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Abstract—We examine the performance of a fuzzy genetics-
based machine learning method for multidimensional pattern
classification problems with continuous attributes. In our method,
each fuzzy if–then rule is handled as an individual, and a fitness
value is assigned to each rule. Thus, our method can be viewed as
a classifier system. In this paper, we first describe fuzzy if–then
rules and fuzzy reasoning for pattern classification problems.
Then we explain a genetics-based machine learning method that
automatically generates fuzzy if–then rules for pattern classifi-
cation problems from numerical data. Because our method uses
linguistic values with fixed membership functions as antecedent
fuzzy sets, a linguistic interpretation of each fuzzy if–then rule
is easily obtained. The fixed membership functions also lead to
a simple implementation of our method as a computer program.
The simplicity of implementation and the linguistic interpretation
of the generated fuzzy if–then rules are the main characteristic
features of our method. The performance of our method is
evaluated by computer simulations on some well-known test
problems. While our method involves no tuning mechanism of
membership functions, it works very well in comparison with
other classification methods such as nonfuzzy machine learning
techniques and neural networks.

I. INTRODUCTION

FUZZY rule-based systems have been successfully applied
to various control problems [1], [2]. Fuzzy rules in

these systems are usually derived from human experts as
linguistic if–then rules. Recently several approaches have been
proposed for automatically generating fuzzy if–then rules from
numerical data without domain experts (see, for example,
[3]–[6]). Genetic algorithms [7], [8] have been widely used
for generating fuzzy if–then rules and tuning membership
functions (see a survey by Carseet al. [9]). For example,
genetic algorithms were used for generating fuzzy if–then rules
in [10], [11], for tuning membership functions in [12]–[16],
and for both the rule generation and the membership function
tuning in [9], [17]–[21]. Hierarchical structures of fuzzy rule-
based systems were also determined by genetic algorithms in
[22], [23].

Genetics-based machine learning methods for rule gener-
ation fall into two categories: the Michigan approach and
the Pittsburgh approach. In the Michigan approach, each rule
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is handled as an individual, called a classifier. Thus, this
approach is referred to as a classifier system [24]. On the other
hand, the Pittsburgh approach [25] handles an entire rule set as
an individual. All the above-mentioned methods [9]–[23] for
generating fuzzy if–then rules and tuning membership func-
tions are categorized as Pittsburgh approaches, in which a set
of fuzzy if–then rules was treated as an individual. The Michi-
gan approach was also used for generating fuzzy if–then rules
in [26]–[29], where each fuzzy if–then rule was treated as an
individual (i.e., as a classifier). Thus, the rule generation meth-
ods in [26]–[29] were referred to as fuzzy classifier systems.

While various methods have been proposed for generating
fuzzy if–then rules and tuning membership functions, only
a few methods are applicable to pattern classification prob-
lems. This is because the above-mentioned methods [9]–[23],
[26]–[29] lie mainly in the domain of control problems and
function approximation problems. For pattern classification
problems, Abeet al. [30], [31] proposed a rule generation
method and a rule tuning method in which each fuzzy if–then
rule was represented by a hyperbox in multidimensional pat-
tern spaces. Such a hyperbox was also used as a fuzzy
if–then rule in fuzzy min-max neural networks [32]. Neural
networks were used as adaptive fuzzy classification systems in
[33]–[38]. Neural-network-based fuzzy systems usually have
high learning ability, but sometimes lose the comprehensibility
of fuzzy if–then rules (i.e., lose the linguistic interpretation of
each rule).

If the comprehensibility of fuzzy if–then rules by human
users is a criterion in designing a fuzzy rule-based system,
a fuzzy partition by a simple fuzzy grid with pre-specified
membership functions is preferable. An example of such a
fuzzy partition is shown in Fig. 1, where each axis of a two-
dimensional (2-D) pattern space is homogeneously partitioned
by five linguistic values (S:small, MS: medium small, M:
medium, ML: medium large, and L: large). Ishibuchi et al.
[39] proposed a heuristic method for generating fuzzy if–then
rules for pattern classification problems using such a fuzzy
partition. Rule selection methods based on genetic algorithms
were proposed in [40], [41], wherein pre-specified membership
functions were also used as in [39]. Of course, we do not have
to partition each axis homogeneously when a priori knowledge
on linguistic values is available from domain experts for
specifying membership functions.

It has been often claimed that grid-type fuzzy partitions
such as Fig. 1 cannot handle high-dimensional problems with
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Fig. 1. Example of fuzzy partition by a simple fuzzy grid with five linguistic
values for each axis of the 2-D pattern space[0; 1] � [0; 1].

Fig. 2. Example of fuzzy partition of the 2-D pattern space[0; 1] � [0; 1]
with “don’t care” as an antecedent fuzzy set.

many input variables due to the curse of dimensionality (see,
for example, [9]). That is, when we use the grid-type fuzzy
partition, the number of fuzzy if–then rules exponentially
increases as the number of input variables increases. In this
paper, however, we use the grid-type fuzzy partition for pattern
classification problems with many continuous attributes (e.g.,
13 attributes) because such a fuzzy partition maintains an
inherent advantage of fuzzy rule-based systems: the com-
prehensibility of fuzzy if–then rules. We tackle the curse of
dimensionality by utilizing “don’t care” as an antecedent fuzzy
set and generating only a small number of promising fuzzy
if–then rules by genetic operations. The antecedent fuzzy set
“don’t care” is represented by an interval-type membership
function whose membership value is always unity in the
domain of each attribute value [41]. For example, if the domain
of the th attribute (i.e., ) is the unit interval , the
membership function of the antecedent fuzzy set “don’t care”
can be written as

if
otherwise

(1)

In Fig. 2, we show an example fuzzy partition that incorporates
with the antecedent fuzzy set “don’t care.” A 2-D pattern space
is divided into five fuzzy subspaces by a fuzzy grid with “don’t
care” for the first axis (i.e., ) and the five linguistic values
for the second axis (i.e., ). From the comparison of Fig. 1
with Fig. 2, we can see that the introduction of “don’t care” as
an antecedent fuzzy set reduces the number of fuzzy if–then
rules. In fact, it also reduces the number of attributes (i.e., the
number of antecedent conditions) in fuzzy if–then rules.

