
Performance Evaluation of Full Search
Equivalent Pattern Matching Algorithms

Wanli Ouyang, Member, IEEE, Federico Tombari, Member, IEEE,

Stefano Mattoccia, Member, IEEE, Luigi Di Stefano, Member, IEEE, and

Wai-Kuen Cham, Senior Member, IEEE

Abstract—Pattern matching is widely used in signal processing, computer vision, and image and video processing. Full search

equivalent algorithms accelerate the pattern matching process and, in the meantime, yield exactly the same result as the full search.

This paper proposes an analysis and comparison of state-of-the-art algorithms for full search equivalent pattern matching. Our

intention is that the data sets and tests used in our evaluation will be a benchmark for testing future pattern matching algorithms, and

that the analysis concerning state-of-the-art algorithms could inspire new fast algorithms. We also propose extensions of the evaluated

algorithms and show that they outperform the original formulations.

Index Terms—Pattern matching, template matching, fast algorithms, full search equivalent algorithm, performance evaluation.

Ç

1 INTRODUCTION

PATTERNmatching, also known as template matching, is
the task of seeking a given pattern in a given image,

as illustrated in Fig. 1. Pattern matching is widely used in
signal processing, computer vision, and image and video
processing. It has found applications in manufacturing for
quality control [1], image-based rendering [2], image
compression [3], object detection [4], superresolution [5],
texture synthesis [6], block matching in motion estimation
[7], [8], image denoising [9], [10], [11], road/path tracking
[12], mouth tracking [13], image matching [14], and action
recognition [15].

Suppose an N1 �N2 pattern has to be sought in a given
J1 � J2 image of J ¼ J1J2 pixels, as shown in Fig. 1. The
pattern will be compared to candidate windows of the same
size in the image. The Full Search (FS) algorithm computes
a similarity or dissimilarity measure between the pattern
and all its equally sized candidate windows that can be
extracted out of the image. We represent the pattern
(template) as a length-N vector ~Xt and the candidate
windows as ~XðjÞ

w , where subscripts �t and �w denote template
and window, respectively, j ¼ 0; 1; . . . ;W � 1 and N ¼
N1N2. For example, if a 16� 16 pattern is searched in a
256� 256 image, we have N ¼ 256, J ¼ 65;536, and
W ¼ ð256� 16þ 1Þ2 ¼ 58;081.

There are several ways to compare two vectors in order to
compute their similarity. These are represented by different
matching measures that can be used for the comparison. In

this paper, we consider a class of matching measures that
find vast use in template matching applications, i.e., those
derived from a distance measure based on the Lp norm. In
particular, we denote as dð~Xt; ~X

ðjÞ
w Þ the distance between ~Xt

and ~XðjÞ
w , which measures the dissimilarity between ~Xt and

~XðjÞ
w . The smaller is dð~Xt; ~X

ðjÞ
w Þ, the more similar are ~Xt and

~XðjÞ
w . There are two different situations in pattern matching:

1) Detect all candidate windows having dð~Xt; ~X
ðjÞ
w Þ < T , for

a given threshold T , and 2) find the window that leads to the
minimum value of dð~Xt; ~X

ðjÞ
w Þ among all candidate win-

dows. In this paper, we mainly consider situation 1, where
~XðjÞ
w is said to match ~Xt when dð~Xt; ~X

ðjÞ
w Þ < T . As illustrated

later, the algorithms for situation 1 can be easily modified to
deal with situation 2.

The Lp norm of length-N vector ~Z ¼ ½z0; z1; . . . ; zN�1�T is
defined as

k~Zkp ¼ ðjz0jp þ jz1jp þ � � � þ jzN�1jpÞ1=p: ð1Þ

Based on the Lp norm, the dissimilarity between ~Xt and
~XðjÞ
w can be measured as k~Xt � ~XðjÞ

w kpp. If p ¼ 1, then the
distance is the sum of absolute differences (SAD), while
p ¼ 2 yields the sum of squared differences (SSD).

There is research using other similarity or dissimilarity
measures that make pattern matching robust to rotation,
affine transformations, occlusion, and illumination varia-
tions. For example, the dissimilarity measure between the
pattern descriptors and the candidate window descriptors
is used in [16], [17], [18], [19], and [20], Hamming distance is
used as the dissimilarity measure in [21], normalized cross
correlation (NCC) is used as similarity measure in [22], [23],
[24], [25], [26], and [27]. To limit the scope of the paper we
have not included these measures and only consider
algorithms that use SAD and SSD as a dissimilarity
measure. As pointed out in [28], though there are argu-
ments against SSD as a dissimilarity measure for images, it
is still widely adopted due to its simplicity. Discussions
concerning the use of SSD as a dissimilarity metric can be
found in [29], [30], and [31].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012 127

. W. Ouyang and W.-K. Cham are with the Chinese University of Hong
Kong, China.

. F. Tombari, S. Mattoccia, and L. Di Stefano are with the University of
Bologna, Bologna, Italy.

Manuscript received 13 Sept. 2010; revised 31 Jan. 2011; accepted 12 Mar.
2011; published online 13 May 2011.
Recommended for acceptance by P. Felzenszwalb.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-09-0702.
Digital Object Identifier no. 10.1109/TPAMI.2011.106.

0162-8828/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

Since the FS algorithm is unacceptably slow in most
applications, many faster approaches have been proposed
in the literature [22], [25], [27], [28], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48].
Among these approaches, nonexhaustive algorithms yield
computational savings by reducing the search space [38],
[39], [40], [48] or by approximating patterns and windows
using polynomials [41], [42], [43] or linear combination of
simple features [44].

Conversely, exhaustive (or FS-equivalent) algorithms
accelerate the pattern matching process and, at the same
time, yield exactly the same result as FS. In the case of a
dissimilarity-based search, a simple approach is known as
Partial Distortion Elimination (PDE) [45] and its high
efficiency consists of terminating the evaluation of the
current dissimilarity measure as soon as it rises above the
current minimum. Another approach suitable to dissimilar-
ity-based searches consists of defining a rapidly computable
lower bounding function of the adopted dissimilarity
measure so as to quickly check one or more sufficient
conditions to skip mismatched positions without carrying
out the heavier computations required by the evaluation of
the actual dissimilarity measure. Examples of such an
approach include the algorithms in [28], [32], [33], [34], [35],
[49], [46], [47], [50], [22], [26].

This paper is motivated by the intense research activity
recently developed within this topic, but is not motivated by
an exhaustive comparison of various proposals. The aim of
the work is to compare and analyze state-of-the-art FS-
equivalent algorithms for pattern matching in different
conditions. For this aim, the paper selects the following five
algorithms, which are recent and have been shown to yield
notable speed-ups against the FS approach.

1. Alkhansari’s Low Resolution Pruning (LRP) algo-
rithm [32],

2. Tombari et al.’s Incremental Dissimilarity Approx-
imation (IDA) algorithm [33],

3. Hel-Or and Hel-Or’s projection-based algorithm
(PWHT) using Walsh-Hadamard Transform (WHT)
[28],

4. Ben-Artzi et al.’s projection-based algorithm using
GCK (PGCK) [34], and

5. Ouyang and Cham’s projection-based algorithm
using fast WHT (FWHT) [35].

Table 1 summarizes the compared algorithms, together
with the corresponding abbreviations. In addition to FS, the

Fast Fourier Transform (FFT) approach is also used as a

benchmark of comparison (in particular, we use the

OpenCV implementation [51]).
The main contributions of this paper are as follows:

1. A unified framework for describing the algorithms
evaluated in this paper. Under this framework, we
give a theorem that relates LRP to the algorithms
that use WHT basis vectors.

2. The computational analysis of IDA, PWHT, PGCK,
and FWHT under the framework of pattern match-
ing, which is not provided in the previous literature.
Based on this analysis, we propose a new termina-
tion strategy for fast full-search equivalent pattern
matching algorithms and two additional efficient
formulations of LRP.

3. A quantitative performance evaluation of state-of-
the-art FS-equivalent pattern matching algorithms
based on a very large data set. This allows us to
identify the best performingmethods under a number
of nuisances found in real-world applications. More-
over, the data sets, methodology, and results used in
our evaluation provide a reference framework for
testing future pattern matching algorithms.1

This paper is organized as follows: Section 2 introduces FS
and FFT. Section 3 presents a unified framework that can
represent all evaluated algorithms for further analysis. Based
on this unified framework, the computational complexity of
evaluated algorithms is analyzed in Section 4. Then, the
algorithms are compared quantitatively using the data sets
described in Section 5, which account for different sizes of
images and patterns as well as for distortions caused by
different types of noise. The testing environment and
evaluation criterion will also be described in Section 5.
Section 6 illustrates the experimental results. Finally, Sec-
tion 7 presents a discussion and Section 8 draws conclusions.

2 FS AND FFT APPROACH

2.1 Full Search Approach

With the FS algorithm, the distance between pattern ~Xt and

each candidate window ~XðjÞ
w , i.e., k~Xt � ~XðjÞ

w kpp for j ¼ 0; . . . ;

W � 1, is measured. If k~Xt � ~XðjÞ
w kpp < T , then the window

~XðjÞ
w is considered as a matching window; otherwise, it is

considered as a mismatched window.
When SSD is used, FS requires about 2NW additions and

NW multiplications. When SAD is used, FS requires about
2NW additions and NW absolute value operations.

2.2 Fast Fourier Transform

The FFT-based approach can be used only with the SSD. As
pointed out in [33], the SSD function can be written as

128 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

TABLE 1
Abbreviations and References of Compared Algorithms

Fig. 1. Pattern matching in image “couple.”

