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Abstract—We examine the performance of a fuzzy genetics- is handled as an individual, called a classifier. Thus, this
based machine learning method for multidimensional pattern approach is referred to as a classifier system [24]. On the other
classification problems with continuous attributes. In our method, hand, the Pittsburgh approach [25] handles an entire rule set as

each fuzzy if-then rule is handled as an individual, and a fitness L ;
value is assigned to each rule. Thus, our method can be viewed as2" individual. All the above-mentioned methods [9]-[23] for

a classifier system. In this paper, we first describe fuzzy if-then generating fuzzy if-then rules and tuning membership func-
rules and fuzzy reasoning for pattern classification problems. tions are categorized as Pittsburgh approaches, in which a set
Then we explain a genetics-based machine learning method that of fuzzy if-then rules was treated as an individual. The Michi-

automatically generates fuzzy if-then rules for pattern classifi- gan approach was also used for generating fuzzy if-then rules
cation problems from numerical data. Because our method uses :

linguistic values with fixed membership functions as antecedent N [26]-{29], where each fuzzy it—then rule was treated as an
fuzzy sets, a linguistic interpretation of each fuzzy if-then rule individual (i.e., as a classifier). Thus, the rule generation meth-
is easily obtained. The fixed membership functions also lead to ods in [26]-[29] were referred to as fuzzy classifier systems.

a simple implementation of our method as a computer program. While various methods have been proposed for generating

The simplicity of implementation and the linguistic interpretation . . . .
of the generated fuzzy if—then rules are the main characteristic fuzzy it-then rules and tuning membership functions, only

features of our method. The performance of our method is & few methods are applicable to pattern classification prob-
evaluated by computer simulations on some well-known test lems. This is because the above-mentioned methods [9]-[23],

problems. While our method involves no tuning mechanism of [26]-[29] lie mainly in the domain of control problems and
membership functions, it works very well in comparison with ,nction” approximation problems. For pattern classification
other classification methods such as nonfuzzy machine learning bl Ab L 1301 [31 d | -
techniques and neural networks. problems, Abeet al. [_ 1, [31] proposed a rule gener_atlon
method and a rule tuning method in which each fuzzy if-then
rule was represented by a hyperbox in multidimensional pat-
tern spaces. Such a hyperbox was also used as a fuzzy
FUZZY rule-based systems have been successfully appligtthen rule in fuzzy min-max neural networks [32]. Neural
to various control problems [1], [2]. Fuzzy rules inhetworks were used as adaptive fuzzy classification systems in
these systems are usually derived from human experts [85]-[38]. Neural-network-based fuzzy systems usually have
linguistic if—then rules. Recently several approaches have b, |earning ability, but sometimes lose the comprehensibility
proposed for automatically generating fuzzy if—then rules frogy 72y if—then rules (i.e., lose the linguistic interpretation of
numerical data without domain experts (see, for examplgsqp rule).
[3]-[6]). Genetic algorithms [7], [8] have been widely used t the comprehensibility of fuzzy if~then rules by human

for generating fuzzy if-then rules and tuning membershipsers is a criterion in designing a fuzzy rule-based system,
functlc_)ns (se_e a survey by Carse al. [9])' For e_xample, a fuzzy partition by a simple fuzzy grid with pre-specified
genetic algorithms were used for generating fuzzy if—then ru'ﬁ?embership functions is preferable. An example of such a
in [10], [11], for tuning membership functions in [12]_[16]'fuzzy partition is shown in Fig. 1, where each axis of a two-

anq for. both the rule gen_eration_and the membership functigpy,ensjonal (2-D) pattern space is homogeneously partitioned
tuning in [9], [17]-[21]. Hierarchical structures of fuzzy rule-b five linguistic values (Ssmall MS: medium small M:

based systems were also determined by genetic algorithm#,&JIium ML: medium large and L: large). Ishibuchi et al.

[22], [23.]' . . 39] proposed a heuristic method for generating fuzzy if-then

_Genenc_s-based machlne_ Ie.arnmg r_net_hods for rule gen les for pattern classification problems using such a fuzzy
ation -faII Into two_categories: thg Mlch|gan approach an artition. Rule selection methods based on genetic algorithms
the Pittsburgh approach. In the Michigan approach, each rV\Ilgre proposed in [40], [41], wherein pre-specified membership
Wa'\garre“ézﬁ:iﬁ]te L%Zec;vsd :sr;rli)lciSét?s;:torrexiske(i nJ;enluary 30, 1999. This papfinctions were also used as in [39]. Of course, we do not have
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1.0 selection using genetic algorithms. Because their methods
generated all the candidate fuzzy if-then rules in the first stage,
we cannot directly apply their methods to multidimensional
pattern classification problems with many attributes. In this
paper, we propose a fuzzy classifier system to handle such
classification problems. The main aim of this paper is to clearly
AN 0.0 demonstrate that our fuzzy classifier system, based on pre-
b {8 0@4 specified linguistic values with fixed membership functions,
works well for well-known test problems involving many
0.0 x| 1.0 attributes (e.g., wine data with thirteen attributes and credit
Fig. 1. Example of fuzzy partition by a simple fuzzy grid with five|inguistica'.pprov{.;1I data with fourteen attributes). Through computer
values for each axis of the 2-D pattern spéel] x [0, 1]. simulations on such test problems, we show that our fuzzy
classifier system is comparable to other pattern classification
methods such as a genetics-based machine learning method

QXA

1.0

L . . .

I, with nonfuzzy if-then rules [42], back-propagation neural
ML networks [43] and the C4.5 algorithm [44]. This means that our

AT fuzzy classifier system can construct high performance fuzzy
M X .

2 """ rule-based systems that can be easily understood by human
MS users through linguistic interpretation.

DITIIIIIIIIIN A fuzzy rule-based system is constructed from a set of

0.0

labeled samples (i.e., labeled feature vectors). The constructed
don’t carc fuzzy rule-based system assigns a new feature vector to one of
0.0 x| 1.0 given classes. That is, fuzzy rule-based systems are applicable

' 3 to the same data set as nonfuzzy classification methods (e.g.,
Fig. 2. ' Example of fuzzy partition of the 2-D pattern spgeel] x [0.1]  peyral networks, decision trees, and statistical techniques).
with “don’t care’ as an antecedent fuzzy set. . ’ ! -

This means that fuzzy rule-based systems can be viewed as an

alternative to other classification methods. One advantage of

many input variables due to the curse of dimensionality (Se}ﬁzzy rule-based classification systems is their comprehensibil-

for example, [9]). That is, when we use the grid-type fuzzp{y' We can easily understand them because each fuzzy if-then

_parUUon, the tr;umberbof fl;z_zy n;—the_n b:uleg exponentllallyule is interpreted through linguistic values such amall
Incréases as the number of Input variables increases. n “Yarge.” High classification ability is another advantage of

paper, however, we use the grid-type fuzzy partition for pattef@zzy rule-based systems. These advantages are demonstrated
classification problems with many continuous attributes (e.%, this paper

13 attributes) because such a fuzzy partition maintains aNrpis paper is organized as follows. Section Il briefly ex-

|nherz]rent_b§|(_jvan;ca}ge of_ffutz12y ru:e-ba:/sved Sflter?f: the cg lains a fuzzy rule generation method with fuzzy grids and
prenensi ||ty 0 UZ.Z.y.'_t en’ ru es,. € tackle the curse fuzzy reasoning method for pattern classification problems.
dimensionality by utilizing tlon't caré’ as an antecedent fuzzySection Il explains each step of our fuzzy classifier system:

§et and generating oQIy a Sm"?‘” number of promising fuz eneration of an initial population, evaluation of each fuzzy
ft=then rules. by genetic operanons: The antecedent fuzzy. ®then rule, generation of new fuzzy if-then rules by genetic
fdorl['t caréh IS represebntedh.by ar|1 |nt§rvall-type me.;nb?rS?'Bperations, replacement of a part of the current population with
unction whose membership vaiue 1S always unity in hfﬁe newly generated fuzzy if-then rules, and termination of the
domain of each attribute value [41]. For example, if the domaéﬂgorithm. Section IV compares our fuzzy classifier system

of the ith _attnbutg (ie.,z;) is the unit mtervaI[O,ﬂl], th? with other classification methods by computer simulations
membersh]p function of the antecedent fuzzy skt care on well-known test problems. In Section V, we discuss why
can be written as ) our fuzzy classifier system works well while it involves no
Jietowtt care (1) = {17 if 0 < <1, (1) tuning mechanism of membership functions. In Section VI, we
0, otherwise suggest some directions to extend our fuzzy classifier system.
In Fig. 2, we show an example fuzzy partition that incorporatéection VIl concludes this paper.
with the antecedent fuzzy seddn’t care” A 2-D pattern space
is divided into five fuzzy subspaces by a fuzzy grid wittoh't I
care’ for the first axis (i.e.,z;) and the five linguistic values
for the second axis (i.ez2). From the comparison of Fig. 1
with Fig. 2, we can see that the introduction dbh'’t caré’ as
an antecedent fuzzy set reduces the number of fuzzy if-therLet us assume that our pattern classification problemcis a
rules. In fact, it also reduces the number of attributes (i.e., thiass problem in the-dimensional pattern spade, 1] with
number of antecedent conditions) in fuzzy if-then rules.  continuous attributes. We also assume thatreal vectors
The rule selection methods in [40] and [41] consisteR, = (xp1,%p2,---,%pn), P = 1,2,...,m, are given as
of two stages: rule generation using fuzzy grids, and ruteining patterns from the classes(c <« m). Because the

. RULE GENERATION AND FUzzY REASONING

A. Pattern Classification Problem
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pattern space i$0, 1]*, attribute values of each pattern are
xpi € [0,1] for p = 1,2,...;m and¢ = 1,2,...,n. An
example of such a pattern classification problem is shown in
Fig. 3 wherec = 2 (i.e., two-class problem); = 2 (i.e., 2-D
pattern space) angh = 40 (i.e., 40 training patterns).

