency, a finite

number of filters can be used for splitting the spectrum. We

examined the correlation matrices of the clutter signal with

and without flaws, and it has been observed that the output

ofthe adjacent frequency bands are partially correlated. This

correlation will increase if the nurnber of filters is increased

when the total frequency range covered by the filter banks

remain unchanged. Increasing the number of frequency

band demands higher computational time at slightly better,

or sometimes no improvement, at the detector output. On

the other hand, if the number of filters is too small, such that

the filter bank cannot effectively cover the entire signal band,

it will definitely lose some information related to clutter and

flaw, and inevitably degrade the Bayes flaw detection perfor-

mance. Figure 5 shows the comparison of Bayes detection

performance via the number of filters. Figure 5(b)-5(d)

shows the processed results using a filter bank with 18, 9, and

5 filters, respectively. In this filter design, the frequency

range was from G-14 MHz, with a 3-dB bandwidth of each

filter is I MHz. lncreasing the number of filters from 5 to I 8

increases the number ofobservations, but, on the other hand,

the correlations among the observations increase as well.

Consequently, the performance of the discriminant function

improves gradually. In this case, Fig. 5(c) (when K:9,

F/C:20.80) is significantly better than Fig. 5(d) (when

K:5, F/C:2.42). However, doubling the number of

fi l ters from 9 to 18 (when K:18, F/C:24.44) did not

show much improvement in the processed output Icompare

Fig.  5 (b)  and 5 (c)  l .

For a given number of filters in a filter bank, the band-

width of each bandpass filter is kept to be the same, and this

determines the degree of overlap in each frequency band.

Large overlap introduces too much correlation into the out-

puts ofthe filter bank, and as a result, the sensitivity ofclut-

ter noise to the different frequency bands will be reduced,

and consequently, the ability to detect flaw will be limited. If

the overlap is small, or nonexistent (i.e., filter bandwidth is

small compared to the step between the frequency bands),

the correlation among the filters can be reduced to the very

low level of a few percents. Improvement in the reduction of

correlation is at the expense ofreducing the number ofobser-

vation bands that afects the detecting performance adverse-

ly. A comparison of the Bayes flaw detection via different

bandwidths of filters is presented in Fig. 6. As shown in this

figure, by increasing the bandwidth of the filters from I MHz

IFig.6(b)] to 2 MHz IFig. 6(c)], the performance of the

Y'ryr'q,m"i*

-|ffifl" '-,'""n*-'*- '' "['
"nI'
' 

Dhs
5 Ba^ndPass Filters

FIG. 5. A comparison of Bayes flaw detector performance via different

number of f i l ten (r() in SSP; (a) original signal, (b) K: 18, (c) K:9,

a n d  ( d )  K : 5 .

Bayes detection is almost the same. However, by increasing

the bandwidth, the width of output pulse will decrease,

hence making detection more accurate.

The choice offrequency range is a crucial factor in the

performance of the Bayes detection algorithm. In detection

FIG. 6. A comparison of Bayes flaw detector performance via different
bandwidth of SSP; (a) original signal, (b) BW : I MHz, and (c) BW : 2
MHz.

= 2MHz
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process, it is sensible to include those frequency ranges with

a higher F/C ratio. In our previous investigation,t''to *e

found that the flaw echo has information mostly in the lower

end ofspectrum compared to clutter signal. Therefore, care

must be taken to examine each frequency band using a cali-

bration specimen prior to the application of the Bayes classi-

fier. In order to demonstrate the importance of the frequency

bands with a high F/C ratio, we have examined several fre-

quency bands for flaw detection. Figure 7 shows the pro-

cessed output for two different starting frequencies. Al-

though the frequency range and the number of bandpass

filters are the same, Fig. 7(c) has better performance than

Fig. 7(b) since it covers the range of frequency where flaw-

to-clutter ratio is the highest for the same number of filters.

tII. COMPARISON OF FREQUENCY DIVERSE FLAW

DETECTION ALGORITHMS

In this study, the Bayes classifier has been compared

with other recently proposed frequency diverse flaw en-

hancement techniques such as averaging, the median detec-

tor, the minimization methods, and polarity threshold-

ing.r-3't:-te The mathematical expressions of these tech-

niques are as follows:

Average detector:

Polarity thresholding:

f r ( t , ) ,  i f  r , ( t , ) > 0  o r  r j ( t , ) < 0

6 0 , G , ) : l  f o r a l l i : 1 , 2 , . . . , K  ( 1 4 )

10, otherwise,

where t" are discrete time instants with n : 1,2,...,N.