1. Data sets and code to carry out the experiments will be made publicly
available through a website.

k~Xt � ~XðjÞ
w k22 ¼ k~Xtk22 þ k~XðjÞ

w k22 � 2 �<~Xt; ~X
ðjÞ
w >; ð2Þ

where <~Xt; ~X
ðjÞ
w > ¼ ð~XtÞT ~XðjÞ

w is the inner product between
~Xt and ~XðjÞ

w . FFT facilitates efficient computation of the
inner product <~Xt; ~X

ðjÞ
w > in (2).

As pointed out in [22], the FFT-based approach requires
about 6Jlog2J additions and 6Jlog2J multiplications for
computing the inner product. After that, W additions are
required to obtain 2<~Xt; ~X

ðjÞ
w > from <~Xt; ~X

ðjÞ
w > for j ¼ 0;

1; . . . ;W � 1. To compute the term k~XðjÞ
w k22 at each pixel

location, J multiplications are required for squaring pixel
values, 4W and 5W additions are required, respectively, by
the box-filtering technique [52] and the integral image
approach [53] for summing up the squared values k~XðjÞ

w k22 ¼
P

xw;j;a2~X
ðjÞ
w
ðxw;j;aÞ2 for j ¼ 0; . . . ;W � 1. k~Xtk22 can be ob-

tained by N multiplications and 2N additions. Finally, 2W
additions are needed for summing up the three terms in (2).
In summary, the FFT-based approach requires at least
6Jlog2J þ 7W additions and 6Jlog2J þ J multiplications.

3 A UNIFIED FRAMEWORK FOR PATTERN

MATCHING ALGORITHMS

In this section, we first introduce a unified framework for
fast FS-equivalent pattern matching. The links and differ-
ences among the algorithms compared in this paper are
then analyzed within this framework.

As highlighted in Table 2, the proposed framework
consists of two steps:

. Step a. Mismatching candidate windows are elimi-
nated from setcan. This step is called the rejection step.

. Step b. The remaining candidate windows in setcan
undergo FS for finding out the matching windows.
This step is called the FS-step.

In this framework, both FS and FFT directly evaluate
the distance k~Xt � ~XðjÞ

w kpp for all candidate windows to find
the matching windows. This corresponds to skipping the
rejection step and starting from the FS-step in Table 2. The
FFT approach is only different from FS in the computation
of k~Xt � ~XðjÞ

w kpp.
On the other hand, algorithms IDA, LRP, PWHT, PGCK,

and FWHT start from the rejection step. The rejection step is
a loop of k, where k increases from 1, and comprises three
substeps. In Step a.1, a lower bounding function flowðk; jÞ is
evaluated such that k~Xt � ~XðjÞ

w kpp � flowðk; jÞ. In Step a.2, if

flowðk; jÞ � T , then k~Xt � ~XðjÞ
w kpp � T and we can safely

prune ~XðjÞ
w from setcan, flowðk; jÞ � T being the rejection

condition. In Step a.3, the loop of k terminates when a given
termination condition, denoted as CondTer is satisfied.
Throughout the rejection step, each candidate window
undergoes checking of a succession of rejection conditions
flowðk; jÞ � T in each loop of k until either it is pruned or the
rejection step finishes. There are two conditions under
which the rejection terminates: 1) k reaches a sufficient
number, which is denoted as NMaxk, and 2) the percentage
of remaining candidate windows in iteration kþ 1, denoted
as Perðkþ1Þ

can , is below a certain threshold, denoted as �. The
second termination condition, corresponding to CondTer in
Step a.3, is a strategy used by Hel-Or and Hel-Or in [28]
because it turns out to be faster to directly calculate the
actual distance than evaluating the lower bound when the
remaining candidates in setcan are very few. Nk records the
actual number of loops of run in the rejection step.

Table 3 shows the meaning for symbols in this paper.
The advantage of using flowðk; jÞ is that it is more

efficient to compute flowðk; jÞ than to compute k~Xt � ~XðjÞ
w kpp

and a small number of iteration k in the rejection step can
eliminate a large number of mismatching windows.

The unified framework can be modified to find the
window that has the minimum k~Xt � ~XðjÞ

w kpp using
the approaches proposed in [50], [28], and [27]. Taking the
approach in [28] as an example, the threshold T can be
adapted in each loop of k based on the minimum lower
bound found in the kth loop.

The differences among the algorithms are summarized in
Table 4. IDA, LRP, PWHT, PGCK, and FWHT are
applicable for any dissimilarity measure based on the
Lp-norm (p � 1), while FFT is based only on L2-norm. FFT

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 129

TABLE 2
A Framework for Pattern Matching Using Lower Bound

TABLE 3
Symbols and Terms Used in the Paper

includes only the FS-step, while the others include both the

rejection step and the FS-step. NMaxk is not applicable for

FFT; the IDA algorithm has NMaxk ¼ NP ; the LRP algorithm

has NMaxk ¼ logh N ; PWHT, PGCK, and FWHT have

NMaxk ¼ N . The meaning of parameters NP and h is given

in Table 3 and will be illustrated later.
The FS-equivalent algorithms considered in the paper

achieve high efficiency by using a lower bounding

function, flowðk; jÞ, that eliminates mismatching candidates

early. Hence, the methods for estimating these lower

bounds greatly affect the computational performance of

FS-equivalent algorithms. In the following, we recall the

lower bound estimation methods used by IDA, LRP,

PWHT, PGCK, and FWHT.

3.1 The Lower Bounding Function for IDA

The IDA technique relies on partitioning the pattern vector,
~Xt, and each candidate vector, ~XðjÞ

w , into a certain number of

subvectors in order to determine a succession of pruning

conditions characterized by increasing tightness and com-

putational weight. Given an N-dimensional vector, IDA

establishes a partition P of the vector into NP disjoint

subvectors (not necessarily with the same number of

components). In particular, it defines a partition of set

f1; 2; . . . ; Ng into NP disjoint subsets P ¼ fP1; P2; . . . ; PNP
g,

where [NP
m¼1Pm ¼ f1; 2; . . .Ng, 1 � NP � N , and NP is a

parameter.
Given partition P , IDA defines the partial Lp-norm of

vector ~Xt and ~XðjÞ
w limited to the subvector associated with

Pm 2 P as

k~Xtkp;Pm
¼

X

n2Pm

jxt;njp
 !1

p

; ð3Þ

k~XðjÞ
w kp;Pm

¼
X

n2Pm

�

�xw;j;n

�

�

p

 !1
p

; ð4Þ

where xt;n is the nth element in pattern ~Xt and xw;j;n is

the nth element in window ~XðjÞ
w . In addition, IDA defines

the partial Lp-dissimilarity between ~Xt and ~XðjÞ
w limited to

the subvector associated with Pm 2 P as

k~Xt � ~XðjÞ
w kpp;Pm

¼
X

n2Pm

�

�xt;n � xw;j;n

�

�

p
: ð5Þ

As proven in [33] using reverse triangle inequality, the

lower bound used by IDA in iteration k is

flowðk; jÞ ¼
X

k�1

m¼1

k~Xt � ~XðjÞ
w kpp;Pm

þ
X

NP

n¼k

j k~Xtkp;Pn
� k~XðjÞ

w kp;Pn
jp;

ð6Þ

where the left term is the partial Lp-dissimilarity between ~Xt

and ~XðjÞ
w and the right term is an estimation of the remaining

Lp-dissimilarity. Let us denote the modulo operation by %.

When partitioning a set of size N into NP subsets, we

constrain that N%NP ¼ 0 and the subsets Pn for n ¼
1; . . . ; NP have the same size, i.e.,N=NP . Thus, the candidate

window is equally partitioned into NP subwindows having

the same size. The method presented in [33] does not imply

this constraint, but this constraint normally makes IDA

computationally more efficient and facilitates computa-

tional complexity analysis. Thus, the constraint is used in

this paper as it is also the case of the experimental results

reported in [33].

3.2 The Lower Bounding Function for LRP, PWHT,
GCK, and FWHT

The transformation that projects a vector ~X 2 IRN onto a

linear subspace spanned by Uð� NÞ basis vectors
~V ð0Þ; . . . ~V ðU�1Þ can be represented as follows:

~Y ¼ V ðU�NÞ ~X ¼ ½~V ð0Þ . . . ~V ðU�1Þ�T ~X; ð7Þ

where �T is matrix transposition, vector ~X of length N is

called the input window, vector ~Y of length U is called the

projection value vector, the U elements in vector ~Y are

called projection values, and V ðU�NÞ is a U �N matrix that

contains U basis vectors ~V ðiÞ of length N for i ¼ 0; . . . ; U � 1.

When V ðU�NÞ is a square matrix, i.e., U ¼ N , we denote it as

V ðNÞ. The above transformation is also called projection,

e.g., in [28], [37], and [33], while basis vectors are called

projection kernels in [28] and called filter kernels in [34].

Algorithms using transformation for pattern matching are

called transform domain pattern matching algorithms, e.g.,

PWHT, PGCK, FWHT, and LRP.

3.2.1 LRP

LRP uses the following lower bounding function:

flowðk; jÞ ¼
kV ðuðkÞ�NÞ�~Xt � ~XðjÞ

w

�

kpp
kV ðuðkÞ�NÞkpp

; ð8Þ

where uðkÞ is the number of basis vectors chosen for

transform domain pattern matching in the kth loop of the

rejection step. The kV ðuðkÞ�NÞkp in (8) is the induced matrix

p-norms is defined as follows:

kV ðuðkÞ�NÞkp ¼ max
~Z 6¼0

kV ðuðkÞ�NÞ~Zkp
k~Zkp

: ð9Þ

When not all elements in V ðuðkÞ�NÞ are zeros, it follows from

(9) that

k~Zkp �
kV ðuðkÞ�NÞ~Zkp
kV ðuðkÞ�NÞkp

: ð10Þ

130 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

TABLE 4
Differences for the Unified Framework in Table 2

PWHT, PGCK, and FWHT share the column “PKs”.