B. Rule Generation

In our fuzzy classifier system, we use fuzzy if-then rules of
the following type for the:=-class pattern classification problem
with the n-dimensional pattern spade, 1]™:

603

o: Class 2
T O
o

®: Class 1

10[g—®

X, 0.5

0.0

Fig. 3. Two-class classification problem with the 2-D pattern space

Find Classh; that has the maximum value of
Bctass 1.(R;)

ﬁClass iLj (RJ) = MaX{ﬁClass 1 (Rj)7 ey /3Class C(RJ)}

()

If two or more classes take the maximum value,

Rule R;: If z1is Aj;; and ... andz, is A; o o]
then ClassC; with CF = CF, @ U
where Step 3
R; Label of thejth fuzzy if-then rule;
Aj1,..., Ay, Antecedent fuzzy sets on the unit interval
[0,1];
of Consequent class (i.e., one of the given
classes);
CF; Grade of certainty of the fuzzy if—then rule
R;.

It should be noted that the grade of certaif; is different
from the fitness value of each rule. The fitness value is used
in a selection operation of our fuzzy classifier system while
CF; is used in fuzzy reasoning for classifying new patterns.

As antecedent fuzzy sets, we use the five linguistic val-
ues in Fig. 1 and don’t care in Fig. 2. Thus, for then-
dimensional pattern classification problem, the total number
of fuzzy if—then rules ig5 + 1)™. It is impossible to use all
the (5 + 1)" fuzzy if—then rules in a fuzzy rule-based system
when the number of attributes (i.en) is large. Our fuzzy
classifier system searches for a set of a relatively small number
of fuzzy if-then rules (e.g., 60 rules).

In our fuzzy classifier system, the consequent clags
and the grade of certaintZF; of each fuzzy if-then rule
are determined by the following simple heuristic procedure
[39]-[41] when its antecedent fuzzy set¥;;,...,A;, are
specified by genetic operations.

[Determination of C; and CF;]

Step 1 Calculate the compatibility grade of each training

., Zpn) With the fuzzy

Step 4

the consequent class; of the fuzzy if-then rule
R; can not be determined uniquely. In this case,
let O; be ¢. If a single class (i.e., Claséj)
takes the maximum value, I&t; be Classh;. If
there is no training pattern compatible with the
fuzzy if—then ruleR; (i.e., if Bcrass n(R;) = 0 for

h =1,2,...,¢), the consequent class; is also
specified asp.
If the consequent clas§; is ¢, let the grade of

certainty CF; of the fuzzy if—then ruleR; be
CF; = 0. Otherwise the grade of certain9F;
is determined as follows:

CFj = {/3C1ass iL(RJ) - B} Z ﬁClass h(Rj) (6)

h=1

where
C

[: Z /3CIassh(Rj)/(c_1)'

h=1
Tl

(7)

patternx, = (zp1,zp2, .-

While the determination of the grade of certainty by

if~then rule ; by the following product operation: (6)—(7) seems to be a bit complicated at a glance, we can
3 see that this procedure is intuitively acceptable if we consider
(3) two-class classification problems (i.e.,= 2). For example,
wherep;; (z,;) is the membership function of,;.

when /3CIassl(Rj) > /3@13552(RJ’), Cj is Class 1 ancCFj is
Step 2 For each class, calculate the sum of the compaﬁ

pecified as
bility grades of the training patterns with the fuzzy
if-then rule R;

1 (Xp) = prjr(@p1) X -+ X prn(Tpn)

_ /3Class l(Rj) - /3C1aSSQ(Rj)

CF, = .
’ [3C1assl(Rj) + [3CIaSSQ(Rj)

(8)

ﬁClass h(Rj) = Z I/Lj(xp)7 h = 1,2,...,c In the case OfﬁClassl(Rj) = /3Cla552(Rj)7 Cj is (f) and
x,EClass b CF; = 0 because we can not specify the consequent €lass
(4) Using the pattern classification problem in Fig. 3, we il-

lustrate this rule generation procedure. If we use the fuzzy
where fciass . (R, ) is the sum of the compatibility partition by the 5x 5 fuzzy grid in Fig. 1, we can generate 25
grades of the training patterns in Classvith the fuzzy if-then rules as shown in the rule table in Fig. 4 where
fuzzy if-then ruleR;. C1 and C2 are consequent classes (i.e., Class 1 and Class 2,
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Py X1 S MS M ML L o: Class | o: Class 2
L Ci C1 C2 C2 C2 1.0rg—e CP L0
(1.00)  (0.86) (099 (1.00)  (1.00)
ML Cc1 C1 Cc2 C2 Cc2
(1.00) (074 (08D  (1.00)  (1.00)
M Cc1 Cl C2 C2 C2
(1.00) (094 (038 (1.00)  (1.00) Xy 0.5
MS Cc1 C1 C1 C2 Cc2
(1.00)  (1.00) (0.79) (0.80)  (1.00)
S Cc1 C1 C1 C2 Cc2
(1.00)  (1.00)  (0.85)  (0.63)  (1.00)
Fig. 4. Set of generated fuzzy if-then rules with thex55 fuzzy grid in 0.0

Fig. 1.

respectively), and each real number in parentheses denotesife- Classification boundary obtained by the 25 fuzzy if-then rules in
grade of certainty of the corresponding fuzzy if-then rule. Fig. 4.

Our fuzzy if-then rules with certainty grades are different
from standard ones that are usua”y used in control prob|e|$‘i§SSiﬁcati0n of that pattern is rejected. The classification is
and function approximation problems. The following tradialso rejected if no fuzzy if-then rule is compatible with the
tional type of fuzzy if—then rules is also applicable to pattediput patternx, (i.e., u;(x,) = 0 for YR; € S). This fuzzy

classification problems: reasoning method based on a single winner rule leads to
) i simplicity in the credit assignment algorithm in our fuzzy

Rule R;: If 1 is Aj; and ... andx, is 4; classifier system, as only one rule is responsible for the
theny, is B;; and ... andy. is Bj. (9) classification result of each input pattern. It is possible to

modify our fuzzy reasoning method to account for the situation

Whereyk_|s the possibility grade of the occurrence of Class when different classes have the same maximum value in (10),

and Bj;, is a consequent fuzzy set. Instead of the consequen ! . : ;

. .—and for when no fuzzy if-then rule is compatible with the

fuzzy setBj;, we can also use a singleton fuzzy set (i.e, . e e
i . . - Uihput patternx,,. After this modification, classification rates

a real numbe,) or a linear function of input values (i.e.,

b?k n b}k ~w1 4+ B - 2,). Antecedent fuzzy sets andOf fuzzy rule-based systems are improved because rejection

. . rates are decreased. At the same time, there is an increase in
consequent fuzzy sets (or real numbers, linear functions) can e .
: - . error rates. Thus, such a modification is promising when the
be adjusted based on training patterns in the same manper T
enalty of rejection is not small.

as in neural networks. In this paper, we use fuzzy f-the In Fig. 5, we show classification results by the fuzzy rea-

rules in (1) because they are simpler than those in (9). ngning method based on the single winner rule in (10). The

simplicity of fuzzy if-then rules is necessary for constructin o S
comprehensible fuzzy rule-based systems. The use of fuzgzlassmc"j1t|0n boundary in Fig. 5 was generated by the fuzzy

i—then rules in (1) also makes the credit assignment in O[Jur)(e-based system with the 25 fuzzy if-then rules in Fig. 4.
fuzzy classifier system straightforward. As we will show in
this paper, our fuzzy if-then rules with certainty grades in (1)

can generate nonlinear complicated decision boundaries eveln this section, we propose a fuzzy classifier system for

Ill. Fuzzy CLASSIFIER SYSTEM

if we use very simple antecedent fuzzy sets. automatically designing a fuzzy rule-based system for mul-
tidimensional pattern classification problems with many con-
C. Fuzzy Reasoning tinuous attributes. Our fuzzy classifier system is very simple