The computer simulations were performed using signals

with different clutter patterns and flaw positions. Further-

more, to best evaluate the performance of flaw detection al-

gorithms, it has been assumed that the flaw signal covers the

same frequency band as background grain echoes, although

in certain experimental situations, flaw echoes may show

different frequency content. Ifa flaw signal is present in cer-

tain frequency bands, this implies that for those frequency

bands, a high flaw-to-clutter ratio exists. Consequently, sim-

ple bandpass filtering will improve the flaw visibility.'a In

addition, the application of any flaw enhancement algor-

ithms will result in a satisfactory performance.

An example of the output signal using the above pro-

cessing techniques applied to a simulated microstructure sig-

nal is shown in Fig. 8, This result shows that the Bayes flaw

detector out performs other detectors. Since the perfor-

mance of flaw enhancement algorithms is generally depen-

dent on the clutter pattern, we have simulated a number of

clutter signals with the same statistical properties. Further-

more, to achieve a more realistic picture of the performance,

we have compared the Bayes classifier with other flaw detec-

tion algorithms mentioned above. All flaw detection algor-

ithms are examined using the same simulated signals, and

the processed results are presented in Table I. This table

Original Signal

Bayes

Flaw I

'{,.

ou tpu t  s igna l :  d^ " ( t ^ ) :+  f  f , ( t , ) l ;
K i7r

Median detector:

Output signal:

Proceeaed Output Signal

J , ,*ilh-
l l, ,,"* 

(b)

( 1 1 )

0- .d ( t , )  :  med ian I  r , ( t " )1 ,  i  :  1 ,2 , . . . ,K  f ;  (  12)

Minimum detector:

Output signal:

d - ,n ( tn )  :  m in imumf l lG, , )  l ,  . l :  1 ,2 , . . . ,K  f ;  (  l3 )

hput Signal

F =L.1MHz

FIG. 7. A comparison of Bayes flaw detector performances via different

star t ingfrcquency;  (a)  or ig inals ignal ,  (b) / :  1.5 MHa @)f  :O.6MHz.

**, - - -. ]ll,rn-**** 
tll
(')

(c)

Average

Median

Polarity

Thresholding

FlG. 8. A comparison of various signal processing outputs for a simulated

microstructure signal; (a) original signal, (b) Bayes flaw detector, (c)

average delector, (d) median detector, (e) minimum detector, and (f) po-

larity detector.

(0

Flaw

F :o.6MHz
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TABLE I. Flaw/clutter ratio enhancement of various processing tech-

niques using simulated signals.
formance of the Bayes detector is more sensitive to the pa-

rameters of the ssP or clutter patterns.

IV. EXPERIMENTAL RESULTS

This experiment was conducted using steel specimens

with an average grain size about 50 pm and a Panametric

transducer with a 6.22-MHz center frequency and a 3-dB

bandwidth of 2.75 MHz. Flaws are formed by drilling two

different flat-bottom holes, one with a 1.5-mm diameter and

2.5-cm depth and the other with a 2.0-mm diameter and l-

cm depth into the specimen. The complex flaw structure is

formed by drilling two adjacent holes with 1.5-mm diame-

ters, 2.5-cm depths, and a mutual distance about 3 mm into

the specimen. The ultrasonic measurements were accom-

plished using the contact technique and data was acquired

with a 100-MHz sampling frequency. Nine bandpass filters

were used, with 3-dB bandwidth of I MHz and ranging from

0.G9 MHz at frequency steps of 0.8 MHz. This range of

frequency provides both flaw and microstructure noise in all

nine bandpass channels. The test signals with different F,/C

ratios were obtained by slightly shifting the transducer beam

path away from the flaw position at different directions in

order to obtain a flaw-to-clutter ratio about 0 dB (i.e., signal

has poor F/C ratio). The training process of the optimal

flaw detector was accomplished by measuring the clutter

signal with and without flaw under the same equipment set-

ting.

An example of the output signal, from various signal

processing techniques for an experimental measurement is

displayed in Fig. 9. We repeated these observations for many

microstructure signals and results are shown in Table II.

Note that trials l-8 represent the signal from simple flaw

and trials 9 and 10 represent the signal from a complex target

(i.e., two adjacent flaws). Because of the poor performance

of polarity thresholding, the processed results for experi-

ments are not included in Table II Isee Fig. 9(f) ]. Inspec-

tion ofTable II and Fig. 9 suggest that the Bayes detector can

improve the F,/C ratio significantly when compared to other

flaw enhancement algorithms. Furthermore, trials 9 and l0

given in Table II reveal that the presence oftwo flaw echoes

falling within the resolution of the detection does not dete-

riorate the performance of the Bayes detector. Similar im-

provements in detection were observed using computer sim-

ulation of multiple flaw echoes, masked by different clutter

patterns.