The rule selection methods in [40] and [41] consisted
of two stages: rule generation using fuzzy grids, and rule

selection using genetic algorithms. Because their methods
generated all the candidate fuzzy if–then rules in the first stage,
we cannot directly apply their methods to multidimensional
pattern classification problems with many attributes. In this
paper, we propose a fuzzy classifier system to handle such
classification problems. The main aim of this paper is to clearly
demonstrate that our fuzzy classifier system, based on pre-
specified linguistic values with fixed membership functions,
works well for well-known test problems involving many
attributes (e.g., wine data with thirteen attributes and credit
approval data with fourteen attributes). Through computer
simulations on such test problems, we show that our fuzzy
classifier system is comparable to other pattern classification
methods such as a genetics-based machine learning method
with nonfuzzy if–then rules [42], back-propagation neural
networks [43] and the C4.5 algorithm [44]. This means that our
fuzzy classifier system can construct high performance fuzzy
rule-based systems that can be easily understood by human
users through linguistic interpretation.

A fuzzy rule-based system is constructed from a set of
labeled samples (i.e., labeled feature vectors). The constructed
fuzzy rule-based system assigns a new feature vector to one of
given classes. That is, fuzzy rule-based systems are applicable
to the same data set as nonfuzzy classification methods (e.g.,
neural networks, decision trees, and statistical techniques).
This means that fuzzy rule-based systems can be viewed as an
alternative to other classification methods. One advantage of
fuzzy rule-based classification systems is their comprehensibil-
ity. We can easily understand them because each fuzzy if–then
rule is interpreted through linguistic values such as “small”
and “large.” High classification ability is another advantage of
fuzzy rule-based systems. These advantages are demonstrated
in this paper.

This paper is organized as follows. Section II briefly ex-
plains a fuzzy rule generation method with fuzzy grids and
a fuzzy reasoning method for pattern classification problems.
Section III explains each step of our fuzzy classifier system:
generation of an initial population, evaluation of each fuzzy
if–then rule, generation of new fuzzy if–then rules by genetic
operations, replacement of a part of the current population with
the newly generated fuzzy if–then rules, and termination of the
algorithm. Section IV compares our fuzzy classifier system
with other classification methods by computer simulations
on well-known test problems. In Section V, we discuss why
our fuzzy classifier system works well while it involves no
tuning mechanism of membership functions. In Section VI, we
suggest some directions to extend our fuzzy classifier system.
Section VII concludes this paper.

II. RULE GENERATION AND FUZZY REASONING

A. Pattern Classification Problem

Let us assume that our pattern classification problem is a-
class problem in the -dimensional pattern space with
continuous attributes. We also assume thatreal vectors

, are given as
training patterns from the classes . Because the
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pattern space is , attribute values of each pattern are
for and . An

example of such a pattern classification problem is shown in
Fig. 3 where (i.e., two-class problem), (i.e., 2-D
pattern space) and (i.e., 40 training patterns).

B. Rule Generation

In our fuzzy classifier system, we use fuzzy if–then rules of
the following type for the -class pattern classification problem
with the -dimensional pattern space :

Rule : If is and and is

then Class with CF CF (2)

where

Label of the th fuzzy if–then rule;
Antecedent fuzzy sets on the unit interval

;
Consequent class (i.e., one of the given
classes);

CF Grade of certainty of the fuzzy if–then rule
.

It should be noted that the grade of certaintyCF is different
from the fitness value of each rule. The fitness value is used
in a selection operation of our fuzzy classifier system while
CF is used in fuzzy reasoning for classifying new patterns.

As antecedent fuzzy sets, we use the five linguistic val-
ues in Fig. 1 and “don’t care” in Fig. 2. Thus, for the -
dimensional pattern classification problem, the total number
of fuzzy if–then rules is . It is impossible to use all
the fuzzy if–then rules in a fuzzy rule-based system
when the number of attributes (i.e.,) is large. Our fuzzy
classifier system searches for a set of a relatively small number
of fuzzy if–then rules (e.g., 60 rules).

In our fuzzy classifier system, the consequent class
and the grade of certaintyCF of each fuzzy if–then rule
are determined by the following simple heuristic procedure
[39]–[41] when its antecedent fuzzy sets are
specified by genetic operations.
[Determination of and CF ]

Step 1: Calculate the compatibility grade of each training
pattern with the fuzzy
if–then rule by the following product operation:

(3)

where is the membership function of .
Step 2: For each class, calculate the sum of the compati-

bility grades of the training patterns with the fuzzy
if–then rule

(4)

where is the sum of the compatibility
grades of the training patterns in Classwith the
fuzzy if–then rule .