When the antecedent fuzzy sets of each fuzzy i-then rflVC08 B €S2 EEEELR B 2 SO S BRI
are given, we can determine the consequent class and .t 9 b y

grade of certainty by the heuristic rule generation procedu'Pe?he next section. Exten_smns of our fuzzy classifier system
in the previous section. Here we assume that we have alref\;'\\ﬂgl/ be discussed in Section VI.
generated a set of fuzzy if-then rules for a pattern classificatign
problem. Fig. 4 is an example of such a rule set. Let us denote
the set of fuzzy if-then rules we generate By Our fuzzy classifier system does not involve any compli-
An input patternx,, to the fuzzy rule-based system withcated tuning mechanism for membership functions. It is based
the rule setS is classified by a fuzzy reasoning method. lion the heuristic rule generation procedure in Section Il, basic
our fuzzy classifier system, we perform the fuzzy reasonirggnetic operations, and a simple credit assignment scheme.
via the single winner rule. The winner rulg; for the input Genetic operations such as selection, crossover and mutation
patternx, is determined as are used for generating a combination of antecedent fuzzy
sets of each fuzzy if-then rule. A rule’s consequent class and
1;(xp) - CF; = Max{p;(x,) - CF; | R; € S}. (10) certainty grade a)r/e determined by the heurist?c procedure in
That is, the winner rule has the maximum product of th@ection Il. The outline of our fuzzy classifier system is as
compatibility 1¢;(x,) and the grade of certain@F;. If more follows.
than one fuzzy if-then rule have the same maximum productStep 1 Generate an initial population of fuzzy if-then
but different consequent classes for the input patigrnthe rules;

Outline of Fuzzy Classifier System
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Step 2 Evaluate each fuzzy if-then rule in the currentuzzy reasoning method in Section II-C. As we have already

population; explained in (10), each pattern is classified by a single winner
Step 3 Generate new fuzzy if-then rules by genetic operule. Thus the credit assignment is very simple. In our fuzzy
ations; classifier system, we assign a unit reward to the winner rule
Step 4 Replace a part of the current population with thevhen a training pattern is correctly classified by that rule.
newly generated rules; After all the training patterns are examined, the fitness value
Step 5 Terminate the algorithm if a stopping condition isof each fuzzy if-then rule is defined as follows by the total
satisfied, otherwise return to Step 2. reward assigned to that rule
Each step of our fuzzy classifier system will be explained
in detail, along with a coding method of fuzzy if-then rules, fitnes¢R;) = NCP(R;) (11)

in the following sections.
wherefitnes§R;) is the fitness value of the fuzzy if-then rule

R;, andNCP(R;) is the number of training patterns that are

. correctly classified byR;. The fithess value of each fuzzy
Because the consequent cl'ass and the grade of Certa'_nt)l'f—othen rule is updated by (11) at each generation in our fuzzy

a fuzzy if-then rule are easily determined by the heuristg,ogiier system. While this credit assignment scheme seems

procedure in Section lI, only antecedent fuzzy sets are altet@tq 1,4 simple to handle real-world classification problems,

by genetic operations in our fuzzy classifier system. We dengig, s very well for well-known real-world test problems as

the five linguistic values in Fig. 1 andion’t care’ in Fig. 2 iy he shown in Section IV. An alternative credit assignment

by the following six symbols (i.e., 1, 2, 3, 4, 5, and #) in OULpeme with a misclassification penalty will be discussed in
fuzzy classifier system: Section VI.

B. Coding of Fuzzy If-Then Rule

S: small — 1, When more than one fuzzy if-then rule with the same
MS: medium small — 2, consequent class in the rule sgthave the same maximum
M: medium — 3, value in (10), we assume that the fuzzy if-then rule with the
ML: medium large — 4, smallest index;j is the winner. For example, suppose that
L: large — 5, Rs and Ry in the rule setS are fuzzy if-then rules with
DC: don't care — # the same antecedent and the same consequentffjeand

) ) Ry are the same fuzzy if-then rule). In this cage; and
Each fuzzy if-then rule can be denoted by a string of these $% always have the same maximum value in (10), dbg
symbols. For example, a string “1#3#" denotes the following the winner. This means that the reward is assigned only
fuzzy if-then rule for a four-dimensional pattern classificatiop, Rs. In this manner, only a single rule with the smallest
problem: index ; among duplicated fuzzy if-then rules can survive the
generation update in our fuzzy classifier system. Thus our
fuzzy classifier system implicitly prevents a population from
being dominated by homogeneous fuzzy if-then rules.

If z; is smallandz, is don’t careandzs is medium
andz, is don't carethen ClassC; with CF = CF;.

Because the conditions witld®dn't car€’ can be omitted, this

rule is rewritten as follows: . . .
E. Genetic Operations for Generating New Rules

If 2y is smalland s is medium In order to generate new fuzzy if-then rules, first a pair
then Class’; with CF = CF;. of fuzzy if—then rules is selected from the current population.
Each fuzzy if-then rule in the current population (i.e., in the
C. Initial Population rule setS) is selected by the following selection probability
Let us denote the number of fuzzy if—then rules in eacl?]ased on the roulette wheel selection with the linear scaling:
s ne population size) To constructan el popuiatdine,  P(Ry) = < MNeSS) eS8 (5)
' Pop Y Yo cstfitnes$R;) — fitness,;, (S)}

fuzzy if—then rules are generated by randomly selecting their
;ntefci\t;:‘de”r: fuiZfiy ietls fromngho?bﬁ’l? syrrgboEls Ck? rrersnpt? r:dimgvxt/ﬂerefitnes%nn(é‘) is the minimum fitness value of the fuzzy
€ ve Tinguistic values a care. L=ach symbol 1S 4 yhon rules in the current populatiofi.

randomly selected with the probability of 1/6. The consequentFrom the selected pair of fuzzy if-then rules, two rules are

e e S eI by he unfom crossover for (e aeceden uzy
Sets. The uniform crossover is illustrated in Fig. 6 for a five-

, dimensional pattern classification problem. It should be noted

D. Evaluation of Each Rule that only the antecedent fuzzy sets of the selected pair of fuzzy
Let us denote the set aW,., fuzzy if—then rules in the if-then rules are mated.

current population byS. In order to evaluate each fuzzy Each antecedent fuzzy set of the fuzzy if-then rules gener-
if—then rule in S, we classify all the given training patternsated by the crossover operation is randomly replaced with a
by the fuzzy rule-based system with the rule Setising the different antecedent fuzzy set using a pre-specified mutation
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® * Step 1 Generate an initial population ofV,,, fuzzy
[1f#]s]a]s] if—then rules by randomly specifying antecedent
(#[2]4a]1]#] fuzzy sets of each rule. The consequent class

X X2 X3 x4 %s X % X A and the grade of certainty are determined by the
heuristic procedure in Section II.

Step 2 Classify all the given training patterns by the
fuzzy if—then rules in the current population, then
calculate the fitness value of each rule by (11).

Step 3 GenerateV,.,, fuzzy if-then rules from the current
population by the selection, crossover and mutation
operations. The consequent class and the grade of
certainty of each fuzzy if-then rule are determined
by the heuristic procedure in Section Il

probability. This mutation operation is illustrated in Fig. 7. As Step 4 Replace the worstV,., fuzzy if-then rules with

Fig. 6. Uniform crossover for antecedent fuzzy setsiénotes a crossover
position).

*®
1232#»

X1 X2 X3 X4 X

Fig. 7. Mutation for antecedent fuzzy setsdenotes a mutation position).

in the crossover operation, the mutation operation is applied the smallest fitness values in the current population
to only the antecedent fuzzy sets. The consequent class and with the newly generated rules.

the certainty grade of each of the newly generated fuzzy Step 5 Terminate the iteration of the algorithm if the pre-
if—then rules are determined after the mutation by the heuristic specified stopping condition is satisfied, otherwise
procedure in Section Il. return to Step 2.

These genetic operations (i.e., selection, crossover, and
mutation) are iterated until a pre-specified number of fuzzy Numerical Example

if—then rules are newly generated. . - .
We applied our fuzzy classifier system to the pattern classi-

fication problem in Fig. 3. Because this pattern classification
problem has two attributes (i.er; and x3), we used fuzzy

A prespecified number of fuzzy if-then rules (s@.;) in  if—then rules of the following type:
the current population are replaced with the newly generated

rules by the genetic operations. In our fuzzy classifier system,R;: If z; is A;; andzy is A;2 then ClasC; with CF;.