As pointed out in [32], the lower bound in (8) is derived

from (10) by replacing the ~Z in (10) with ~Xt � ~XðjÞ
w :

k~Xt � ~XðjÞ
w kpp �

kV ðuðkÞ�NÞ�~Xt � ~XðjÞ
w

�

kpp
kV ðuðkÞ�NÞkpp

¼ flowðk; jÞ: ð11Þ

The LRP algorithm is best explained using Kronecker

product, which is denoted as �. If A is a U1 �Q1 matrix

ðan1;n2
Þ and B is a U2 �Q2 matrix (bm1;m2

), then A�B is the

following U1U2 �Q1Q2 matrix:

A�B ¼

a0;0B a0;1B � � � a0;Q1�1B
a1;0B a1;1B � � � a1;Q1�1B

..

. ..
. . .

. ..
.

aU1�1;0B aU1�1;1B � � � aU1�1;Q1�1B

2

6

6

6

4

3

7

7

7

5

: ð12Þ

Denote the uðkÞ � uðkÞ identity matrix as IðuðkÞÞ. The 1D

transform matrix for the LRP algorithm proposed in [32] is

given by

V ðuðkÞ�NÞ ¼ IðuðkÞÞ � 11ð1�ðN=uðkÞÞÞ

¼

11ð1�ðN=uðkÞÞÞ 00ð1�ðN=uðkÞÞÞ � � � 00ð1�ðN=uðkÞÞÞ

00ð1�ðN=uðkÞÞÞ 11ð1�ðN=uðkÞÞÞ � � � 00ð1�ðN=uðkÞÞÞ

� � � � � � � � � � � �
00ð1�ðN=uðkÞÞÞ 00ð1�ðN=uðkÞÞÞ � � � 11ð1�ðN=uðkÞÞÞ

2

6

6

6

4

3

7

7

7

5

;

ð13Þ
where 00ð1�ðN=uðkÞÞÞ and 11ð1�ðN=uðkÞÞÞ are 1� ðN=uðkÞÞ matrices

with all elements equal to 0 and 1, respectively, uðkÞ ¼ hk�1

is the number of basis vectors used for evaluating the lower

bound function in (8), and h can be any small integer

number. The experiments in [32] use h ¼ 4. As an example

for the LRP matrix in (13), when uðkÞ ¼ 2, N ¼ 4, we have

V ð2�4Þ ¼ Ið2Þ � 11ð1�2Þ ¼ 1 0

0 1

� �

� ½1 1� ¼ 1 1 0 0

0 0 1 1

� �

:

ð14Þ
As proven in [32], kV ðuðkÞ�NÞkpp ¼ ðN=uðkÞÞðp�1Þ=p in (8) for

the V ðuðkÞ�NÞ defined in (13). For candidate windows in the

images, transformation using LRP is computed by summing

pixel values in a rectangle.

3.2.2 PWHT, PGCK, and FWHT

The following inequality about the L2 norm, proven in [28],

is used for PWHT, PGCK, and FWHT:

k~Xt � ~XðjÞ
w k22 ¼ k~Dk22

� ðV ðuðkÞ�NÞ ~DÞT ðV ðuðkÞ�NÞV ðuðkÞ�NÞT Þ�1ðV ðuðkÞ�NÞ ~DÞ
¼ flowðk; jÞ; where ~D ¼ ~Xt � ~XðjÞ

w :

ð15Þ

PWHT and FWHT use WHT as the transform matrix for

pattern matching. The WHT transform matrix can be

recursively defined as

MðNÞ ¼ Mð2Þ �MðN=2Þ ¼ MðN=2Þ MðN=2Þ

MðN=2Þ �MðN=2Þ

� �

; ð16Þ

where Mð1Þ ¼ 1, MðNÞ ¼ ½ ~Mð0Þ . . . ~MðN�1Þ�T is an N �N

matrix. As two examples for (16), we have

Mð2Þ ¼ 1 1

1 �1

� �

;Mð4Þ ¼
1 1 1 1

1 �1 1 �1

1 1 �1 �1

1 �1 �1 1

2

6

6

4

3

7

7

5

: ð17Þ

Since the elements in WHT basis vectors contain only 1 or
�1, projection of input data onto WHT basis vectors
requires only additions and subtractions. When N ¼ 8,
Fig. 2 shows the order-8 WHT basis vectors in natural order
and sequency order. The WHT in (17) and (16) is in natural
order. The natural order and the sequency order are
different methods for ordering WHT basis vectors [54].
For sequency-ordered WHT, the spatial frequency extracted
by the basis vector increases as the index i of basis vectors
~MðiÞ increases. According to [28], PWHT is almost two
orders of magnitude faster than FS and can deal with
illumination effects and multiscale pattern matching.

The transform matrix for the GCK in [34] can be
represented as follows:

V ðNÞ ¼ MðN=RÞ � SðRÞ; ð18Þ

whereMðN=RÞ is theN=R�N=RWHTmatrix andSðRÞ can be

any R�R orthogonal matrix. The basis vectors in
1
ffiffiffi

N
p MðuðkÞ�NÞ are orthonormal basis vectors. And we have

kV ðuðkÞ�NÞk22 ¼ 1 if the basis vectors in V ðuðkÞ�NÞ are orthonor-

mal. Thus, we have kMðuðkÞ�NÞk22 ¼ N for the WHTmatrix in

(16). Similarly, we have kV ðuðkÞ�NÞk22 ¼ N=R for the GCK

matrix in (18).
Considering the general lower bounding function de-

fined in (8), we can select basis vectors of the V uðkÞ�N in (8)
from the LRP matrix in (13), from the WHT matrix MðNÞ, or
from the GCK matrix in (18). For example, if N ¼ 4, k ¼ 2,
and uðkÞ ¼ k ¼ 2, then we can select the first two WHT
basis vectors ~Mð0Þ and ~Mð1Þ in (17) for constructing the
matrix V ð2�4Þ ¼ ½ ~Mð0Þ ~Mð1Þ�T and use this matrix as the
V ðuðkÞ�NÞ in (8).

3.3 Investigation on PWHT, PGCK, FWHT, and LRP

The flowðk; jÞ in (11) is used for LRP while the flowðk; jÞ in
(15) is used for PWHT, PGCK, and FWHT. Let us consider
the L2 norm; if the basis vectors in V ðuðkÞ�NÞ in (15) are
orthonormal, then we have kV ðuðkÞ�NÞk2 ¼ 1 in (11) and
ðV ðuðkÞ�NÞV ðuðkÞ�NÞT Þ�1 ¼ IðuðkÞÞ in (15). Under this condition,
both (11) and (15) yield the following relation:

k~Xt � ~XðjÞ
w k22 � kV ðuðkÞ�NÞð~Xt � ~XðjÞ

w Þk22 ¼ flowðk; jÞ: ð19Þ

The inequality in (11) is more general than that in (15)
because

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 131

Fig. 2. WHT basis vectors in sequency order and natural order. White
represents the value þ1 and gray represents the value �1.

. the inequality in (15) is only applicable for L2 norm
while the inequality in (11) is applicable for Lp norm
for p � 1, and

. V ðuðkÞ�NÞ is required to have rank uðkÞ for the inverse
matrix in (15) while this is not required in (11).

The inequality in (15) proposed in [28] were used by

PWHT, PGCK, and FWHT for the L2 norm only. For other

norms, the inequality proposed in [28] is as follows:

k~Xt � ~XðjÞ
w k � k~V ðiÞT ~Xt � ~V ðiÞT ~XðjÞ

w k
k~V ðiÞk

: ð20Þ

The inequality in (20) is a special case of that in (7) with

V ðU�NÞ being a row vector in (7).
The following theorem describes the relationship be-

tween LRP and WHT:

Theorem 1.When the u ¼ 2n basis vectors in V
ðu�NÞ
WHT are the first

sequency-ordered WHT basis vectors, we have the LRP

transform matrix

V
ðu�NÞ
LRP ¼ IðuÞ � 11ð1�ðN=uÞÞ; ð21Þ

such that: 1) The subspace spanned by the u basis vectors in

V
ðu�NÞ
WHT is equal to the subspace spanned by the u basis vectors

in V
ðu�NÞ
LRP ; 2) for any length-N input vector ~X, if the basis

vectors in V
ðu�NÞ
LRP and V

ðu�NÞ
WHT are normalized to have L2 norm

equal to 1, then kV ðu�NÞ
WHT

~Xk22 ¼ kV ðu�NÞ
LRP

~Xk22; and 3) the

transformation V
ðu�NÞ
WHT

~X requires at least 3u=2 additions per

pixel, while the transformation V
ðu�NÞ
LRP

~X requires three

additions per pixel when computed on sliding windows.

The proof for Theorem 1 is provided in the Appendix,

which can be found in the Computer Society Digital Library

at http://doi.ieeecomputersociety.org/10.1109/TPAMI.

2011.106. The more the energy is packed, the more

candidates can be eliminated by the rejection step. Theorem 1

states that the u ¼ 2n sequency-ordered basis vectors in

V
ðu�NÞ
WHT and the u basis vectors in V

ðu�NÞ
LRP ¼ IðuÞ � 11ð1�ðN=uÞÞ are

the same in subspace spanning and energy packing ability.