Fig. 3. Two-class classification problem with the 2-D pattern space
[0; 1] � [0; 1].

Step 3: Find Class that has the maximum value of

(5)

If two or more classes take the maximum value,
the consequent class of the fuzzy if–then rule

can not be determined uniquely. In this case,
let be . If a single class (i.e., Class )
takes the maximum value, let be Class . If
there is no training pattern compatible with the
fuzzy if–then rule (i.e., if for

), the consequent class is also
specified as .

Step 4: If the consequent class is , let the grade of
certainty CF of the fuzzy if–then rule be
CF . Otherwise the grade of certaintyCF
is determined as follows:

CF (6)

where

(7)

While the determination of the grade of certaintyCF by
(6)–(7) seems to be a bit complicated at a glance, we can
see that this procedure is intuitively acceptable if we consider
two-class classification problems (i.e., ). For example,
when is Class 1 andCF is
specified as

CF (8)

In the case of is and
CF because we can not specify the consequent class.

Using the pattern classification problem in Fig. 3, we il-
lustrate this rule generation procedure. If we use the fuzzy
partition by the 5 5 fuzzy grid in Fig. 1, we can generate 25
fuzzy if–then rules as shown in the rule table in Fig. 4 where
C1 and C2 are consequent classes (i.e., Class 1 and Class 2,
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Fig. 4. Set of generated fuzzy if–then rules with the 5� 5 fuzzy grid in
Fig. 1.

respectively), and each real number in parentheses denotes the
grade of certainty of the corresponding fuzzy if–then rule.

Our fuzzy if–then rules with certainty grades are different
from standard ones that are usually used in control problems
and function approximation problems. The following tradi-
tional type of fuzzy if–then rules is also applicable to pattern
classification problems:

Rule : If is and and is

then is and and is (9)

where is the possibility grade of the occurrence of Class,
and is a consequent fuzzy set. Instead of the consequent
fuzzy set , we can also use a singleton fuzzy set (i.e.,
a real number ) or a linear function of input values (i.e.,

). Antecedent fuzzy sets and
consequent fuzzy sets (or real numbers, linear functions) can
be adjusted based on training patterns in the same manner
as in neural networks. In this paper, we use fuzzy if–then
rules in (1) because they are simpler than those in (9). The
simplicity of fuzzy if–then rules is necessary for constructing
comprehensible fuzzy rule-based systems. The use of fuzzy
if–then rules in (1) also makes the credit assignment in our
fuzzy classifier system straightforward. As we will show in
this paper, our fuzzy if–then rules with certainty grades in (1)
can generate nonlinear complicated decision boundaries even
if we use very simple antecedent fuzzy sets.

C. Fuzzy Reasoning

When the antecedent fuzzy sets of each fuzzy if–then rule
are given, we can determine the consequent class and the
grade of certainty by the heuristic rule generation procedure
in the previous section. Here we assume that we have already
generated a set of fuzzy if–then rules for a pattern classification
problem. Fig. 4 is an example of such a rule set. Let us denote
the set of fuzzy if–then rules we generate by.

An input pattern to the fuzzy rule-based system with
the rule set is classified by a fuzzy reasoning method. In
our fuzzy classifier system, we perform the fuzzy reasoning
via the single winner rule. The winner rule for the input
pattern is determined as

CF CF (10)

That is, the winner rule has the maximum product of the
compatibility and the grade of certaintyCF . If more
than one fuzzy if–then rule have the same maximum product
but different consequent classes for the input pattern, the

Fig. 5. Classification boundary obtained by the 25 fuzzy if–then rules in
Fig. 4.

classification of that pattern is rejected. The classification is
also rejected if no fuzzy if–then rule is compatible with the
input pattern (i.e., for ). This fuzzy
reasoning method based on a single winner rule leads to
simplicity in the credit assignment algorithm in our fuzzy
classifier system, as only one rule is responsible for the
classification result of each input pattern. It is possible to
modify our fuzzy reasoning method to account for the situation
when different classes have the same maximum value in (10),
and for when no fuzzy if–then rule is compatible with the
input pattern . After this modification, classification rates
of fuzzy rule-based systems are improved because rejection
rates are decreased. At the same time, there is an increase in
error rates. Thus, such a modification is promising when the
penalty of rejection is not small.

In Fig. 5, we show classification results by the fuzzy rea-
soning method based on the single winner rule in (10). The
classification boundary in Fig. 5 was generated by the fuzzy
rule-based system with the 25 fuzzy if–then rules in Fig. 4.

III. FUZZY CLASSIFIER SYSTEM

In this section, we propose a fuzzy classifier system for
automatically designing a fuzzy rule-based system for mul-
tidimensional pattern classification problems with many con-
tinuous attributes. Our fuzzy classifier system is very simple
enough to be easily implemented as a computer program.
Nevertheless it has high classification performance, as shown
in the next section. Extensions of our fuzzy classifier system
will be discussed in Section VI.

A. Outline of Fuzzy Classifier System

Our fuzzy classifier system does not involve any compli-
cated tuning mechanism for membership functions. It is based
on the heuristic rule generation procedure in Section II, basic
genetic operations, and a simple credit assignment scheme.
Genetic operations such as selection, crossover and mutation
are used for generating a combination of antecedent fuzzy
sets of each fuzzy if–then rule. A rule’s consequent class and
certainty grade are determined by the heuristic procedure in
Section II. The outline of our fuzzy classifier system is as
follows.