F. Rule Replacement

the worst N, rules with the smallest fitness values are (13)
removed from the current population and the newly generated
fuzzy if-then rules are added. As the antecedent fuzzy sefs; and 4;,, we used the five

In order to generateV,, fuzzy if-then rules, the geneticlinguistic values in Fig. 1 and thelbn't care’ in Fig. 2. Thus
operations in the previous section are iteraféd, /2 times. the total number of fuzzy if-then rules & = 36. Our
That is, N;.;,/2 pairs of fuzzy if-then rules are selected fronproblem is to find a compact rule set with high classification
the current population in the selection operation, and two fuzggrformance from these 36 fuzzy if-then rules. It should be
if-then rules are generated from each pair by the crossoygited that the total number of rule sets is very large (i.e.,

and mutation operations. 236 =~ 6.9 x 10'° including an empty rule set) even for this
small-scale numerical example with only two attributes.
G. Termination Test In computer simulations, we applied our fuzzy classifier

We can use any stopping conditions for terminating the exg¥Stém to the pattern classification problem in Fig. 3 with
cution of our fuzzy classifier system. In computer simulationérious specifications of the population si3g.,,. Parameter

of this paper, we used the total number of generations askecifications used in the computer simulations are as follows:

stopping condition. The final solution obtained by our fuzzy
classifier system is the rule set with the maximum classification
rate for training patterns over all generations. That is, the final Crossover probability1.0

solution is not the final population but the best population. Mutation probability:0.1

Since the evolution is not based on the performance of anynymber of replaced rules in each populatiof, = 1
entire rule set but each rule in the Michigan approach including
our fuzzy classifier system, the final population is not always

the best rule set. In the Michigan approach, a single rule Ffom these parameter specifications, we can see that only

treated as an individual, and each population corresponds 92 fuzzy if—then rule was replaced at each generation (i.e.
rule set. On the contrary, the final population always includ% '

. ) : «ep — 1) and the algorithm was terminated after 1000
the best rule set in the Pittsburgh approach with an elitg ™ ) gor W !

rat in which " | tis treated individ Tenerations.
strategy, i which an entire rule set Is treated as an Individud.;y 1ation results are summarized in Table I. From Table I,

i we can see that all the training patterns in Fig. 3 can be
H. Algorithm correctly classified by six fuzzy if-then rules. The following
Our fuzzy classifier system can be written as the followingiles were generated by our fuzzy classifier system. Note that
algorithm. antecedent conditions withdbn't caré’ are omitted in the

Population sizeN,o, = 2,3,...,10

Stopping condition1000 generations
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TABLE | if—then rules have conditions on the second attritfute) as
SIMULATION RESULTS FOR ANUMERICAL EXAMPLE well as the condition on the first attribute. While the number
Population size _Classification rate of antecedent conditions of each fuzzy if-then rule differs, all
2 85.0% the fuzzy if-then rules can be handled in the same manner
3 92.5% in our fuzzy classifier system. This is becausiri't care
‘5‘ g;gzﬁ has a membership function (see (1) in Section I), just as the
6 100% other linguistic values do. For example, the compatibility of
7 100% an input patternx,, = (&1, x,2) With the first fuzzy if-then
8 100% rule is calculated from (3) as
9 100%
10 100% 1251 (Xp) = Hmedium small(-Tpl) X don’t care(-TpQ)- (14)
On the other hand, the compatibility with the second fuzzy
®:Class 1 0:Class 2 if—then rule is calculated as
1.0 N
.. [ ] O NQ(Xp) = NI]lediux1l(xpl) X Nsmall(pr)- (15)
] From (14) and (15), we can see that all the fuzzy if-then
X 051 o rules are handled in the same manner even if the number of
.' antecedent conditions of each rule is different.
00 hd e\ 00 ¢ V. PERFORMANCE EVALUATION
. 1.0

A. Performance for Training Data: Wine Classification Data

Fig. 8. Classification boundary obtained by the selected fuzzy if-then rules.In order to examine the performance of our fuzzy classifier
system for multidimensional pattern classification problems

following. with many continuous attributes, we used wine classification
data that consist of 178 samples with 13 continuous attributes

If 21 is medium smalthen Class 1 wittCF = 0.90 from three classes. We used the wine data because

If 2, is mediumandz is small 1) this data set is available from the University of Califor-
then Class 1 witlCF = 0.85 nia, Irvine, database (available via anonymous ftp from
If 21 is mediumandz, is medium small ftp.ics.uci.edu/pub/machine-learning-databgses

2) this data set has many continuous attributes;

then Class 1 witlCF = 0.79 ) ) o
3) simulation results of our fuzzy classifier system can

If «, is large then Class 2 witfCF = 1.0 be compared with reported results by another genetics-

If z; is medium largethen Class 2 witlCF = 0.87 based machine learning method in [42].

If £1 is mediumandzxs is medium large Corcoran and Sen [42] reported the following results of their
then Class 2 wittCE = 0.81. genetics-based machine learning system, which was based on

o _the Pittsburgh approach where each individual corresponds to
The classification boundary generated by these fuzzy if—thgrset of if-then rules (i.e., a rule set)

rules is shown in Fig. 8. In Fig. 8, all the training patterns are

correctly classified by much fewer fuzzy if-then rules (i.e., by Best classification ratet00%
six rules) than Fig. 5 (25 rules). The reduction of the number of Average classification rat€9.5%
fuzzy if-then rules was realized by the introduction dbh't Worst classification rate98.3%.

card’ as an antecedent fuzzy set. The effect dbfi't caré'
becomes much more significant in multidimensional pattefifhese results were classification rates obtained by ten indepen-
classification problems with many attributes. This will ba&ent trials where all the 178 samples were used as training data.
discussed in Section VI. Each trial was performed with 60 nonfuzzy if-then rules in
As shown in the above six fuzzy if-then rules, some rulesach individual (i.e., in each rule set), 1500 individuals in each
have two antecedent conditions while other rules have a singlgpulation, and 300 generations (i.&500 x 300 = 450 000
antecedent condition. The number of antecedent conditiange sets of 60 nonfuzzy if-then rules were examined in each
of each fuzzy if-then rule was automatically determined hyial).
our fuzzy classifier system from given training patterns. For We applied our fuzzy classifier system to the same data
example, we can see from Fig. 8 that an input pattern belorggt. As a preprocessing of the data set for our fuzzy classifier
to Class 2 if its first attributéz; ) is “large”. Thus, the fourth system, the domain of each attribute was linearly normalized
fuzzy if—then rule has only a single condition“ is large”.  to the unit interval0, 1]. By this preprocessing, the maximum
On the other hand, we do not know whether an input patteand minimum values of each attribute became 1 and O,
belongs to Class 1 or Class 2 when we know that its firstspectively. We also used this preprocessing for other data
attribute is ‘mediuni. Thus the second, third and last fuzzysets in computer simulations of this paper.
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Because the wine data have 13 continuous attributes, We e it crossover operation  —o— Without crossover operation
used fuzzy if-then rules of the following type in our fuzzy 10
classifier system:

80

Rj: If 1 is Ajl and ... anda:lg is Ajlg
then Class’; with CF;. (16)

60

40f%

As in the computer simulations in Section Ill, we used the

Classification rate (%)

five linguistic values and don't caré’ as antecedent fuzzy 20 &(
sets of each fuzzy if-then rule. The total number of possible 0 1 L f 1
fuzzy if-then rules is6!® = 1.3 x 10'°. The task of our 0 oo~ 200~ 300 400 500

. . . It Th f i
fuzzy classifier system is to find a compact rule set with high ¢ number of generations

classification performance from thes€ 6uzzy if-then rules. Fig. 9. Average classification rate of the current population at each gener-
In order to compare our fuzzy classifier system with thaiion.
genetics-based machine learning system in [42] with 60 non-

fuzzy if—then'rules, we aIso_ specified Fhe number of fuzz%,stem, we applied it to the wine data by specifying the
it—then rules in each population as 60 (i.8],c, = 60). The  ¢rossover probability or the mutation probability as zero. The
o_ther p_arameters were specified as follows in our compuigher parameters were specified in the same manner as in
simulations: the above computer simulations. The average classification
Crossover probability1.0 rate over ten trials with no crossover was 98.0% after 1000
generations. While this is almost the same as the 98.5%
average classification rate with both genetic operations, the
Number of replaced rules in each populatidfie, = 12 crossover operation has an effect on the search ability of our
Stopping condition1000 generations fuzzy classifier system. Open circles in Fig. 9 show the simu-
lation results by the fuzzy classifier system with no crossover

operation. The search ability was slightly deteriorated by

From these parameter specifications, we can see that 1@@@cifying the crossover probability as zero in Fig. 9. On the
rule sets of 60 fuzzy if-then rules were examined in our fuzather hand, the average classification rate over ten trials with

classifier system. It should be noted that the total number g mutation (i.e., with the zero mutation probability) was 3.6%
examined rule sets in our fuzzy classifier system (i.e., 10@fer 1000 generations. This is terribly bad in comparison with
rule sets) was much smaller than that in the genetics-basre 98.5% average classification rate by our original fuzzy
machine learning system in Corcoran and Sen (i.e., 450 Ofi@ssifier system with both genetic operations. From these

Mutation probability:0.1

rule sets)._ B _ observations, we can see that the search in our fuzzy classifier
~ We applied our fuzzy classifier system to the wine data ¥Jstem is mainly driven by the mutation operation.
times, and the following results were obtained: We also examined a variant of the crossover operation where

a pair of selected fuzzy if-then rules was mated only when
they had the same consequent class. When selected fuzzy
if—then rules had different consequent classes, a new pair of
Worst classification rate27.8%. fuzzy if-then rules was selected. In this manner, the selection
Rr cedure was modified so that a pair of selected fuzzy if-then