However, the larger u is, the more computationally efficient

the transformation V
ðu�NÞ
LRP

~X is than V
ðu�NÞ
WHT

~X.
Recently, WHT have been used for motion estimation in

[7], [8] based on L1 norm, but the algorithms are not
FS-equivalent. Actually, we can see from the analysis in (11)
that the basis vectors selected from WHT and GCK are also
applicable for FS-equivalent pattern matching using
Lp norms as dissimilarity measure.

4 COMPUTATIONAL ANALYSIS OF IDA, PWHT,
PGCK, FWHT, AND LRP

In this section, we analyze the computational complexity of
IDA, PWHT, PGCK, FWHT, and LRP by counting the
number of operations required by each algorithm. This
analysis is summarized in Table 5. The terms related to the
pattern ~Xt are computed once and for all at initialization time
and hence not considered in the computational complexity
since the associated complexity is negligible compared with
the computation related to candidate windows on the image.

To recall the notation already introduced, the N1 �N2

pattern hasN ¼ N1N2 pixels, the J1 � J2 image has J ¼ J1J2
pixels and W candidate windows. At each iteration of k for
k ¼ 1; 2; . . . in the rejection step, some candidate windows
are eliminated and the remaining ones will be considered in
the next loop.Wedenote the number of candidates examined
at iteration k in the rejection step as NðkÞ

can and the number of
candidates examined in the FS-step as N ðFSÞ

can . Initially, k ¼ 1,
all candidates are examined, and we have Nð1Þ

can ¼ W .
Different algorithms have different values of Nk

can.
In the computational analysis, subtractions are given the

same weight as additions. The computation of certain terms
depends on the computation of the Lp norm in (1), which in
turn is related to the computation of jzjp and

ffiffiffi

zp
p

. The
operations for computing jzjp and ffiffiffi

zp
p

are here called power-
p operation and root-p operation, respectively. When p ¼ 2,
power-p operation computes the square of z, i.e., z2, and
root-p operation computes the square root of z, i.e.,

ffiffiffi

z
p

.
When p ¼ 1, power-p operation computes the absolute
value of z, i.e., jzj, and the root-p operation does nothing.

As a common step for algorithms IDA, PWHT, PGCK,
FWHT, and LRP, Step a.2 of Table 2 checks condition
flowðk; jÞ � T for the N ðkÞ

can candidates at iteration k, which
requires

P

k N
ðkÞ
can comparison operations. The computation

required by Step a.3 of Table 2 is negligible. The remaining
steps in Table 2 that require analysis are Step a.1 of the
Rejection step, which computes the lower bounding

132 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

TABLE 5
Computation Required by the Algorithms

with Symbols Illustrated in Table 3

PWHT, PGCK, and FWHT share the same row “PKs.” In this table,
A

ðk;hÞ
LRP ¼ hðk�1ÞNðkÞ

can.

function flowðk; jÞ, and the FS-step. In the following, we

analyze the computational complexity of these two steps for

each of the considered algorithms.

4.1 Computational Analysis for IDA

The computation of the lower bounding function for IDA is

illustrated and analyzed in Table 6. When k ¼ 1, which is

Case 1 of Table 6, the lower bounding function in (6) is

given by

flowð1; jÞ ¼
X

NP

m¼1

j k~Xtkp;Pm
� k~XðjÞ

w kp;Pm
jp: ð22Þ

When k > 1, i.e., Case 2 of Table 6, the lower bounding

function is

flowðk; jÞ ¼ flowðk� 1; jÞ þ k~Xt � ~XðjÞ
w kpp;Pk

� j k~Xtkp;Pk
� k~XðjÞ

w kp;Pk
jp:

ð23Þ

As a summary of Table 6, IDA requires 4W þ 2NPW þ
PNP�1

k¼2 ½ð2NNP
þ 2ÞN ðkÞ

can� additions, J þNPW þ N
NP

ðPNP�1
k¼2 NðkÞ

canÞ
power-p operations, and W root-p operations for obtaining

the lower bounding function.

In the FS-step, IDA computes only the Lp norm dissim-

ilarity for pixels in the last subwindow restricted by partition

PNP
. This subwindow contains N

NP
pixels for each candidate

window. Thus, the FS-step requires 2NN
ðFSÞ
can

NP
additions and

NN
ðFSÞ
can

NP
power-p operations.

4.2 Computational Analysis for LRP

As pointed out in [32], LRP requires
P

k ½2A
ðk;hÞ
LRP þ ðh� 1ÞJ �

additions and
P

k ðA
ðk;hÞ
LRP Þ power-p operations for obtaining

the lower bounding function, where Ak;h
LRP ¼ hðk�1ÞN ðkÞ

can. In

the FS-step, LRP requires 2NN ðFSÞ
can additions and NNðFSÞ

can

power-p operations.
The sliding transformation V ðuðkÞ�NÞ ~XðjÞ

w in

flowðk; jÞ ¼
kV ðuðkÞ�NÞ ~Xt � V ðuðkÞ�NÞ ~XðjÞ

w kpp
kV ðuðkÞ�NÞkpp

is actually the sum of pixel values in rectangles when LRP is

used for images. This transformation is computed by

hierarchical summation on the entire image in [32], which

requires ðh� 1ÞJ additions at each iteration k. This

approach is denoted as LRPhier.

4.3 Analysis for PWHT, PGCK, and FWHT

The lower bounding function for PWHT, PGCK, and FWHT

is computed as

flowðk; jÞ ¼ flowðk� 1; jÞ þ j~V ðk�1ÞT ~Xt � ~V ðk�1ÞT ~XðjÞ
w jp; ð24Þ

where k ¼ 1; 2; . . . ; Nk, flowð0; jÞ ¼ 0. Nk records the actual

number of iterations run in the rejection step. The

procedure and number of operations required to obtain

the lower bounding function is reported in Table 7. Let

BðN;Nk;WÞ be the number of operations required by

PWHT, PGCK, or FWHT to obtain V ðNk�NÞ ~XðjÞ
w for

W candidates. PWHT [28] has two different approaches

to compute the transformation: top-down and bottom-up.

We have BðN;Nk;W Þ ¼ WNk logN in the worst case and

BðN;Nk;WÞ ¼ 2WNk in the best case for top-down

PWHT. For bottom-up PWHT, BðN;Nk;WÞ ¼Pk NN ðkÞ
can

in the worst case and BðN;Nk;WÞ ¼Pk N
ðkÞ
can in the best

case. As for PGCK and FWHT, BðN;Nk;W Þ ¼ 2WNk and

BðN;Nk;WÞ ¼ 3WNk=2, respectively. As a summary of

Table 7, PWHT, PGCK, and FWHT need BðN;Nk;WÞ þ
2
P

k N
ðkÞ
can additions and

P

k N
ðkÞ
can power-p operations in

order to calculate the lower bounding function.
In the FS-step, 2NNðFSÞ

can additions and NN ðFSÞ
can power-p

operations are needed by PWHT, PGCK, and FWHT.

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 133

TABLE 6
Computation of the Lower Bounding Function Using IDA

TABLE 7
Computation of the Lower Bounding Function

Using PWHT, GCK, and FWHT

4.4 New Implementation of LRP

The hierarchical summation approach in [32] is a
technique that is dependent on the parameter h. However,
we can use the integral image method to compute the
sum of pixel values in rectangles. The integral image
method initially requires about 2J additions for construct-
ing the integral image and then 3W additions for each
iteration k for computing the sliding transformation over
the image. This approach is denoted as LRPsld. LRPsld is
advantageous over the hierarchical summation proposed
in [32] because the computation required by LRPsld is
independent of h.

As another alternative way, we may compute the
transformation for the NðkÞ

can candidates instead of comput-
ing it for the entire image, which would require 3hðk�1ÞN ðkÞ

can

additions for each k using the integral image method. This
approach is denoted as LRPcan.

4.5 New Termination Condition Based on
Computational Complexity Analysis

As illustrated before, the termination condition in [28] has
been used by PWHT and PGCK for early termination of
the rejection step, which corresponds to CondTer at Step a.3
in Table 2. Let the computation required for the FS-step be
CFS and the computation required for iteration kþ 1 in the
rejection step be C

ðkþ1Þ
Rej . The idea behind the strategy in [28]

is that the rejection step should be terminated when it is
more efficient to directly calculate the actual distance of the
remaining candidates in the FS-step than to continue the
computation in the rejection step, i.e., when CFS < C

ðkþ1Þ
Rej .

The strategy proposed in [28] terminates the rejection step
when the percentage of remaining candidate windows
checked in iteration kþ 1, i.e., Perðkþ1Þ

can , is below a certain
threshold �. Hence, in the absence of a computational
analysis, setting a threshold � is intuitively a simplified
version of the comparison CFS < C

ðkþ1Þ
Rej . However, the

computational complexity given in Table 5 allows us to
devise a novel and principled approach to the early
termination strategy.

The new termination strategy based on computational
analysis consists of terminating the rejection step if
CondTer;1 is true or CondTer;2 is true. CondTer;1 is true when
the computation required for the iteration kþ 1 of the
rejection step is greater than the computation required for
the FS-step. CondTer;2 is true when the computation
required by iteration k of the rejection step is greater than
the computation it saves. This strategy is easily applicable
to all the algorithms evaluated in this paper. In the
following experiments, this new termination strategy is
used for PGCK and FWHT unless specified otherwise. In
Section 6.7, we will compare the original strategy in [28]
with the proposed strategy.

5 PERFORMANCE EVALUATION

5.1 Data Set

In order to evaluate the performance of the compared
algorithms, 14 data sets containing different sizes of patterns
and images are used. As shown in Table 8, the data sets are
denoted as In1 � Tn2 for n1 ¼ 1; 2; 3; 4; 5, n2 ¼ 1; . . . ; 4,
where n1 corresponds to image size and n2 corresponds to
pattern size. Large n1 or n2 corresponds to large size. For

example, data sets I2� T1 and I2� T2 have the same image
size 320� 240 but different pattern sizes.