Step 1: Generate an initial population of fuzzy if–then
rules;
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Step 2: Evaluate each fuzzy if–then rule in the current
population;

Step 3: Generate new fuzzy if–then rules by genetic oper-
ations;

Step 4: Replace a part of the current population with the
newly generated rules;

Step 5: Terminate the algorithm if a stopping condition is
satisfied, otherwise return to Step 2.

Each step of our fuzzy classifier system will be explained
in detail, along with a coding method of fuzzy if–then rules,
in the following sections.

B. Coding of Fuzzy If–Then Rule

Because the consequent class and the grade of certainty of
a fuzzy if–then rule are easily determined by the heuristic
procedure in Section II, only antecedent fuzzy sets are altered
by genetic operations in our fuzzy classifier system. We denote
the five linguistic values in Fig. 1 and “don’t care” in Fig. 2
by the following six symbols (i.e., 1, 2, 3, 4, 5, and #) in our
fuzzy classifier system:

: small
: medium small

: medium
: medium large

: large
: don’t care

Each fuzzy if–then rule can be denoted by a string of these six
symbols. For example, a string “1#3#” denotes the following
fuzzy if–then rule for a four-dimensional pattern classification
problem:

If is small and is don’t careand is medium

and is don’t care then Class with CF CF

Because the conditions with “don’t care” can be omitted, this
rule is rewritten as follows:

If is small and is medium

then Class with CF CF

C. Initial Population

Let us denote the number of fuzzy if–then rules in each
population in our fuzzy classifier system by (i.e.,
is the population size). To construct an initial population,
fuzzy if–then rules are generated by randomly selecting their
antecedent fuzzy sets from the six symbols corresponding to
the five linguistic values and “don’t care”. Each symbol is
randomly selected with the probability of 1/6. The consequent
class and the grade of certaintyCF of each fuzzy if–then
rule are determined by the heuristic procedure in Section II.

D. Evaluation of Each Rule

Let us denote the set of fuzzy if–then rules in the
current population by . In order to evaluate each fuzzy
if–then rule in , we classify all the given training patterns
by the fuzzy rule-based system with the rule setusing the

fuzzy reasoning method in Section II-C. As we have already
explained in (10), each pattern is classified by a single winner
rule. Thus the credit assignment is very simple. In our fuzzy
classifier system, we assign a unit reward to the winner rule
when a training pattern is correctly classified by that rule.
After all the training patterns are examined, the fitness value
of each fuzzy if–then rule is defined as follows by the total
reward assigned to that rule

fitness NCP (11)

wherefitness is the fitness value of the fuzzy if–then rule
, andNCP is the number of training patterns that are

correctly classified by . The fitness value of each fuzzy
if–then rule is updated by (11) at each generation in our fuzzy
classifier system. While this credit assignment scheme seems
to be too simple to handle real-world classification problems,
it works very well for well-known real-world test problems as
will be shown in Section IV. An alternative credit assignment
scheme with a misclassification penalty will be discussed in
Section VI.

When more than one fuzzy if–then rule with the same
consequent class in the rule sethave the same maximum
value in (10), we assume that the fuzzy if–then rule with the
smallest index is the winner. For example, suppose that

and in the rule set are fuzzy if–then rules with
the same antecedent and the same consequent (i.e.,and

are the same fuzzy if–then rule). In this case, and
always have the same maximum value in (10), and

is the winner. This means that the reward is assigned only
to . In this manner, only a single rule with the smallest
index among duplicated fuzzy if–then rules can survive the
generation update in our fuzzy classifier system. Thus our
fuzzy classifier system implicitly prevents a population from
being dominated by homogeneous fuzzy if–then rules.

E. Genetic Operations for Generating New Rules

In order to generate new fuzzy if–then rules, first a pair
of fuzzy if–then rules is selected from the current population.
Each fuzzy if–then rule in the current population (i.e., in the
rule set ) is selected by the following selection probability
based on the roulette wheel selection with the linear scaling:

fitness fitness
fitness fitness

(12)

wherefitness is the minimum fitness value of the fuzzy
if–then rules in the current population.

From the selected pair of fuzzy if–then rules, two rules are
generated by the uniform crossover for the antecedent fuzzy
sets. The uniform crossover is illustrated in Fig. 6 for a five-
dimensional pattern classification problem. It should be noted
that only the antecedent fuzzy sets of the selected pair of fuzzy
if–then rules are mated.

Each antecedent fuzzy set of the fuzzy if–then rules gener-
ated by the crossover operation is randomly replaced with a
different antecedent fuzzy set using a pre-specified mutation
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Fig. 6. Uniform crossover for antecedent fuzzy sets (� denotes a crossover
position).

Fig. 7. Mutation for antecedent fuzzy sets (� denotes a mutation position).

probability. This mutation operation is illustrated in Fig. 7. As
in the crossover operation, the mutation operation is applied
to only the antecedent fuzzy sets. The consequent class and
the certainty grade of each of the newly generated fuzzy
if–then rules are determined after the mutation by the heuristic
procedure in Section II.

These genetic operations (i.e., selection, crossover, and
mutation) are iterated until a pre-specified number of fuzzy
if–then rules are newly generated.

F. Rule Replacement

A prespecified number of fuzzy if–then rules (say, ) in
the current population are replaced with the newly generated
rules by the genetic operations. In our fuzzy classifier system,
the worst rules with the smallest fitness values are
removed from the current population and the newly generated
fuzzy if–then rules are added.