Best classification rate€29.4%
Average classification rat®8.5%

From the comparison of these results with the aforemention

results in [42], we can see that slightly inferior classificatioh. <> always had the same consequent class. We applied this

rates were obtained by our fuzzy classifier system with mu\c/ﬁ‘rlant of our fuzzy classifier system to the wine data. The

I . o
fewer rule set examinations (i.e., 1000 examinations) inhaverage classification rate over ten trials was 98.5% after 1000

the genetics-based machine learning system with 450 000 rﬁﬁeneratlons, which was the same as the result by our original

set examinations. This clearly demonstrates the ability of our?y classifier system.

fuzzy classifier system to efficiently search for a compact rule )
set with high classification performance. The above results By Performance for Test Data: Credit Approval Data
our fuzzy classifier systems can be drastically improved by In the previous section, we demonstrated the performance of
adjusting the grade of certainty of each fuzzy if—then ruleur fuzzy classifier system for training data. In this section, we
This will be discussed in Section VI. examine its performance for test data by computer simulations
In Fig. 9, we show how our fuzzy classifier system evolvedn credit approval data. The credit approval data, which
fuzzy if-then rules. Each closed circle in Fig. 9 shows thare also available from the University of California, Irvine,
average classification rate over the ten trials for the trainimjtabase, were used in Quinlan [44] for his C4.5 algorithm.
data at each generation. From Fig. 9, we can see that fftgés data set consists of 690 samples with 14 attributes from
average classification rate was rapidly improved from a vetyo classes. The performance of the C4.5 algorithm was
poor performance at the initial generation. evaluated by the ten-fold cross-validation in [44]. In the ten-
For examining the significance of each of the two genetfold cross-validation, all the given samples are divided into
operations (i.e., crossover and mutation) in our fuzzy classifien subsets of the same size (i.e., 69 samples in the case of the
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credit approval data). Then, nine subsets are used as trairgprithm, we can see that our fuzzy classifier system (86.7%
data and the other subset is used as test data. The ten-tdédsification rate) slightly outperformed the C4.5 algorithm
cross-validation consists of ten iterations of the performan{®5.8% best classification rate and 84.3% average classification
evaluation so that each of the ten subsets is used as test dati@) for the credit approval data.
just once.

In [44], the following results were reported as the perfore, Performance for Test Data: Glass Data

mance of the C4.5 algorithm for test data (see [44, Table IX- Our fuzzy classifier system was also applied to the glass data

). that consist of 214 samples with nine continuous attributes

Best classification rate among various parameter from six classes. This data set is also available from U.C.
Irvine database. This data set is one of 16 data sets used in

[45] for examining the performance of his 1R algorithm and

Quinlan’s C4 algorithm [46]. A random subsampling technique

specifications84.3% was used in [45] for evaluating the performance of 1R and C4

Worst classification rate among various parameter ~ for test data. In his computer simulations, 2/3 of the given
specificationss2.5%. samples were used as training data and the other 1/3 samples

were used as test data. In Holte [45], this random split of the

As in [44], we also used the ten-fold cross-validation fogiven data was iterated 25 times, and the following results for
evaluating the performance of our fuzzy classifier system ftest data were reported (see [45, Table IlI]).
test data. Because the result of the ten-fold cross-validation o
may depend on the partition of the given data set into ten sub-  Classification rate for test data by 153.8%
sets, we independently performed the ten-fold cross-validation Classification rate for test data by O2B.2%.

20 times using different partitions of the given data set (i.e., . i ,
our fuzzy classifier system was employed:;200 times in this Using the same random sub-sampling tech_mque, we eval-
computer simulation). Our fuzzy classifier system was slightfpted the performance of our fuzzy classifier system for
modified to handle discrete attributes in the credit approv@St dat@. We used the same parameter specifications as in
data. For example, the first attribute of the credit approvl€ computer simulations for the credit approval data. The
data has only two attribute valuds, 1}. Thus we used only following cIaSS|f|_cat|on rates for test data were obtained by
the three antecedent fuzzy setsall’, “large” and “don’t our fuzzy classifier system for the glass data.
care’ for the first attribute because the other antecedent fuzzy Classification rate for test daté.4%
sets such as “medium” have no compatibility with the two
attribute values{0,1}. From the same reason, we use only .
the four antecedent fuzzy setsmall’, “mediuni, “large’ Reject rate for test dat&.0%.
and ‘don’t caré’ for the fourth attribute with three attribute . .
. From the comparison of these results with the above-
values{l,2,3}. It should be noted that those attribute values _ .

. . mentioned results of 1R and C4, we can see that our fuzzy
were normalized by the preprocessing procedure of our fuzg
classifier system t40.0,0.5,1.0}, respectively.

In each trial of the ten-fold cross-validation, the best rul
set with the maximum classification rate for training data w . I
selected to evaluate its performance for test data. Our fuzzy Performance for Test Data: Appendicitis Data
classifier system was applied to the credit approval data withWeiss and Kulikowski [47] examined the performance of
the following parameter specifications. various nonfuzzy classification methods by the leaving-one-

i i i _ out procedure for appendicitis data. The same data set was
Population sizeNpop = 100 (i.e., 100 fuzzy it-then rules) 554 ysed in [48] for evaluating the performance of various
Crossover probability1.0 fuzzy classification methods by the ten-fold cross-validation.
Mutation probability:0.1 The appendicitis data set consists of 106 samples with seven

attributes from two classes (for details, see [47]). The fol-
lowing results were reported in [47] as the performance of
ten nonfuzzy classification methods such as statistical pattern
From 20 independent iterations of the ten-fold crosgecognition methods, neural networks and machine learning

validation, the following average results were obtained fépethods (see [47, Fig. 6.4]).

specifications’85.8%
Average classification rate over various parameter

Error rate for test dateé35.6%

Wssifier system outperformed the 1R algorithm and was
céomparable to the C4 algorithm for the glass data.

Number of replaced rules in each populatidfy., = 20
Stopping condition1000 generations

test data. Best classification rate for test data among
Classification rate for test dat86.7% ten methods&89.6%
Error rate for test datat3.2% Average classification rate for test data over
Reject rate for test dat@:1%. ten methods&84.3%

While the test condition of these results is not exactly the Worst classification rate for test data among

same as that of the above-mentioned results by the C4.5 ten methods73.6%.
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These results were obtained in [47] after carefully tuninfhese results were obtained from four trials of a random

parameter values for each method. sub-sampling procedure with 70% training patterns and 30%
On the other hand, Grabisch and Nicolas [48] reported thest patterns after carefully tuning parameter values for each

following results as the performance of six fuzzy classificatiomethod.

methods such as a fuzzy nearest neighbor method and Grabisch and Dispot [49] reported the following results as

fuzzy pattern matching methods with various criteria (see [4e performance of nine fuzzy classification methods (see [49,

Table 1V]). Table 5]).
Best classification rate for test data among Best classification rate for test data among
six methods=®7.7% nine methods68.0%
Average classification rate for test data over Average classification rate for test data over
six methods=’4.6% nine methods60.6%
Worst classification rate for test data among Worst classification rate for test data among
six methods79.2%. nine methods55.9%.

These results were obtained by the ten-fold cross-validatidRese results were obtained from the two-fold cross-validation
after carefully tuning parameter values for each method. after carefully tuning parameter values for each method.

Using the |eaving_0ne_0ut procedure as in [47], we exam- USing the ten-fold cross-validation, we examined the perfor-
ined the performance of our fuzzy classifier system with tHgance of our fuzzy classifier system with the same parameter
same parameter specifications as in the cases of the créBRcifications as in the previous computer simulations (i.e.,
approval data and the glass data (i.e., we did not customi¥h no customized parameter tuning for this test problem).
the parameter values for each test problem in our fuzZje following results were obtained as the performance of
classifier system). The following results were obtained as tR&r fuzzy classifier system for test data from ten independent
performance of our fuzzy classifier system for test data.  trials of the ten-fold cross-validation:

Classification rate for test datad.9% Classification rate for test datéd.0%
Error rate for test datal3.2% Error rate for test data25.9%
Reject rate for test datd:9%. Reject rate for test data.1%.