Overall, the performance of Bayes classifier flaw detec'

tion is dependent on statistical differences between micro-

structure scattering and defects. Ifdefects are complex and,

more importantly, if their sizes are comparable to the wave-

length and grains (e.g., microcracks surrounded by large

grains), the backscattered signal associated with cracks may

not exhibit any s[atistical differences when compared with

grain scattering, and, consequently, would go undetected.

On the other hand, defects are often larger than ultrasonic

wavelength and grain size, and will show statistical differ-

ences in their scattering echoes as a function of frequency

which will be detected by the Baysian classifier. The Baysian

method is particularly efective when the superposition of

Trial

No.

Bayes

detector

Average Median Minimum Polarity

detector detector detector detector

I
2
3

5
6
1
8
9

1 0
l l
t 2
l 3
t 4
t 5
l 6
1 7
l 8
l 9

1 A )

4.40
o - l /

10.83
t .79
3.82
3.  l9
6.09
7.49
7.8  8
J . J +

4.86
7.54
8.04
7.99
7.98
8.41
3.28
2.68
3.25

s .57
2.49

1.07
l . J  /

1 . 2 1
1.03
1.08

L57
1.06
1.02
1.06
o.97
1 . 5 9
1.07
1.04
1.02
l.oo
1.05
1.06
1.08
1.04
t.o2

1  l ?

0.  l7

1 .09
L34
1.82
1.22
1.56
1.46
0.97
L05
1.08
l . 0 l
1 . 5  I
1 .28
1.24
1.08
1 .  1 9
I  1 7

1  a A

1.20
1.08
1.07

| , z J

0.21

2.39
1.80
2.20
3.24
l . l J

1.60
63
36
27
99
45

l . 8 l
1 . 8 3
2.08
l . ) )

1 . 7  s
1 .96
2.20
2.20
2 . t 9

o.42
0.98
0.93
0.56
0.39
0.82
0.20
0.29
0 .  l 3
o.29
0.68
0.28
o.z2
0.  l9
o.24
0 . 3 1
0 . 1 9
0 . 1  I
0 . l  l
0.03

0.36
o.27

2.03
0.45

presents the flaw-to-clutter ratio enhancement results from

20 independent simulations where the flaw echoes were em-

bedded in different locations. The means and standard devi-

ation (SD) for edch technique, i.e., Bayes detector, average

detector, polarity thresholding, minimum and median de-

tectors, is listed at the bottom of the table. A total of nine

bandpass filters with a2-MHz bandwidth, ranging from G-

14 MHz at frequency step I .6 MHz, have been used for split-

ting the spectrum of returned echoes. For all simulated data,

the input flaw-to-clutter ratio is kept close to unity where the

flaw echo is not recognizable by a direct visual inspection of

the backscattered signal. It is evident that the performance

of the Bayes detector is superior when compared to other

flaw detection algorithms. The averaging method, and mini-

mum or median detectors provide only moderate improve-

ment. The performance of polarity thresholding is unaccep-

table. This poor performance results from the fact that the

method demands a change in the polarity of clutter echoes,

but no change ofpolarity for flaw signals. In ultrasonic de-

tection, polarity thresholding only works when the F/C is

high16'rE and, under this condition, many techniques such as

a simple threshold detection will be equally as effective.

The performance of averaging techniques, and the mini-

mum or median {etector are highly dependent on the ampli-

tude distribution function of returned echoes. Our previous

analysis ofthese techniques indicates that these detectors are

suboptimal and only perform well when certain conditions

are satisfied.re'2o As shown in Table l,F/C enhancement

using the Bayes detector is 5.57, while other detectors can

only improve detection up to twice. It should be noted that

the variance of Bayes performance is also significantly larger

than other detectors. This observation suggests that the per-

Mean

SD
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Original Sig:nal as 15 dB can be obtained. Extensive computer simulations
and experiments show that the Bayes classifier is one of the
best flaw detection algorithms, especially for a low signal-to-
noise ratio signal when a finite number of observations are
used. In computer simulation, we restricted the detection
process to the worst case in which the flaw echo covers the
same frequency range with respect to clutter signal. In prac-
tice, this may not be the case as flaw echoes often exhibit a
lower frequency band than that of the clutter echoes, and
this can be beneficial to the performance of the optimal
Baves detector.
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