In order to generate fuzzy if–then rules, the genetic
operations in the previous section are iterated times.
That is, pairs of fuzzy if–then rules are selected from
the current population in the selection operation, and two fuzzy
if–then rules are generated from each pair by the crossover
and mutation operations.

G. Termination Test

We can use any stopping conditions for terminating the exe-
cution of our fuzzy classifier system. In computer simulations
of this paper, we used the total number of generations as a
stopping condition. The final solution obtained by our fuzzy
classifier system is the rule set with the maximum classification
rate for training patterns over all generations. That is, the final
solution is not the final population but the best population.
Since the evolution is not based on the performance of an
entire rule set but each rule in the Michigan approach including
our fuzzy classifier system, the final population is not always
the best rule set. In the Michigan approach, a single rule is
treated as an individual, and each population corresponds to a
rule set. On the contrary, the final population always includes
the best rule set in the Pittsburgh approach with an elite
strategy, in which an entire rule set is treated as an individual.

H. Algorithm

Our fuzzy classifier system can be written as the following
algorithm.

Step 1: Generate an initial population of fuzzy
if–then rules by randomly specifying antecedent
fuzzy sets of each rule. The consequent class
and the grade of certainty are determined by the
heuristic procedure in Section II.

Step 2: Classify all the given training patterns by the
fuzzy if–then rules in the current population, then
calculate the fitness value of each rule by (11).

Step 3: Generate fuzzy if–then rules from the current
population by the selection, crossover and mutation
operations. The consequent class and the grade of
certainty of each fuzzy if–then rule are determined
by the heuristic procedure in Section II.

Step 4: Replace the worst fuzzy if–then rules with
the smallest fitness values in the current population
with the newly generated rules.

Step 5: Terminate the iteration of the algorithm if the pre-
specified stopping condition is satisfied, otherwise
return to Step 2.

I. Numerical Example

We applied our fuzzy classifier system to the pattern classi-
fication problem in Fig. 3. Because this pattern classification
problem has two attributes (i.e., and ), we used fuzzy
if–then rules of the following type:

If is and is then Class with CF

(13)

As the antecedent fuzzy sets and , we used the five
linguistic values in Fig. 1 and the “don’t care” in Fig. 2. Thus
the total number of fuzzy if–then rules is . Our
problem is to find a compact rule set with high classification
performance from these 36 fuzzy if–then rules. It should be
noted that the total number of rule sets is very large (i.e.,

including an empty rule set) even for this
small-scale numerical example with only two attributes.

In computer simulations, we applied our fuzzy classifier
system to the pattern classification problem in Fig. 3 with
various specifications of the population size . Parameter
specifications used in the computer simulations are as follows:

Population size:

Crossover probability:

Mutation probability:

Number of replaced rules in each population:

Stopping condition: generations

From these parameter specifications, we can see that only
one fuzzy if–then rule was replaced at each generation (i.e.,

) and the algorithm was terminated after 1000
generations.

Simulation results are summarized in Table I. From Table I,
we can see that all the training patterns in Fig. 3 can be
correctly classified by six fuzzy if–then rules. The following
rules were generated by our fuzzy classifier system. Note that
antecedent conditions with “don’t care” are omitted in the
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TABLE I
SIMULATION RESULTS FOR A NUMERICAL EXAMPLE

Fig. 8. Classification boundary obtained by the selected fuzzy if–then rules.

following.

If is medium smallthen Class 1 withCF

If is mediumand is small

then Class 1 withCF

If is mediumand is medium small

then Class 1 withCF

If is large then Class 2 withCF

If is medium largethen Class 2 withCF

If is mediumand is medium large

then Class 2 withCF

The classification boundary generated by these fuzzy if–then
rules is shown in Fig. 8. In Fig. 8, all the training patterns are
correctly classified by much fewer fuzzy if–then rules (i.e., by
six rules) than Fig. 5 (25 rules). The reduction of the number of
fuzzy if–then rules was realized by the introduction of “don’t
care” as an antecedent fuzzy set. The effect of “don’t care”
becomes much more significant in multidimensional pattern
classification problems with many attributes. This will be
discussed in Section VI.

As shown in the above six fuzzy if–then rules, some rules
have two antecedent conditions while other rules have a single
antecedent condition. The number of antecedent conditions
of each fuzzy if–then rule was automatically determined by
our fuzzy classifier system from given training patterns. For
example, we can see from Fig. 8 that an input pattern belongs
to Class 2 if its first attribute is “large”. Thus, the fourth
fuzzy if–then rule has only a single condition “ is large”.
On the other hand, we do not know whether an input pattern
belongs to Class 1 or Class 2 when we know that its first
attribute is “medium”. Thus the second, third and last fuzzy

if–then rules have conditions on the second attribute as
well as the condition on the first attribute. While the number
of antecedent conditions of each fuzzy if–then rule differs, all
the fuzzy if–then rules can be handled in the same manner
in our fuzzy classifier system. This is because “don’t care”
has a membership function (see (1) in Section I), just as the
other linguistic values do. For example, the compatibility of
an input pattern with the first fuzzy if–then
rule is calculated from (3) as

(14)

On the other hand, the compatibility with the second fuzzy
if–then rule is calculated as

(15)

From (14) and (15), we can see that all the fuzzy if–then
rules are handled in the same manner even if the number of
antecedent conditions of each rule is different.