From the comparison of these results with the aforemen-\Ve can see from this result that our fuzzy classifier system
tioned results of the other classification methods. we C(jjt':ﬁcomparable to the other classification methods with carefully

see that our fuzzy classifier system was comparable to ffged parameter values examined in [47] and [49]. Since the
[ﬁzt condition (ten-fold cross-validation) of this result is not

other classification methods with carefully tuned paramet . . . 0
values. In fact, the 84.9% classification rate obtained by offje same as Weiss and Kulikowski (30% test patterns) and

fuzzy classifier system is larger than or equal to those by s%{abiSCh and Dispot (two-fold cross—va_ll?dat_ion), we do ngt
nonfuzzy classification methods such as the nearest neighBgprously compare our average classification rate (74.0%)
method (classification rate: 82.1%). The classification rafdth the reported results (e.g., the backpropagation algorithm:
by our fuzzy classifier system is also larger than those 5% and the qearest neighbor method: 65.3%).

two fuzzy classification methods such as the fuzzy patternecently, Grabisch [50] reported good results by three fuzzy

matching with the arithmetic mean operator (classification raf8tedral classifiers (i.e., classification methods based on fuzzy
80.2%). integrals) for the cancer data. The following results were

reported in Grabisch by the fuzzy integral classifiers trained
with the quadratic criterion (QUAD), and the generalized
guadratic criterion minimized by the constrained least mean

Cancer data were used in [47] and [49] for evaluatingquares algorithm (CLMS) or the heuristic least-mean-squares
various classification methods. The cancer data set consistggorithm (HLMS):

286 samples with nine attributes from two classes (for details,

E. Performance for Test Data: Cancer Data

see [47]). The following results were reported in [47] as the Classification rate by QUADGS.5%
performance of ten nonfuzzy classification methods (see [47, Classification rate by CLMS72.9%
Fig. 6.6]). Classification rate by HLMS77.4%.
Best classification rate for test data among These results were obtained by the ten-fold cross-validation.
ten methods77.1% We can see from these results that the performance of our fuzzy
Average classification rate for test data over classifier system is better than the first two versions of the

fuzzy integral classifiers. The performance of the fuzzy integral

S classifier with the HLMS algorithm (i.e., 77.4% classification

Worst classification rate for test data among rate) outperforms our fuzzy classifier system and all the results
ten methods65.3%. reported in [47] and [49].

ten methods70.9%
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TABLE I TABLE V
SIMULATION RESULTS WITH VARIOUS POPULATION SIZES SIMULATION RESULTS WITH VARIOUS SPECIFICATIONS
OF THE NUMBER OF REPLACED RULES

Population size Classification rate

20 98.2% Replaced rules Classification rate
40 98.3% 3 97.7%
60 98.5% 6 98.5%
80 98.7% 12 98.5%
100 98.8% 18 98.7%
200 99.0% 24 98.8%
30 98.7%
TABLE 11l
SIMULATION RESULTS WITH VARIOUS CROSSOVERPROBABILITIES TABLE VI

CPU TiME FOR EACH TEST PROBLEM

Crossover probability Classification rate

0.5 08.5% Data set Samples Attributes CPU Time
0.6 98.6% Wine 178 13 3.7(min.)
0.7 98.7% Credit 690 14 25.8(min.)
0.8 98.6% Glass 214 9 6.3(min.)
0.9 98.7% Appendicitis 106 7 2.8(min.)
1.0 98.5% Cancer 286 9 8.3(min.)
TABLE IV TABLE VIl
SIMULATION RESULTS WITH VARIOUS MUTATION PROBABILITIES SIMULATION RESULTS WITH DIFFERENT ANTECEDENT FuzzYy SETS
Mutation probability Classification rate Number of fuzzy sets 3 4 5
0.01 97.8% uscd for each attribute
0.02 98.4% Classification rate 84.9% 80.2% 84.9%
0.05 98.4% Error rate 15.1% 16.0% 13.2%
0.10 98.5% Reject rate 0.0% 38% 19%
0.20 98.8%
0.50 95.2%

143 MHz, 32 MB RAM, and Sun OS 5.5). Our fuzzy classifier
system was coded as a computer program using C language.
From Table VI, we can see that our fuzzy classifier system
In the previous computer simulations for evaluating thgoes not require long computation time even if it is applied to
performance of our fuzzy classifier system for test data, wga|-world pattern classification problems with many attributes.
used the same parameter specifications for the four differetiis clearly shows the applicability of our fuzzy classifier
data sets (i.e., credit approval, glass, appendicitis, and cancgyr)stem to real-world pattern classification problems.
The simulation results in the previous sections demonstratedye also examined the effect of antecedent fuzzy sets on
that our fuzzy classifier system with the common parametgje performance of our fuzzy classifier system. Instead of
specifications has high classification performance for the foge five fuzzy sets in Fig. 1, we used three fuzzy sets and
data sets. This implicitly shows that our fuzzy classifier systegg fuzzy sets. In both cases, each axis of pattern spaces
does not require fine parameter tuning. was homogeneously partitioned into triangular fuzzy sets in
In order to show the robustness of our fuzzy classifighe same manner as in Fig. 1. Our fuzzy classifier system
system with respect to parameter specifications, we shQWh the three fuzzy sets anddén't care’ was applied to
simulation results with different parameter values. For the wiqge appendicitis data for evaluating its performance for test
data, we performed computer simulations by changing oggta by the leaving-one-out procedure in the same manner
of the four parameter values (i.e., population size, Crosso§ in Section IV-D. The four fuzzy sets andon’t care
probability, mutation probability, and the number of replaceglere also examined in the same manner. Simulation results
rules). The other parameters were specified in the same margier summarized in Table VIl where the previous result with
as in Section IV-A. Simulation results obtained by ten trials fafe five fuzzy sets is also shown. From this table, we can see
each parameter specification are summarized in Tables liqMat the performance of our fuzzy classifier system is not very

From these tables, we can see that our fuzzy classifier systgfsitive to the choice of antecedent fuzzy sets.
works well in a wide-range of parameter values.

Computation time is a very important criterion as well as
classification performance when we choose a classification
method to be applied to real-world problems. We examined
the CPU time of our fuzzy classifier system by using all the We have already demonstrated that our fuzzy classifier
given samples in each data set as training data. In Table $ystem has high classification ability while it involves no
we show the CPU time for each data set required for a sindgéarning mechanism of membership functions. In the computer
trial until 1000 generations with 100 fuzzy if-then rules. Theimulations of the previous sections, we did not use any expert
CPU time was measured by a workstation (with Ultra SPARKhowledge for specifying the membership function of each

F. Parameter Specifications and Computation Time

V. CHARACTERISTIC BEHAVIOR
OF Fuzzy CLASSIFIER SYSTEM
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Fig. 10. Fuzzy partition with four fuzzy if-then rules. 1.0 1.0
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antecedent fuzzy set, either. We simply used the homogeneous
e . . X3 0.5 X5 0.5

fuzzy partition for each axis of the pattern space. In this

section, we discuss why our fuzzy classifier system with such

Class 3

simple specifications worked well for the real-world pattern (3?‘55 ! 0.7) Cl?(sff)

classification problems with many attributes. 0.0 0.5 1.0 0.0 0.5 1.0
X, X1

A. Classification Boundary (c) (d)

If we use a crisp partition for each axis of the patterﬁig- 11. Classification boundary generated by the four fuzzy if-then rules
. . . . . _in Fig. 11. Real numbers in parentheses denote the grades of certainty of the
space as in many machine learning techniques, classificaiQf " if.en rules. In (d)CF, = CFs = 0.

boundaries between different classes are usually parallel to the
axes of the patte_r.n space (for example, see [.44’ ch. 10]). Wh(.SIF our fuzzy classifier system. That is, while our fuzzy
](c)ur tf_uzzy clzstsr:fler _syslterp emplo_)(/js the J'Xed _meg_"befh&'f’assiﬁer system involves no tuning mechanism of membership
unctions a? € 5|m|Te $_22¥_ g”b asds anbm '9. t nctions, it can generate complicated classification boundaries
can generate various classification boundaries because 1 Feans of the heuristic specification of the grade of certainty
the fuzzy reasoning method that takes into account the gr Seach fuzzy if-then rule. From Fig. 11(b)—(d), we can see
of Ii:ertal.ntyl_ofteaihdfluzzy I_f—thelntrule. that h that the classification boundaries generated by fuzzy if-then
or sImplicily ol discussion, et us assume that We hayg.q 5ve not always parallel to the axes of the pattern space.
only the following four fuzzy it-then rules generated by th%’his is one characteristic feature of the fuzzy rule-based

fuzzy partition in Fig. 10: classification in comparison with other methods based on
Ry If z; is smallandzs is smallthen Classl nonfuzzy if-then rules. From Fig. 10, we can see that the
with CF = CF,, four fuzzy if-then rules with different consequent classes
) _ overlap one another. Such overlap plays an important role
Rot If zy is smalland; is large then Class2 in generating various classification boundaries in Fig. 11.
with CF = CF, The overlap of multiple fuzzy if-then rules with different
Rs: If z; is large and z» is smallthen Class3 consequent classes is another characteristic feature of the fuzzy

rule-based classification. The conflict is automatically resolved

with CF = CF
) . > . through the membership functions of antecedent fuzzy sets and
Ry: If 2, is large andz; is large then Class the grade of certainty of each fuzzy if-then rule.