The experiments include a total of 150 grayscale images
chosen among three databases: MIT [55], medical [56], and
remote sensing [57]. The MIT database is mainly con-
cerned with indoor, urban, and natural environments, plus
some object categories such as cars and fruits. The two
other databases are composed, respectively, of medical
(radiographs) and remote sensing (Landsat satellite)
images. The 150 images have been subdivided into five
groups of 30 images, each group being characterized by a
size of images in I1� T1, I2� T1, I3� T1, I4� T1,
I5� T1, (i.e., 160� 120, 320� 240, 640� 480, 1;280� 960,
2;560� 1;920). For each image, 10 patterns were randomly
selected among those showing a standard deviation of
pixel intensities higher than a threshold (i.e., 45) for each
data set. Data sets having the same image size share the
same images but have different patterns in both size and
location. For example, data sets I2� T1 and I2� T2 share
the same 30 images having size 320� 240 but have
different patterns in size and location. So, each data set
contains 300 image-pattern pairs. Since we have 14 data
sets, there are 4,200 image-pattern pairs in all. This data
set originated from that in [33] and is extended in this
paper to include more sizes of patterns.

5.2 Evaluation Criterion

In the experiments, both SSD and SAD are used as the
dissimilarity measure between pattern and candidate win-
dow. If the SSDor SADbetweenany candidatewindow in the
image and the pattern is below the threshold, the candidate
window is regarded asmatching the pattern. Given a pattern
havingN pixels, the SSD threshold is set as follows:

TSSD ¼ 1:1 � SSDmin þN; ð25Þ
where SSDmin is the SSD between the pattern and the best
matching window. Similarly, we have the following for the
SAD threshold:

TSAD ¼ 1:1 � SADmin þN; ð26Þ

134 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

TABLE 8
Data Sets Used in the Experiments

J and N correspond to the number of pixels in image and pattern,
respectively.

where SADmin is the SAD between the pattern and the best
matching window.

We developed the code for IDA and FWHT since we are
authorsof these algorithms.The code forHel-OrandHel-Or’s
PWHT [28] is from the authors’ website [58], with some small
modifications introduced by us to deal with large patterns.
The code for PGCK [34] is based on the code providedbyHel-
Or and Hel-Or, which was previously used for motion
estimation in [8] and was modified by us for the pattern
matching task. Finally, we wrote the code for LRP according
to the algorithm described in [32]. All of the algorithms are
written in C, compiled with VC 6.0, and run on windows XP
systems as single-thread tasks. Our implementation checks
that all algorithms find the samematchedwindows and same
distance as FS in all experiments for assuring correctness
results are measured as speed-ups over the FS algorithm in
terms of execution time. As an example, the speed-up of IDA
over FS in execution time is measured as the execution time
required by FS divided by that required by IDA. The
parameterNp for IDA are the same as in [33]. The parameter
h for LRP is 4, which is the same as in [32]. The parameters
used in the experiments are summarized in Table 9. The
parameterNMaxk is set as 50 for PWHT in [28],while it is set as
96 inour experimentsbecausewe find that settingNMaxk ¼ 96
makes PWHT faster than setting NMaxk ¼ 50 in most cases,
especially when the pattern size is large and the noise level is
high. Since all the evaluated algorithms find the same
matching windows as the FS, the only concern is computa-
tional efficiency, which is assessed here in terms of execution
time. Inparticular, as listed inTable 10,wehavemeasured the
execution time on three Intel CPUs and one AMD CPU with
different memory sizes. The memory requirement for all
algorithms is smaller than 1 GB in our implementation. If not
otherwise specified, the reported speed-ups in execution time
are averages of the speed-ups measured in each of the four
environments. As an example, the speed-up of IDA in
execution time is the average of the speed-ups of IDA over
FS measured in the four environments.

In Sections 4.2 and 4.4, three different implementations
of the LRP algorithm were introduced. LRPhier is the
original implementation that uses the hierarchical summa-
tion. LRPsld computes the transformation in a sliding
manner on the entire image using the integral image,
while LRPcan computes the transformation for NðkÞ

can candi-
date windows at loop k. These three implementations were
evaluated in the experiments.

6 EXPERIMENTAL RESULTS

6.1 Experiment on Images without Noise

In this experiment, we evaluate algorithms on the data sets
described in Table 8, which correspond to different sizes of
images and patterns.

The speed-ups in execution time yielded by the evaluated
algorithms using SSD as the dissimilarity measure are
shown in Fig. 3. In this experiment, the algorithms can be
ordered from fastest to slowest as follows:

1. PGCK,
2. FWHT, IDA, and LRP,
3. PWHT,
4. FFT.

PGCK is faster than FWHT because very few (less than 4)
basis vectors are computed in this experiment. The
experimental results in [35] also show that FWHT is slower
than PGCK when the number of basis vectors used is less
than 4. With the exception of data set I4� T4, where FFT is
faster than PWHT, FFT is always slower than the other
evaluated algorithms.

The speed-ups in execution time using SAD are shown in
Fig. 4. PGCK and IDA are the fastest in this experiment, with
IDA faster than PGCK in data sets I1� T1, I2� T1, I2� T2,
I3� T2, I3� T3, and I4� T4. Ordering of the other
algorithms is similar to that attained using SSD (Fig. 3).

6.2 Experiment on Images with Gaussian Noise

In this experiment, four different levels of iid zero-mean
Gaussian noise are added to each image of the data sets
described in Table 8. The four Gaussian noise levels having

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 135

TABLE 9
Parameters Used in the Experiments

TABLE 10
Hardware Environment Used in the Experiments

Fig. 3. Speed-ups in execution time for images without noise when SSD
is used. The X-axis corresponds to data sets I1� T1; I2� T1; . . . ; I4�
T4 in Table 8.

Fig. 4. Speed-ups in execution time for images without noise when SAD
is used. The X-axis corresponds to data sets I1� T1; I2� T1; . . . ; I4�
T4 in Table 8.

variances 325, 650, 1,300, and 2,6002 for 8-bit pixel value are
referred to as Gð1Þ, Gð2Þ, Gð3Þ, and Gð4Þ, respectively. Fig. 5
shows an image from the data set in Table 8 and its
distorted images with noise levels Gð1Þ to Gð4Þ, where the
640� 480 distorted images have PSNR 23.23, 20.4, 17.7, and
16.1 when compared with the original image.

The speed-ups in execution time using SSD for this
experiment are shown in Fig. 6. Each subfigure in Fig. 6
corresponds to a data set in Table 8. In Fig. 6, the top
row corresponds to the smallest image size and bottom
row corresponds to the largest image size; the leftmost
column corresponds to the smallest pattern size and the
rightmost column corresponds to the largest pattern size.
This is similar for Figs. 7, 8, 9, 10, 11.

As shown in Fig. 6, the speed-up of FFT over FS is
independent of the noise level, while the speed-ups of the
other fast algorithms decrease as the noise level increases
from Gð1Þ to Gð4Þ, so that FFT turns out to be in most
cases the fastest method when the noise level is very high,
i.e., Gð4Þ in Fig. 6. At the lower noise levels, LRPsld is, in
most cases, the fastest algorithm, and quite close to the
fastest in other cases. FWHT turns out to be faster than
PGCK. This is because the actual number of computed bases
Nk is greater than five in this experiment, where FWHT is
faster than PGCK in computing the transformation. PGCK is
faster than PWHT in most cases because PGCK is more
efficient than PWHT in computing the transformation.
FWHT is faster than LRP when noise is low and pattern size
is small, especially when image size is large. When the
number of required basis vectors is large, LRP outperforms
FWHT in computing the transformation, which is proven in
Theorem 1. IDA performs well when pattern-size is 16�
16 and has similar performance as PWHT in other cases.

6.3 Experiment for Blurred Images

In this experiment, five different levels of Gaussian low
pass filter are used for blurring each image of the data sets
described in Table 8. The five blurring levels, which are
referred to as Bð1Þ, Bð2Þ, Bð3Þ, Bð4Þ, and Bð5Þ, correspond
to Gaussian low pass filter having standard deviation
� ¼ 0:2; 0:9; 1:6; 2:3; 3. Fig. 5 shows an image from the data
set in Table 8 distorted with blurring levels Bð1Þ to Bð5Þ,
where the distorted 640� 480 images have PSNR 27.79,

27.18, 25.36, 24.14, and 23.49, respectively, when compared
with the original image. In practice, blur is introduced by
changes of camera focus or by application of simple
denoising techniques.

The speed-ups in execution time using SSD for this
experiment are shown in Fig. 7. FFT, FWHT, and LRPsld

are the three fastest algorithms. FFT is the fastest for image
size 160� 120 with blurring levels Bð2Þ to Bð5Þ, and, for
image sizes 320� 240 and 640� 480 with blurring levels
Bð4Þ and Bð5Þ, FWHT is the fastest for data sets I4� T1
and I5� T2 with blurring levels Bð1Þ to Bð2Þ, and, for data
set I5� T1 with blurring levels Bð1Þ to Bð3Þ, LRPsld is the
fastest in other cases. FWHT is faster than PGCK; PGCK is
faster than PWHT. IDA is faster than PGCK for pattern size
16� 16 and has similar speed-up as PGCK in other cases.