IV. PERFORMANCE EVALUATION

A. Performance for Training Data: Wine Classification Data

In order to examine the performance of our fuzzy classifier
system for multidimensional pattern classification problems
with many continuous attributes, we used wine classification
data that consist of 178 samples with 13 continuous attributes
from three classes. We used the wine data because

1) this data set is available from the University of Califor-
nia, Irvine, database (available via anonymous ftp from
ftp.ics.uci.edu/pub/machine-learning-databases);

2) this data set has many continuous attributes;
3) simulation results of our fuzzy classifier system can

be compared with reported results by another genetics-
based machine learning method in [42].

Corcoran and Sen [42] reported the following results of their
genetics-based machine learning system, which was based on
the Pittsburgh approach where each individual corresponds to
a set of if–then rules (i.e., a rule set)

Best classification rate: %

Average classification rate: %

Worst classification rate: %

These results were classification rates obtained by ten indepen-
dent trials where all the 178 samples were used as training data.
Each trial was performed with 60 nonfuzzy if–then rules in
each individual (i.e., in each rule set), 1500 individuals in each
population, and 300 generations (i.e.,
rule sets of 60 nonfuzzy if–then rules were examined in each
trial).

We applied our fuzzy classifier system to the same data
set. As a preprocessing of the data set for our fuzzy classifier
system, the domain of each attribute was linearly normalized
to the unit interval . By this preprocessing, the maximum
and minimum values of each attribute became 1 and 0,
respectively. We also used this preprocessing for other data
sets in computer simulations of this paper.
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Because the wine data have 13 continuous attributes, we
used fuzzy if–then rules of the following type in our fuzzy
classifier system:

: If is and and is

then Class with CF (16)

As in the computer simulations in Section III, we used the
five linguistic values and “don’t care” as antecedent fuzzy
sets of each fuzzy if–then rule. The total number of possible
fuzzy if–then rules is . The task of our
fuzzy classifier system is to find a compact rule set with high
classification performance from these 6fuzzy if–then rules.

In order to compare our fuzzy classifier system with the
genetics-based machine learning system in [42] with 60 non-
fuzzy if–then rules, we also specified the number of fuzzy
if–then rules in each population as 60 (i.e., ). The
other parameters were specified as follows in our computer
simulations:

Crossover probability:

Mutation probability:

Number of replaced rules in each population:

Stopping condition: generations

From these parameter specifications, we can see that 1000
rule sets of 60 fuzzy if–then rules were examined in our fuzzy
classifier system. It should be noted that the total number of
examined rule sets in our fuzzy classifier system (i.e., 1000
rule sets) was much smaller than that in the genetics-based
machine learning system in Corcoran and Sen (i.e., 450 000
rule sets).

We applied our fuzzy classifier system to the wine data 10
times, and the following results were obtained:

Best classification rate: %

Average classification rate: %

Worst classification rate: %

From the comparison of these results with the aforementioned
results in [42], we can see that slightly inferior classification
rates were obtained by our fuzzy classifier system with much
fewer rule set examinations (i.e., 1000 examinations) than
the genetics-based machine learning system with 450 000 rule
set examinations. This clearly demonstrates the ability of our
fuzzy classifier system to efficiently search for a compact rule
set with high classification performance. The above results by
our fuzzy classifier systems can be drastically improved by
adjusting the grade of certainty of each fuzzy if–then rule.
This will be discussed in Section VI.

In Fig. 9, we show how our fuzzy classifier system evolved
fuzzy if–then rules. Each closed circle in Fig. 9 shows the
average classification rate over the ten trials for the training
data at each generation. From Fig. 9, we can see that the
average classification rate was rapidly improved from a very
poor performance at the initial generation.

For examining the significance of each of the two genetic
operations (i.e., crossover and mutation) in our fuzzy classifier

Fig. 9. Average classification rate of the current population at each gener-
ation.

system, we applied it to the wine data by specifying the
crossover probability or the mutation probability as zero. The
other parameters were specified in the same manner as in
the above computer simulations. The average classification
rate over ten trials with no crossover was 98.0% after 1000
generations. While this is almost the same as the 98.5%
average classification rate with both genetic operations, the
crossover operation has an effect on the search ability of our
fuzzy classifier system. Open circles in Fig. 9 show the simu-
lation results by the fuzzy classifier system with no crossover
operation. The search ability was slightly deteriorated by
specifying the crossover probability as zero in Fig. 9. On the
other hand, the average classification rate over ten trials with
no mutation (i.e., with the zero mutation probability) was 3.6%
after 1000 generations. This is terribly bad in comparison with
the 98.5% average classification rate by our original fuzzy
classifier system with both genetic operations. From these
observations, we can see that the search in our fuzzy classifier
system is mainly driven by the mutation operation.

We also examined a variant of the crossover operation where
a pair of selected fuzzy if–then rules was mated only when
they had the same consequent class. When selected fuzzy
if–then rules had different consequent classes, a new pair of
fuzzy if–then rules was selected. In this manner, the selection
procedure was modified so that a pair of selected fuzzy if–then
rules always had the same consequent class. We applied this
variant of our fuzzy classifier system to the wine data. The
average classification rate over ten trials was 98.5% after 1000
generations, which was the same as the result by our original
fuzzy classifier system.