When these four fuzzy if-then rules have the same grade%f Effect of "Don’t Care” Attribute

certainty (e.g.CF; = 1.0 for j = 1,2,3,4), the classification As we have already mentioned in Section lll, the use of
boundary is very simple as shown in Fig. 11(a) where eacHon't car€' as an antecedent fuzzy set has a significant effect
real number in parentheses denotes the grade of certainty of@Rethe performance of our fuzzy classifier system. In order to
corresponding fuzzy if-then rule. Various classification boun@lemonstrate the importance addn't care’ as an antecedent
aries, however, can be generated as shown in Fig. 11(b)-{égzy set, we applied our fuzzy classifier system withaldri’t
by assigning different grades of certainty to the fuzzy if—the¢ar€’ to the wine classification problem. That is, we used
rules. In Fig. 11(b)—(d), the certainty grade of each fuzA@nly the five linguistic values in Fig. 1 as antecedent fuzzy
if—then rule is shown as a real number in parentheses asSqis. Simulation results by our fuzzy classifier system over ten
Fig. 11(a). There is no region of Class 2 in Fig. 11(d) becauli&als are as follows.
we specified the grade of certainGF; of the corresponding Average classification rate obtained
fuzzy if-then ruleR, asCF; = 0 in this figure. As shown in . ,

. o I without don’t care 64.5%.
Fig. 11, our fuzzy classifier system has the ability to generate S )
complicated classification boundaries while each fuzzy if-then Average classification rate obtained
rules is very simple. This is one reason of high performance with don't care 98.5% (see Section IV-A)
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10 While we demonstrated the positive effect afoh’t care’
S cessane on the performance of fuzzy if-then rules by computer sim-
v 80 /F /P— ulations, it may have a negative effect at the same time. A
E 60 fuzzy if—then rule with Hon't care’ attributes can extend the
kS 4 e inital probibility ofdont care 09 || region of its consequent c_Iass beyond where there are training
w5 / e Initial probability of don # care: 0.5 data. This may cause the increase of the error rate for test data.
% 20 7 —a—Initial probability of don t care: 0.1 | Wh|]e our fuzzy classifier systgm does not h:?\ve any safeguard
7 . . . . against such over-generalization, the negative effect was not
K0 100 200 300 400 500 clear in computer simulations of this paper. The inclusion of a
The number of generations misclassification penalty in the fitness function can be viewed

as a safeguard against the over-generalization of fuzzy if-then
rules. This will be discussed in the next section.
The introduction of ton't care’ has also a large effect on

Fig. 12. Average ratio ofdon't caré’ at each generation.

PR gwwe s Siamae | the comprehensibility of generated fuzzy if-then rules. As
£ 80 bl shown in Fig. 12, about 85% of antecedent fuzzy sets were
§ /“ “don’t car€ in the generated fuzzy if—then rules for the wine
§ 60 /t data. This means that each of the generated fuzzy if-then rules
E 40 —o—Initial probability of don’r care: 0.9 |— has only a few antecedent conditions. Short fuzzy if-then rules
z /“ —e—Tnitial probability of don’t care: 0.5 with a few antecedent conditions can be understood by human
[ 20/ —4—Initial probability of don't care: 0.1 [ user much easier than long rules with many conditions.

The use of general fuzzy if-then rules with mangoh't

[ [ 1 ]
0 100 200 300 400 500

. care’ conditions was also discussed in Bonarini [51] where
The number of generations

fuzzy classifier systems were employed for designing fuzzy
Fig. 13. Average classification rate at each generation. logic controllers. Ishibuchi and Murata [52] demonstrated that
the introduction of tion’t caré’ decreased the number of fuzzy

From the comparison between these two results, we darthen rules in fuzzy rule-based classification systems whose
see that the performance of our fuzzy classifier system waitecedent fuzzy sets were trained by a genetic algorithm in
significantly deteriorated when we did not usiot't care’ as  the framework of the Pittsburgh approach. Fuzzy switching
an antecedent fuzzy set. functions with ‘don’'t car€ conditions were discussed in

In order to examine the effect otddn't care’ further, we [53]-[55] for concise function representation, data reduction
monitored the number ofdon’t care’ at each generation in and error correction.
computer simulations on the wine data. We applied our fuzzy
classifier system to the wine data using three different initial VI
populations of 60 fuzzy if-then rules. Three initial populations . . .
were generated by assigninddn't care' to each antecedent  VVe have already explained the simplest version of our fuzzy
fuzzy set with the probability of 0.1, 0.5, and 0.9, respectivel§/assifier system in the previous sections. In this section, we

In Fig. 12, we show the ratio ofdon’t care’ to 13 x 60 suggest some directions to extend our fuzzy classifier system.
antecedent fuzzy sets of 60 fuzzy if—then rules at each gener-
ation. Fig. 12 is the average result over ten trials. From thfs Misclassification Penalty
figure, we can see that the ratios afoh't care’ approached  |n our fuzzy classifier system, each fuzzy if-then rule
the same value in these three conditions while the initial rati%ceives a unit reward when it Correcﬂy classifies a training
were different. In Fig. 13, we show the corresponding resulsattern. Thus fuzzy if-then rules that correctly classify many
about classification rates at each generation. From this figuiigining patterns receive a large amount of reward. Now let
we can see that the initial classification rates were relativalg consider a fuzzy if-then rule that correctly classifies 20
high when the initial ratios ofdon’t care’ were high. training patterns and misclassifies ten training patterns. In this

The effect of ton't caré’ can be also explained from thecase, a high fitness value is assigned to this fuzzy if-then
point of view of the covered area by each fuzzy if-then ruleyle (i.e., fitnes§R,) = 20) while it also misclassifies many
For example, a fuzzy if-then rule withsthall’ for all the training patterns. In our fuzzy classifier system, such a fuzzy
13 attributes of the wine data can cover only (1749f the it_then rule survives the generation update because of its high
13-dimensional (13-D) pattern space because the antecedghéss value.
fuzzy set ‘small’ only covers 1/4 of each axis (see Fig. 1). Such a fuzzy if-then rule can be removed during the
Thus we can see that such a fuzzy if-then rule can cover ogl¥neration update by introducing the misclassification penalty.
a very small area in the pattern space. The area covered|lY ys denote the penalty for the misclassification of a single
each fuzzy if-then rule is enlarged by introducirdpt’t car€'  training pattern bytwe,o;. Using the misclassification penalty,

as an antecedent fuzzy set. For example, a fuzzy if-then rgi@ fitness value of each fuzzy if-then rule in (11) is modified
with “small’ for two attributes and don’t care’ for the other gs follows:

11 attributes of the wine data can cover 1/16 of the 13-D
pattern space. fitnes§R;) = NCP(R;) — Werrror - NMP(R;)  (17)

. EXTENSIONS
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TABLE VIl 100y
SIMULATION RESULTS FORTRAINING DATA I
X
WITH VARIOUS MISCLASSIFICATION PENALTIES < 80
s
Penalty Classification rate  Error ratc  Rcject rate o 60
0 81.9% 18.1% 0.0% % i —e—Hybrid algorithm
1 85.2% 142%  0.6% & 40 yone seort
2 84.3% 12.8% 2.9% Z _>~Original algorithm
5 82.4% 14.3% 33% g 20
10 82.2% 15.0% 2.8% , , \ \
20 82.0% 14.7% 3.3% % 100 200 300 400 500
The number of generations
TABLE IX Fig. 14. Simulation results by the hybrid algorithm.

SIMULATION RESULTS FORTEST DATA WITH
V ARIOUSMISCLASSIFICATION PENALTIES

B. Learning of the Grade of Certainty

Penalty  Classification Error rate Reject rate
rate It has been demonstrated that the performance of fuzzy
0 74.0% 25.9% 0.1% if—then rules can be improved by adjusting the grade of
; ;Zgzz) ;2)322 2'222 certainty of each rule in Nozalat al. [56]. The learning pro-
5 74.9% 18.4% 6.7% cedure in [56] is the following simple reward-and-punishment
10 75.8% 18.7% 5.5% scheme. When a training pattern is correctly classified by a
20 75.4% 17.7% 6.4% fuzzy if-then rule (sayR;), its grade of certainty is increased
as the reward of the correct classification as
whereNCP(R;) is the number of correctly classified training CFrev = CFj?l‘l +m - (1— CF]?“) (18)
patterns by the fuzzy if-then rul&;, and NMP(R;) is the ) _ . _
number of misclassified patterns. wherer; is the learning rate for increasing the grade of cer-

In order to demonstrate the effect of the misclassificatidfin®y- On the other hand, if the training pattern is misclassified
penalty, we applied the modified fuzzy classifier system wity the fuzzy ift—then ruldz;, its grade of certainty is decreased
the misclassification penalty to the cancer data. We iterat®d the punishment of the misclassification as

the ten-fold cross-validation procedure ten times in the same CFrev = CFoM — p, . CFOM (19)
manner as in Section IV for each of six penalty values (i.e., ! ! !
Werer = 0,1,2,5,10,20). Simulation results for training where 7, is the learning rate for decreasing the grade of

data and test data are summarized in Tables VIII and IXertainty.
respectively. It should be noted that the fuzzy classifier systemThis learning procedure can be combined with our fuzzy
With weror = 0 corresponds to its original version in theclassifier system to construct a hybrid algorithm. In the hybrid
previous sections. From these tables, we can observe @igorithm, the learning procedure is applied to each population
following. of fuzzy if-then rules before the fitness value is assigned to
(1) By appropriately specifying the misclassificatiorfach rule. '
penalty, we can improve the performance of our fuzzy In order to demonstrate the effect of the learning procedure,
classifier system for the cancer data (see Table IX f¥f€ applied the hybrid algorithm to the wine data in the same
test data). In fact, the result withe, = 10 for test manner as in Section IV. The learning procedure was iterated
data (i.e., 75.8% classification rate, 18.7% error ratien times for each pattern (i.e., ten epochs) at each generation.
and 5.5% reject rate) can be viewed as outperformi@mwaﬁon results are summarized in Fig. 14 together with
all the reported results of 19 classification methods #W€ Previous results by the original fuzzy classifier system
[47] and [49], and being comparable to the best resuft Section IV. This figure shows the average classification
(i.e., 77.4% classification rate, 22.6% error rate, arf@te for training data at each generation over ten trials. From
0.0% rejection rate) in Grabisch [50]. this figure, we can observe that the hybrid algorithm can
(2) By assigning large values to the misclassificationd fuzzy if-then rules with high classification performance
penalty, high reject rates and low error rates werl8 early generations. In fact, 100% classification rate for

obtained (see Table VIII for training data and Table péraining data was obtained in all the ten trials. On the average,
for test data). all the training patterns were correctly classified after 138