6.4 Experiment for JPEG Compressed Images

In this experiment, five different JPEG compression
quality levels are used for encoding the original image
of the data sets described in Table 8. The JPEG compres-
sion quality levels, which are referred to as Jð1Þ, Jð2Þ,
Jð3Þ, Jð4Þ, and Jð5Þ, correspond to quality measure
QJPG ¼ 90; 70; 50; 30; 10, respectively

The speed-ups in execution time using SSD are shown in
Fig. 8. The performance of FFT algorithm is independent of
compression quality, while the speed-up of other fast
algorithms decreases as the image quality decreases from
Jð1Þ to Jð5Þ. We can see that almost all the algorithms
outperform the FFT algorithm, with an exception that
PWHT is outperformed by FFT in data sets I4� T4 and
I5� T4. PGCK and FWHT are the fastest or close to the
fastest in most cases for pattern size 16� 16 and 32� 32.
LRPcan and FWHT are the fastest in most cases for pattern
size 64� 64 and 128� 128.

6.5 Experimental Results When SAD Is Used

For the experiments in this section, speed-ups in execution

time are evaluated using SAD as the dissimilarity measure.

The perturbations correspond to those introduced in

Sections 6.2-6.4. Since the FFT approach cannot be applied

when SAD is used, it does not appear in the figures.
Fig. 9 shows the results for images with Gaussian noise.

IDA is the fastest for pattern size 16� 16, while LRPcan

and LRPsld are the fastest and have similar performance in

other cases.
The experimental results for low pass filter blurred

images in Fig. 10 show that the algorithms from the fastest

to the slowest for pattern size 16� 16 can be ordered as:

1. IDA,
2. LRPsld,
3. LRPcan,
4. LRPhier,
5. PGCK and FWHT,
6. PWHT.

The order for other pattern sizes is

1. LRPsld or LRPcan,
2. LRPhier,
3. IDA,
4. PWHT, PGCK, and FWHT,

136 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

Fig. 5. An image from the data set and its distorted images. First row:
The original image and its images with Gaussian noise levels Gð1Þ to
Gð4Þ; second row: images with blurring levels Bð1Þ to Bð5Þ; third row:
images with JPEG compression quality levels Jð1Þ to Jð5Þ.

2. Corresponding to 0.005, 0.01, 0.02, and 0.03 on normalized pixel
intensities ranging within ½0; 1�.

where LRPcan is the fastest for data sets I3� T3, I4� T2,

I4� T3, and I4� T4 with noise levels Bð1Þ and Bð2Þ, while

LRPsld is the fastest for other cases.
The experimental results for JPEG compressed images in

Fig. 10 show that IDA is the fastest for pattern size 16� 16.

IDA is also the fastest for quality levels Jð1Þ and Jð2Þ in all

data sets except that it is outperformed by LRPcan for Jð2Þ
in I3� T3 and I4� T4. Otherwise, when pattern size is

larger than 16� 16 and noise level is high, LRPcan is the

fastest in most cases.
In summary, IDA is the fastest in execution time when

pattern size is 16� 16, while LRPsld is the fastest in larger

pattern sizes for data sets with Gaussian noise and Gaussian

low pass filter. LRPcan is the fastest for large pattern size

and high noise level, while IDA is the fastest in other cases

for JPEG compressed images. The comparative performance

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 137

Fig. 7. Speed-ups in execution time for blurred images when SSD is used.

Fig. 6. Speed-ups in execution time for images with Gaussian noise when SSD is used. “I: 160� 120-T: 16� 16” corresponds to the 16� 16 pattern
sought in the 160� 120 image denoted as I1� T1 in Table 8.

of LRPsld, LRPcan, and IDA using SAD is similar to that
using SSD for the three noise types. PWHT, PGCK, and
FWHT are inefficient in the experiments when SAD is used
and perform better when SSD is used.

6.6 Analysis of the Experimental Results

The experimental results show some common properties of

the evaluated FS-equivalent algorithms. 1) With pattern

size fixed, the speed-ups over FS achieved by the fast

algorithms increase by less than 2 as image size J increases
by 4, e.g., from I2� T1 to I3� T1 and from I3� T1 to
I4� T1. 2) With image size fixed, the speed-ups increase
by about 2 to 4 as pattern size N increases by 4, e.g., from
I2� T1 to I2� T2. 3) The speed-up for IDA, PWHT,
PGCK, FWHT, and LRP decreases as the distortion level
increases, e.g., from Gð1Þ to Gð4Þ, because the difficulty in
efficiently rejecting mismatching windows for these algo-
rithms increases.

138 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

Fig. 8. Speed-ups in execution time for JPEG compressed images when SSD is used.

Fig. 9. Speed-ups in execution time for images with Gaussian noise when SAD is used.

PGCK is faster than LRP and FWHT for data sets

without noise in Figs. 3 and 4 and for data sets having low

noise and small pattern size in Figs. 8 and 11. LRP and

FWHT are faster than PGCK for most cases in Figs. 6, 7,

and 8. Analysis of these results is as follows: The

computational efficiency of FS-equivalent pattern matching

algorithms is dependent on two factors: 1) the rejection

power of lower bounds, which is dependent on the

tightness of the lower bound function, and 2) the cost of

computing lower bounds. As a comparison of LRP and

WHT: 1) WHT can obtain a tighter lower bound and thus

can reject more mismatched candidates compared to LRP

when the number of bases u is not a power of 2; and 2) LRP

is more and more efficient than WHT in computing

transformation as u is larger and larger according to

Theorem 1. The experiment in Fig. 12 is used as a example

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 139

Fig. 11. Speed-ups in execution time for JPEG compressed images when SAD is used.

Fig. 10. Speed-ups in execution time for blurred images when SAD is used.

to compare LRP and other algorithms using WHT. Fig. 12
shows the results on data set I2� T2, i.e., image size 320�
240 and pattern size 32� 32, with no noise and Gaussian
noise Gð2Þ. The execution time in Fig. 12 is measured on the
Env1 in Table 10. When the noise level is low, e.g., the no
noise case, upper left subfigure in Fig. 12, small u (less than
4) is sufficient for rejecting a large amount of candidates.
When u is small, LRP will not obviously outperform WHT
in computing the lower bound, while the tightness of the
lower bound becomes the main factor for computational
efficiency. As a result, WHT algorithms such as PWHT,
PGCK, and FWHT outperform LRP when the noise level is
low in Figs. 3, 4, 8, and 11, considering that the lower
bound for WHT is tighter than LRP when 1 < u < 4. PGCK
is more efficient than FWHT and PWHT when u < 4 in
Figs. 3, 4, 8, 11, and 12. On the other hand, as the noise level
increases, the rejection step requires more bases to reject
mismatched candidates. Taking the experiment in Fig. 12 as
an example, to have 2 percent remaining candidates, only
u ¼ 1 basis is required in the no noise case, while about
u ¼ 18 bases are required for Gð2Þ noise. As u and the noise
level increase, the rejection ability for different algorithms
is close, while the time required for the transformation
varies and becomes the main factor that influences the
computational efficiency. As illustrated in Theorem 1, the
larger u is, the more efficient LRP is compared with PWHT,
PGCK, and FWHT in computing the transformation. Thus,
LRP performs increasingly better compared with PWHT,
PGCK, and FWHT as the noise level becomes larger from
Gð1Þ to Gð4Þ in Fig. 6, from Bð1Þ to Bð5Þ in Fig. 7, or from
Jð1Þ to Jð5Þ in Fig. 8. Similarly, FWHT is faster than PGCK
and PWHT in pattern matching when the number of
computed bases is large because FWHT computes the
transformation faster.

LRPsld performs better than LRPcan as the noise becomes
larger from Gð1Þ to Gð4Þ, from Bð1Þ to Bð5Þ, or from Jð1Þ to
Jð5Þ. At loop k of the rejection step, LRPsld and LRPcan

require 3W and 3hðk�1ÞN ðkÞ
can additions, respectively, for

computing transformation. If the noise increases, then N ðkÞ
can

at loop k increases because the difficulty of rejection step in
rejecting candidate windows increases. As N ðkÞ

can increases,
the 3hðk�1ÞNðkÞ

can additions required by LRPcan increase while
the 3W additions required by LRPsld keeps unchanged.
Hence, LRPsld is increasingly more efficient than LRPcan in
computing the transformation and in computing the pattern
matching. Assume h ¼ 4, k ¼ 2, and an 16� 16 pattern is
searched in a 256� 256 image; we haveN ¼ 256, J ¼ 65;536,

and Nð1Þ
can ¼ W ¼ ð256� 16þ 1Þ2 ¼ 58;081. Assume N ð2Þ

can ¼
10 in the first example, then LRPsld requires 3W ¼ 174;243
additions and LRPcan requires 3hðk�1ÞNðkÞ

can ¼ 3� 4ð2�1Þ �
10 ¼ 120 additions in computing transformation at loop
k ¼ 2. Thus, LRPcan is more efficient than LRPsld in
computing transformation for this example. In this situation,
the rejection step is so efficient that N ð1Þ

can �Nð2Þ
can ¼ 58;071

mismatched candidates are eliminated at the first loop of k.
Situations similar to this example usually happenwhennoise
level is small. In the second example, assume Nð2Þ

can increases
from 10 in the first example to 11W=12 in this example, then
LRPsld requires 3W additions and LRPcan requires 3�
4ð2�1Þ � 11W=12 ¼ 11W additions for computing transfor-
mation in loop k ¼ 2. Thus, LRPsld is more efficient than
LRPcan in computing transformation for this example. In this
situation, the rejection step is so inefficient that only Nð1Þ

can �
Nð2Þ

can ¼ W=12 candidates are eliminated at the first loop of k.
Situations similar to this example usually happen when
larger noises are added.

LRPsld outperforms LRPhier in all experiments. LRPhier

computes transformation hierarchically and accesses mem-
ory in a jumping manner. LRPsld computes transformation
in sliding window manner and accesses memory continu-
ously. Therefore, LRPsld has less cache miss and is faster
than LRPhier.