B. Performance for Test Data: Credit Approval Data

In the previous section, we demonstrated the performance of
our fuzzy classifier system for training data. In this section, we
examine its performance for test data by computer simulations
on credit approval data. The credit approval data, which
are also available from the University of California, Irvine,
database, were used in Quinlan [44] for his C4.5 algorithm.
This data set consists of 690 samples with 14 attributes from
two classes. The performance of the C4.5 algorithm was
evaluated by the ten-fold cross-validation in [44]. In the ten-
fold cross-validation, all the given samples are divided into
ten subsets of the same size (i.e., 69 samples in the case of the
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credit approval data). Then, nine subsets are used as training
data and the other subset is used as test data. The ten-fold
cross-validation consists of ten iterations of the performance
evaluation so that each of the ten subsets is used as test data
just once.

In [44], the following results were reported as the perfor-
mance of the C4.5 algorithm for test data (see [44, Table IX-
I]).

Best classification rate among various parameter

specifications: %

Average classification rate over various parameter

specifications: %

Worst classification rate among various parameter

specifications: %

As in [44], we also used the ten-fold cross-validation for
evaluating the performance of our fuzzy classifier system for
test data. Because the result of the ten-fold cross-validation
may depend on the partition of the given data set into ten sub-
sets, we independently performed the ten-fold cross-validation
20 times using different partitions of the given data set (i.e.,
our fuzzy classifier system was employed 2010 times in this
computer simulation). Our fuzzy classifier system was slightly
modified to handle discrete attributes in the credit approval
data. For example, the first attribute of the credit approval
data has only two attribute values . Thus we used only
the three antecedent fuzzy sets “small”, “ large” and “don’t
care” for the first attribute because the other antecedent fuzzy
sets such as “medium” have no compatibility with the two
attribute values . From the same reason, we use only
the four antecedent fuzzy sets “small”, “ medium”, “ large”
and “don’t care” for the fourth attribute with three attribute
values . It should be noted that those attribute values
were normalized by the preprocessing procedure of our fuzzy
classifier system to , respectively.

In each trial of the ten-fold cross-validation, the best rule
set with the maximum classification rate for training data was
selected to evaluate its performance for test data. Our fuzzy
classifier system was applied to the credit approval data with
the following parameter specifications.

Population size: (i.e., 100 fuzzy if–then rules)

Crossover probability:

Mutation probability:

Number of replaced rules in each population:

Stopping condition: generations

From 20 independent iterations of the ten-fold cross-
validation, the following average results were obtained for
test data.

Classification rate for test data: %

Error rate for test data: %

Reject rate for test data: %

While the test condition of these results is not exactly the
same as that of the above-mentioned results by the C4.5

algorithm, we can see that our fuzzy classifier system (86.7%
classification rate) slightly outperformed the C4.5 algorithm
(85.8% best classification rate and 84.3% average classification
rate) for the credit approval data.

C. Performance for Test Data: Glass Data

Our fuzzy classifier system was also applied to the glass data
that consist of 214 samples with nine continuous attributes
from six classes. This data set is also available from U.C.
Irvine database. This data set is one of 16 data sets used in
[45] for examining the performance of his 1R algorithm and
Quinlan’s C4 algorithm [46]. A random subsampling technique
was used in [45] for evaluating the performance of 1R and C4
for test data. In his computer simulations, 2/3 of the given
samples were used as training data and the other 1/3 samples
were used as test data. In Holte [45], this random split of the
given data was iterated 25 times, and the following results for
test data were reported (see [45, Table III]).

Classification rate for test data by 1R: %

Classification rate for test data by C4: %

Using the same random sub-sampling technique, we eval-
uated the performance of our fuzzy classifier system for
test data. We used the same parameter specifications as in
the computer simulations for the credit approval data. The
following classification rates for test data were obtained by
our fuzzy classifier system for the glass data.

Classification rate for test data: %

Error rate for test data: %

Reject rate for test data: %

From the comparison of these results with the above-
mentioned results of 1R and C4, we can see that our fuzzy
classifier system outperformed the 1R algorithm and was
comparable to the C4 algorithm for the glass data.

D. Performance for Test Data: Appendicitis Data

Weiss and Kulikowski [47] examined the performance of
various nonfuzzy classification methods by the leaving-one-
out procedure for appendicitis data. The same data set was
also used in [48] for evaluating the performance of various
fuzzy classification methods by the ten-fold cross-validation.
The appendicitis data set consists of 106 samples with seven
attributes from two classes (for details, see [47]). The fol-
lowing results were reported in [47] as the performance of
ten nonfuzzy classification methods such as statistical pattern
recognition methods, neural networks and machine learning
methods (see [47, Fig. 6.4]).

Best classification rate for test data among

ten methods: %

Average classification rate for test data over

ten methods: %

Worst classification rate for test data among

ten methods: %
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These results were obtained in [47] after carefully tuning
parameter values for each method.

On the other hand, Grabisch and Nicolas [48] reported the
following results as the performance of six fuzzy classification
methods such as a fuzzy nearest neighbor method and
fuzzy pattern matching methods with various criteria (see [48,
Table IV]).

Best classification rate for test data among

six methods: %

Average classification rate for test data over

six methods: %

Worst classification rate for test data among

six methods: %

These results were obtained by the ten-fold cross-validation
after carefully tuning parameter values for each method.

Using the leaving-one-out procedure as in [47], we exam-
ined the performance of our fuzzy classifier system with the
same parameter specifications as in the cases of the credit
approval data and the glass data (i.e., we did not customize
the parameter values for each test problem in our fuzzy
classifier system). The following results were obtained as the
performance of our fuzzy classifier system for test data.