ﬁnerations. This means that 138 rule set examinations in the
of the fithess value in (17). That is, fuzzy if—then rules th ybrid algorithm were required for 100% classification rate
misclassify some training patterns may have negative fitne¥s the average. Th's result cIearIy outperfgrmed the rgported
values in the modified fuzzy classifier system with a IargrgSUIt of the genetics-based machine learning system in [42].
misclassification penalty even if those rules correctly classi ) )

many training patterns. Thus such fuzzy if-then rules ag Alternative Coding

replaced with new rules in the next generation. In this way, Let us consider a classification problem in Fig. 15. All
high rejection rates remain during the generation update. the given training patterns may be correctly classified by the

The second observation can be explained by the definiti
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Fig. 15. Example of a pattern classification problem.

R: [1]1]o]oJoJoJoJoJoJoJo]1]
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Fig. 16. Alternative coding method.

system. In fact, it did not work well without this special
antecedent fuzzy set as shown in Section V-B. In order to
effectively utilize “don’t caré’ in our fuzzy classifier system,
we can use the following two tricks:

1) To assign a larger probability tadbn’t caré’ than the
other antecedent fuzzy sets when an initial population
is generated. For the effect of this trick, see Fig. 13 in
Section V.

2) To bias the mutation probability in order that the mu-
tation to “‘don’t care¢’ has a larger mutation probability
than the mutation from don't caré’ to the other an-
tecedent fuzzy sets.

These tricks force fuzzy if-then rules to have mardori’t
carg’ symbols in their antecedent parts. Because attributes
with “don’t car€’ can be omitted in fuzzy if-then rules, we
can obtain general fuzzy if-then rules with a small number of
linguistic conditions in the antecedent parts by these two tricks.

E. Heuristic Procedure for Generating an Initial Population

As Nakaokaet al. [29] have already pointed out, the per-
formance of a randomly generated initial population is usu-
ally very poor (see also Figs. 9 and 13). This is because
many training patterns have no compatible initial fuzzy if-then

following three fuzzy if-then rules if we introduce combinedules. That is, the classification of many training patterns is

antecedent fuzzy sets such asrall or medium smalt

Ry: If 21 is smallor medium smallndz, is don't care

then Class 1 witltCF = CFy,

R, If 1 is don’t careand z, is medium largeor large

then Class 1 witlCF = CF,

R3: If x1 is mediumor medium largeor large and
2 IS small or medium smalbr medium
then Class 2 withlCF = CFs.

rejected by the initial population of randomly generated fuzzy
if—then rules. Nakaokat al.[29] proposed an idea to count the
number of antecedent fuzzy sets that are compatible with an
input vector in their fuzzy classifier system for fuzzy control
problems. Bonarini [51] proposed a fuzzy classifier system
to efficiently design fuzzy logic controllers, in which a special
rule generation mechanism was employed to insure that useless
fuzzy if—-then rules with no compatible input cases were never
generated.

For pattern classification problems, an initial population
with high classification performance can be easily generated

These fuzzy if-then rules can not be generated by our fuzay follows:
classifier system because only a single antecedent fuzzy set iStep 1 For each training pattern, find a fuzzy if-then rule

assigned to each attribute in the coding of each fuzzy if—then

rule.

that has the largest compatibility with the training
pattern. Becausedbn't car€ has the largest com-

In our fuzzy classifier system, we can introduce an alterna-
tive coding method for representing the above fuzzy if-then
rules. The alternative coding method has six boxes for each
attribute as shown in Fig. 16 where each of the above three
fuzzy if-then rules is denoted by a string with 12 boxes.
In the alternative coding, “1” means that the corresponding
antecedent fuzzy set appears in the fuzzy if-then rule. A
similar coding method has already been used in [26] where
“don’t care’ was not explicitly used as an antecedent fuzzy
set. A string with all 1's in [26] corresponds talén't care'.

But they are not equivalent to each other becausmt care’

has a rectangular membership function as shown in Fig. 2
while the string with all 1's in [26] is the union of triangular
membership functions.

Step 3

D. Biased Probabilities

As we have already demonstrated, the antecedent fuzzy set
“don’t caré’ plays a very important role in our fuzzy classifier

Step

patibility to any attribute value, this special fuzzy
set is not considered as an antecedent fuzzy set in
this stage. For example, from a three-dimensional
training patternx, = (0.02,0.51,0.98), the fol-
lowing fuzzy if-then rule is found as the most
compatible rule when we use the five linguistic
value in Fig. 1:

If z; is smallandzs is mediumand zs
is large then Class; with CF = CF;.

In this step,m fuzzy if-then rules are generated
from the givenm training patterns.

With a pre-specified probability, replace antecedent
fuzzy sets with tlon't caré'.

From the generatedn fuzzy if-then rules, ran-
domly selectV,,,, rules whereN,,, is the pop-
ulation size. In this stage, we can also use the rule
selection method in [40], [41].
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F. Variable Population Size It has been often claimed that fuzzy rule-based systems with

Because the number of fuzzy if-then rules in each popdtid-type fuzzy partitions can not scale up high-dimensional
lation of our fuzzy classifier system is constant, it can n@oblems with many inputs while such systems work well for

be directly applied to the rule selection problem with twéPW-dimensional problems. This paper clearly demonstrated
objectives: to maximize the classification rate and to minimiZ8at our fuzzy classifier system based on simple fuzzy grids
the number of fuzzy if—then rules. When we try to minimiz&vorked well for real-world pattern classification problems with
the number of fuzzy if—then rules as well as to maximize tH8°"€ than ten continuous attributes. The main contribution
classification rate, unnecessary fuzzy if—then rules have to ¥ethis Paper is to have proposed an approach to the design
removed from each population in our fuzzy classifier systefdf fuzzy rule-based systems with both high performance and
This can be done by replacing all the fuzzy if—then rules thB{gh comprehensibility, and to have clearly demonstrated its
have no reward (i.efitnes¢R;) = 0) with a small number of effectiveness by computer simulations on real-world pattern

newly generated fuzzy if-then rules. In this way, unnecess&&?ssmc"’_‘tion problems. One difficulty of_ our fuzzy cla_ssifier
fuzzy if-then rules are removed from a current population 8YStem is that the number of fuzzy if-then rules is not
each generation. It should be noted that the population sizd¥imized. In our fuzzy classifier system, the fitness function
not constant in this scheme. is assigned to each fuzzy if-then rule and the quality of the

Another idea for minimizing the number of fuzzy if—therfU/€ Set is not taken into account in the evolution of fuzzy
rules is to assign a flag to each fuzzy if—then rule to indicatEthen rules. Thus, it is difficult to directly minimize the
whether the corresponding fuzzy if—then rule should be ifflUmber of fuzzy if-then rules by including it in the fitness
cluded in the fuzzy rule-based system or not. That is, a fuznction even if we extend the population size to an adaptable
if—then rule is included in the fuzzy rule-based system if its flaggrameter. For example, it is known that only five fuzzy
is “1”. Otherwise (i.e., its flag is “0"), the corresponding fuzzy—then rules can classify all the 178 samples in the wine
if—then rule is not included in the fuzzy rule-based system. fft@ (see [59]). This result was obtained by a multi-objective
this scheme, the population size is constant. A similar id@§N€tic algorithm based on the Pittsburgh approach where each
was used in Shimojimat al. [22] and Ishibuchiet al. [40], !ndlwd.ual corresponds to a ru_le set. Because a fitness value
[41] for the Pittsburgh approach. is assigned to each rule set in the Pittsburgh approach, we

can minimize the number of fuzzy if-then rules by a genetic

algorithm. The computation load of the Pittsburgh approach,
however, is much larger than our fuzzy classifier system.

In this paper, we demonstrated high performance of |acluding a minimization procedure of the number of fuzzy
fuzzy classifier system for pattern classification problems with-then rules in our fuzzy classifier system without involving
many continuous attributes. Our fuzzy classifier system is vegiynificant increase of computation load is left for future work.
simple because
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