6.7 Termination Strategy Comparison

In this experiment, we compare the proposed termination
strategy with the strategy in [28]. PGCK and FWHT are
used as the testing algorithms. SSD is used as the
dissimilarity measure. The images with JPEG compression
quality levels Jð1Þ to Jð5Þ as introduced in Section 6.4 for
the data sets in Table 8 are used as the testing data sets. The
speed-ups are average of the speed-ups in the environments
introduced in Table 10. The experimental results in Fig. 13
show that PGCK/FWHT using the proposed termination
strategy is faster than PGCK/FWHT using the strategy in
[28] when pattern size is larger than 16� 16.

7 DISCUSSIONS

7.1 Summary of the Evaluation Results

First, we consider execution time as the criterion when SSD
is used as the dissimilarity measure.

. For data set without noise, PGCK is the fastest.

. For data sets with Gaussian noise and blur, FWHT is
the fastest when pattern is small, image size is large,
and distortion level is low, FFT is the fastest when
distortion level is high, and LRPsld is the fastest in
other cases.

. For data sets with JPEG compression, PGCK and
FWHT are the fastest when pattern size is small or
distortion level is small, while LRPcan is the fastest in
other cases.

Second, we consider execution time as the criterion when
SAD is used as the dissimilarity measure.

. For a data set with Gaussian noise and Gaussian low
pass filter, IDA is the fastest in execution time when
pattern size is 16� 16, while LRPsld is the fastest in
larger pattern sizes.

140 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

Fig. 12. The percentage of remaining candidates as a function of the
number of bases (left column) and execution time (right column), when
no noise is added (upper row) and with Gaussian noise Gð2Þ (bottom
row). The experiment is done for data set I2� T2 in Table 8 on the PC
Env1 in Table 10.

. For JPEG compressed images, LRPcan is the fastest
for large pattern size and high distortion level, while
IDA is the fastest in other cases.

Table 11 summarizes the aforementioned results.

7.2 Miscellaneous Properties of the Evaluated
Algorithms

Although this paper mainly focuses on the computational
efficiency of the compared algorithms, we list the miscella-
neous properties of these algorithms so that suitable choice
of algorithm can be made for specific applications.

1. PWHT, PGCK, and FWHT can bemadeDC invariant,
while FS, IDA, FFT, and LRP currently cannot. DC
variation is a specific light change. This property of
PWHT is used in wide baseline image matching [14].

2. LRP, PWHT, PGCK, and FWHT can help deal with

multiscale pattern matching when the sizes of

candidate windows are the integer multiples of the

size of the pattern or vice versa, while FS, IDA, and

FFT currently cannot. PWHT and LRP can compute

transformation for windows having different scales

at the same timewhen the pattern is scaled by powers

of 2. As shown by the experimental result in [28],
when an 8� 8 pattern is sought within a image at

scales 8� 8, 16� 16, 32� 32 simultaneously, PWHT

can compute the transform for window sizes 8� 8,

16� 16, 32� 32 on the image simultaneously and the

remainingwindow is less than 2 percent after the first

projection. This property is utilized in [7].
3. Sometimes the pattern to be matched may not be

rectangular; the method proposed by Ben-Yehuda
et al. in [37] helps PWHT, PGCK, and FWHT to
deal with this problem by segmenting the pattern
into multiple dyadic components. The irregularity
of pattern will have no influence on FS, will have
small influence on IDA, and will have much
influence on algorithms FFT, LRP, PWHT, PGCK,
and FWHT that require input data size to be a � 2b
for a ¼ 1; 2; . . . ; b ¼ 1; 2;

8 CONCLUSION

In this paper, we have presented execution time evaluation

and computational complexity analysis of recent FS-
equivalent algorithms. The algorithms have been compared

considering different sizes of images and patterns in the
presence of Gaussian noise, image blur, and JPEG compres-

sion. Our experimental results clearly show how the fastest
algorithm is different under different conditions. None-

theless, experimental evidence also suggests that, overall,
LRP may be considered the best performing algorithm, for

it turns out to be the fastest in most cases. This nicely agrees
with Theorem 1, which provides a theory to analyze why

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 141

TABLE 11
Best Overall Algorithms for Measured Execution Times

for Different Disturbance Factors and Matching Measures

Fig. 13. Comparison of termination strategies for JPEG compressed images using SSD. PGCK and FWHT: Results using the proposed strategy;
PGCKHel�Or and FWHTHel�Or: results using Hel-Or and Hel-Or’s strategy in [28].

LRP is faster than other recent approaches that use WHT for
transform domain pattern matching in these cases.
Throughout the paper, we have discussed the motivations
underpinning the relative merits and limits of the con-
sidered algorithms under the different working conditions
so as to possibly inspire the development of new methods
in the active research field of fast full search equivalent
pattern matching.

ACKNOWLEDGMENTS

The authors wish to thank Professor Yacov Hel-Or and
Professor Hagit Hel-Or for providing their code imple-
menting GCK and WHT, Professor Antonio Torralba and
CSAIL at the Massachusetts Institute of Technology for the
use of the MIT database, Professor Rainer Koster and the
Institute for Clinical Radiology and Nuclear Medicine of
the Lukas Hospital Neuss for the use of the medical image
database, and NASA for the use of the remote sensing
image database, and the anonymous reviewers for many
constructive suggestions.

REFERENCES

[1] M.S. Aksoy, O. Torkul, and I.H. Cedimoglu, “An Industrial Visual
Inspection System that Uses Inductive Learning,” J. Intelligent
Manufacturing, vol. 15, no. 4, pp. 569-574, 2004.

[2] A.W. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-Based
Rendering Using Image-Based Priors,” Proc. IEEE Ninth Int’l Conf.
Computer Vision, vol. 2, pp. 1176-1183, 2003.

[3] T. Luczak and W. Szpankowski, “A Suboptimal Lossy Data
Compression Based on Approximate Pattern Matching,” IEEE
Trans. Information Theory, vol. 43, no. 5, pp. 1439-1451, Sept. 1997.

[4] R.M. Dufour, E.L. Miller, and N.P. Galatsanos, “Template
Matching Based Object Recognition with Unknown Geometric
Parameters,” IEEE Trans. Image Processing, vol. 11, no. 12, pp. 1385-
1396, Dec. 2002.

[5] W.T. Freeman, T.R. Jones, and E.C. Pasztor, “Example-Based
Super-Resolution,” IEEE Computer Graphics and Applications,
vol. 22, no. 2, pp. 56-65, Mar./Apr. 2002.

[6] A. Efros and T. Leung, “Texture Synthesis by Non-Parametric
Sampling,” Proc. IEEE Seventh Int’l Conf. Computer Vision, pp. 1033-
1038, Sept. 1999.

[7] C.M. Mak, C.K. Fong, and W.K. Cham, “Fast Motion Estimation
for H.264/AVC in Walsh Hadamard Domain,” IEEE Trans.
Circuits Systems for Video Technology, vol. 18, no. 6, pp. 735-745,
June 2008.

[8] Y. Moshe and H. Hel-Or, “Video Block Motion Estimation Based
on Gray-Code Kernels,” IEEE Trans. Image Processing, vol. 18,
no. 10, pp. 2243-2254, Oct. 2009.

[9] A. Buades, B. Coll, and J.-M. Morel, “A Non-Local Algorithm for
Image Denoising,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, vol. 2, pp. 60-65, June 2005.

[10] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image
Denoising by Sparse 3D Transform-Domain Collaborative Filter-
ing,” IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2080-2095,
Aug. 2007.

[11] R. Zhang, W. Ouyang, and W.K. Cham, “Image Deblocking Using
Dual Adaptive Fir Wiener Filter in the DCT Transform Domain,”
Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing,
pp. 1181-1184, Apr. 2009.

[12] Y. Alon, A. Ferencz, and A. Shashua, “Off-Road Path Following
Using Region Classification and Geometric Projection Con-
straints,” Proc. IEEE CS Conf. Computer Vision and Pattern
Recognition, vol. 1, pp. 689-696, June 2006.

[13] Y. Shina, J.S. Jua, and E.Y. Kim, “Welfare Interface Implementa-
tion Using Multiple Facial Features Tracking for the Disabled
People,” Pattern Recognition Letters, vol. 29, no. 13, pp. 1784-1796,
Oct. 2008.

[14] Q. Wang and S. You, “Real-Time Image Matching Based on
Multiple View Kernel Projection,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2007.

[15] X. Wu, “Template-Based Action Recognition: Classifying Hockey
Players Movement,” MS thesis, Univ. of British Columbia, 2005.

[16] D.G. Lowe, “Distinctive Image Features from Scale-Invarian
Keypoints,” Int’l J. Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[17] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of
Local Descriptors,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 10, pp. 1615-1630, Oct. 2005.

[18] H. Bay, T. Tuytelaars, and L.J.V. Gool, “Surf: Speeded up Robust
Features,” Proc. European Conf. Computer Vision, vol. 1, pp. 404-417,
2006.

[19] V. Lepetit and P. Fua, “Keypoint Recognition Using Randomized
Trees,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 28, no. 9, pp. 1465-1479, Sept. 2006.

[20] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local
Features and Kernels for Classification of Texture and Object
Categories: A Comprehensive Study,” Int’l J. Computer Vision,
vol. 73, no. 2, pp. 213-238, 2007.

[21] O. Pele and M. Werman, “Robust Real-Time Pattern Matching
Using Bayesian Sequential Hypothesis Testing,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 30, no. 8, pp. 1427-
1443, Aug. 2008.

[22] J.P. Lewis, “Fast Template Matching,” Proc. Vision Interface,
pp. 120-123, May 1995.

[23] L. Di Stefano and S. Mattoccia, “Fast Template Matching Using
Bounded Partial Correlation,” J. Machine Vision and Applications,
vol. 13, pp. 213-221, 2003.

[24] L. Di Stefano and S. Mattoccia, “A Sufficient Condition Based the
Cauchyschwarz Inequality for Efficient Template Matching,” Proc.
Int’l Conf. Image Processing, vol. 1, pp. 269-272, Sept. 2003.

[25] S. Mattoccia, F. Tombari, and L. Di Stefano, “Fast Full-Search
Equivalent Template Matching by Enhanced Bounded Correla-
tion,” IEEE Trans. Image Processing, vol. 17, no. 4, pp. 528-538, Apr.
2008.

[26] W.H. Pan, S.D. Wei, and S.H. Lai, “Efficient NCC-Based Image
Matching in Walsh-Hadamard Domain,” Proc. 10th European Conf.
Computer Vision: Part III, 2008.

[27] S.-D. Wei and S.-H. Lai, “Fast Template Matching Based on
Normalized Cross Correlation with Adaptive Multilevel Winner
Update,” IEEE Trans. Image Processing, vol. 17, no. 11, pp. 2227-
2235, Nov. 2008.

[28] Y. Hel-Or and H. Hel-Or, “Real Time Pattern Matching Using
Projection Kernels,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 9, pp. 1430-1445, Sept. 2005.

[29] B. Girod, What’s Wrong with Mean-Squared Error? Chapter 15, MIT
Press, 1993.

[30] S. Santini and R. Jain, “Similarity Measures,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 21, no. 9, pp. 871-883, Sept.
1999.

[31] A.J. Ahumada, “Computational Image Quality Metrics: A Re-
view,” Proc. Int’l Symp. Soc. Information Display, vol. 24, pp. 305-
308, 1998.

[32] M.G. Alkhansari, “A Fast Globally Optimal Algorithm for
Template Matching Using Low-Resolution Pruning,” IEEE Trans.
Image Processing, vol. 10, no. 4, pp. 526-533, Apr. 2001.

[33] F. Tombari, S. Mattoccia, and L. Di Stefano, “Full Search-
Equivalent Pattern Matching with Incremental Dissimilarity
Approximations,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 31, no. 1, pp. 129-141, Jan. 2009.

[34] G. Ben-Artz, H. Hel-Or, and Y. Hel-Or, “The Gray-Code Filter
Kernels,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.
29, no. 3, pp. 382-393, Mar. 2007.

[35] W. Ouyang and W.K. Cham, “Fast Algorithm for Walsh
Hadamard Transform on Sliding Windows,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 32, no. 1, pp. 165-171, Jan.
2010.

[36] G.J. VanderBrug and A. Rosenfeld, “Two-Stage Template
Matching,” IEEE Trans. Computers, vol. 26, no. 4, pp. 384-393,
Apr. 1977.

[37] M. Ben-Yehuda, L. Cadany, and H. Hel-Or, “Irregular Pattern
Matching Using Projections,” Proc. 12th Int’l Conf. Image Processing,
vol. 2, pp. 834-837, 2005.

[38] A. Goshtasby, 2-D and 3-D Image Registration for Medical, Remote
Sensing and Industrial Applications. Wiley, 2005.

[39] B. Zitova and J. Flusser, “Image Registration Methods: A Survey,”
Image Vision Computing, vol. 21, no. 11, pp. 977-1000, 2003.

142 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 1, JANUARY 2012

[40] W. Krattenthaler, K. Mayer, and M. Zeiler, “Point Correlation: A
Reduced-Cost Template Matching Technique,” Proc. IEEE First
Int’l Conf. Image Processing, vol. 1, pp. 208-212, 1994.

[41] K. Briechle and U.D. Hanebeck, “Template Matching Using Fast
Normalized Cross Correlation,” Proc. SPIE Optical Pattern Recogni-
tion XII, pp. 95-102, 2001.

[42] P.S. Heckbert, “Filtering by Repeated Integration,” Proc. ACM
SIGGRAPH ’86, pp. 315-321. 1986.

[43] P. Simard, L. Bottou, P. Haffner, and Y. Le Cun, “Boxlets: A Fast
Convolution Algorithm for Signal Processing and Neural Net-
works,” Proc. Conf. Advances in Neural Information Processing
Systems II, vol. 11, pp. 571-577, 1999.

[44] F. Tang, R. Crabb, and H. Tao, “Representing Images Using
Nonorthogonal Haar-Like Bases,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 29, no. 12, pp. 2120-2134, Dec. 2007.

[45] C.D. Bei and R.M. Gray, “An Improvement of the Minimum
Distortion Encoding Algorithm for Vector Quantization,” IEEE
Trans. Comm., vol. 33, no. 10, pp. 1132-1133, Oct. 1985.

[46] W. Li and E. Salari, “Successive Elimination Algorithm for Motion
Estimation,” IEEE Trans. Image Processing, vol. 4, no. 1, pp. 105-107,
Jan. 1995.

[47] H.S. Wang and R.M. Mersereau, “Fast Algorithms for the
Estimation of Motion Vectors,” IEEE Trans. Image Processing,
vol. 8, no. 3, pp. 435-438, Mar. 1999.

[48] O. Pele and M. Werman, “Accelerating Pattern Matching or How
Much Can You Slide?” Proc. Eighth Asian Conf. Computer Vision,
2007.

[49] W. Ouyang, R. Zhang, and W.K. Cham, “Fast Pattern Matching
Using Orthogonal Haar Transform,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2010.

[50] H. Schweitzer, R. Deng, and R.F. Anderson, “A Dual Bound
Algorithm for Very Fast and Exact Template-Matching,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 3,
pp. 459-470, Mar. 2011.

[51] http://sourceforge .net/projects/opencvlibrary, 2011.
[52] M.J. McDonnell, “Box-Filtering Techniques,” Computer Graphics

Image Processing, vol. 17, pp. 65-70, 1981.
[53] P. Viola and M. Jones, “Robust Real-Time Face Detection,” Int’l

J. Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
[54] Y.A. Geadah and M.J.G. Corinthios, “Natural, Dyadic, and

Sequency Order Algorithms and Processors for the Walsh-
Hadamard Transform,” IEEE Trans. Computers, vol. 26, no. 5,
pp. 435-442, May 1977.

[55] A. Torralba, http://people.csail.mit.edu/torralba/images, 2011.
[56] R Koster, www.data-compression.info/corpora/lukascorpus,

2011.
[57] NASA, http://zulu.ssc.nasa.gov/mrsid, 2011.
[58] Y. Hel-Or and H. Hel-Or, www.faculty.idc.ac.il/toky/software/

software.htm, 2011.

Wanli Ouyang received the BS degree in
computer science from Xiangtan University,
Hunan, China, in 2003. He received the MS
degree in computer science from the College of
Computer Science and Technology, Beijing
University of Technology, Beijing, China. He
received the PhD degree in 2011 and is now a
postdoctoral fellow in the Department of Electro-
nic Engineering, The Chinese University of Hong
Kong. His research interests include image

processing, computer vision, and pattern recognition. He is a member
of the IEEE.

Federico Tombari received the BEng, MEng,
and PhD degrees from the University of
Bologna in 2003, 2005, and 2009, respectively.
Currently, he is a postdoctoral researcher in
Computer Vision Lab, DEIS (Department of
Electronics, Computer Science, and Systems),
University of Bologna. His research interests
include computer vision and pattern recognition;
in particular they include stereo vision and 3D
reconstruction, object recognition, algorithms

for video-surveillance. He has coauthored more than 40 refereed
papers on international conferences and journals and he is a member
of the IEEE and IAPR-GIRPR.

Stefano Mattoccia received the Msc degree in
electronic engineering and the PhD degree in
computer science from the University of Bologna
in 1997 and 2002, respectively, where he is
currently an assistant professor on the Faculty of
Engineering, Department of Computer Science
and Systems. His research interests include
computer vision, especially 3D vision and
matching, and embedded computer architec-
tures for computer vision. In these fields he is

the author of more than 50 refereed articles and two patents. He is a
member of the IEEE, the IEEE Computer Society, IAPR, and the
Interest Group on 3D Rendering, Processing, and Communications of
the IEEE MMTC.

Luigi Di Stefano received the degree in
electronic engineering from the University of
Bologna, Italy, in 1989 and the PhD degree in
electronic engineering and computer science
from the Department of Electronics, Computer
Science, and Systems (DEIS) at the University
of Bologna in 1994. In 1995, he spent six months
at Trinity College Dublin as a postdoctoral fellow.
He is currently an associate professor at DEIS.
In 2009, he joined the Board of Directors of

Datalogic SpA as an independent director. His research interests
include computer vision, image processing, and computer architecture.
He is the author of more than 100 papers and five patents. He is a
member of the IEEE, the IEEE Computer Society, and the IAPR-IC.

Wai-Kuen Cham received the graduation de-
gree in electronics from The Chinese University
of Hong Kong in 1979. He received the MSc and
PhD degrees from Loughborough University of
Technology, United Kingdom, in 1980 and 1983,
respectively. From June 1984 to April 1985, he
was a senior engineer in Datacraft Hong Kong
Limited and a lecturer in the Department of
Electronic Engineering, Hong Kong Polytechnic
(now The Polytechnic University of Hong Kong).

Since May 1985, he has been with the Department of Electronic
Engineering, The Chinese University of Hong Kong. He is a senior
member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

OUYANG ET AL.: PERFORMANCE EVALUATION OF FULL SEARCH EQUIVALENT PATTERN MATCHING ALGORITHMS 143