Classification rate for test data: %

Error rate for test data: %

Reject rate for test data: %

From the comparison of these results with the aforemen-
tioned results of the other classification methods, we can
see that our fuzzy classifier system was comparable to the
other classification methods with carefully tuned parameter
values. In fact, the 84.9% classification rate obtained by our
fuzzy classifier system is larger than or equal to those by six
nonfuzzy classification methods such as the nearest neighbor
method (classification rate: 82.1%). The classification rate
by our fuzzy classifier system is also larger than those by
two fuzzy classification methods such as the fuzzy pattern
matching with the arithmetic mean operator (classification rate:
80.2%).

E. Performance for Test Data: Cancer Data

Cancer data were used in [47] and [49] for evaluating
various classification methods. The cancer data set consists of
286 samples with nine attributes from two classes (for details,
see [47]). The following results were reported in [47] as the
performance of ten nonfuzzy classification methods (see [47,
Fig. 6.6]).

Best classification rate for test data among

ten methods: %

Average classification rate for test data over

ten methods: %

Worst classification rate for test data among

ten methods: %

These results were obtained from four trials of a random
sub-sampling procedure with 70% training patterns and 30%
test patterns after carefully tuning parameter values for each
method.

Grabisch and Dispot [49] reported the following results as
the performance of nine fuzzy classification methods (see [49,
Table 5]).

Best classification rate for test data among

nine methods: %

Average classification rate for test data over

nine methods: %

Worst classification rate for test data among

nine methods: %

These results were obtained from the two-fold cross-validation
after carefully tuning parameter values for each method.

Using the ten-fold cross-validation, we examined the perfor-
mance of our fuzzy classifier system with the same parameter
specifications as in the previous computer simulations (i.e.,
with no customized parameter tuning for this test problem).
The following results were obtained as the performance of
our fuzzy classifier system for test data from ten independent
trials of the ten-fold cross-validation:

Classification rate for test data: %

Error rate for test data: %

Reject rate for test data: %

We can see from this result that our fuzzy classifier system
is comparable to the other classification methods with carefully
tuned parameter values examined in [47] and [49]. Since the
test condition (ten-fold cross-validation) of this result is not
the same as Weiss and Kulikowski (30% test patterns) and
Grabisch and Dispot (two-fold cross-validation), we do not
rigorously compare our average classification rate (74.0%)
with the reported results (e.g., the backpropagation algorithm:
71.5%, and the nearest neighbor method: 65.3%).

Recently, Grabisch [50] reported good results by three fuzzy
integral classifiers (i.e., classification methods based on fuzzy
integrals) for the cancer data. The following results were
reported in Grabisch by the fuzzy integral classifiers trained
with the quadratic criterion (QUAD), and the generalized
quadratic criterion minimized by the constrained least mean
squares algorithm (CLMS) or the heuristic least-mean-squares
algorithm (HLMS):

Classification rate by QUAD: %

Classification rate by CLMS: %

Classification rate by HLMS: %

These results were obtained by the ten-fold cross-validation.
We can see from these results that the performance of our fuzzy
classifier system is better than the first two versions of the
fuzzy integral classifiers. The performance of the fuzzy integral
classifier with the HLMS algorithm (i.e., 77.4% classification
rate) outperforms our fuzzy classifier system and all the results
reported in [47] and [49].
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TABLE II
SIMULATION RESULTS WITH VARIOUS POPULATION SIZES

TABLE III
SIMULATION RESULTS WITH VARIOUS CROSSOVERPROBABILITIES

TABLE IV
SIMULATION RESULTS WITH VARIOUS MUTATION PROBABILITIES

F. Parameter Specifications and Computation Time

In the previous computer simulations for evaluating the
performance of our fuzzy classifier system for test data, we
used the same parameter specifications for the four different
data sets (i.e., credit approval, glass, appendicitis, and cancer).
The simulation results in the previous sections demonstrated
that our fuzzy classifier system with the common parameter
specifications has high classification performance for the four
data sets. This implicitly shows that our fuzzy classifier system
does not require fine parameter tuning.

In order to show the robustness of our fuzzy classifier
system with respect to parameter specifications, we show
simulation results with different parameter values. For the wine
data, we performed computer simulations by changing one
of the four parameter values (i.e., population size, crossover
probability, mutation probability, and the number of replaced
rules). The other parameters were specified in the same manner
as in Section IV-A. Simulation results obtained by ten trials for
each parameter specification are summarized in Tables II–V.
From these tables, we can see that our fuzzy classifier system
works well in a wide-range of parameter values.

Computation time is a very important criterion as well as
classification performance when we choose a classification
method to be applied to real-world problems. We examined
the CPU time of our fuzzy classifier system by using all the
given samples in each data set as training data. In Table VI,
we show the CPU time for each data set required for a single
trial until 1000 generations with 100 fuzzy if–then rules. The
CPU time was measured by a workstation (with Ultra SPARC

TABLE V
SIMULATION RESULTS WITH VARIOUS SPECIFICATIONS

OF THE NUMBER OF REPLACED RULES

TABLE VI
CPU TIME FOR EACH TEST PROBLEM

TABLE VII
SIMULATION RESULTS WITH DIFFERENT ANTECEDENT FUZZY SETS

143 MHz, 32 MB RAM, and Sun OS 5.5). Our fuzzy classifier
system was coded as a computer program using C language.
From Table VI, we can see that our fuzzy classifier system
does not require long computation time even if it is applied to
real-world pattern classification problems with many attributes.
This clearly shows the applicability of our fuzzy classifier
system to real-world pattern classification problems.

We also examined the effect of antecedent fuzzy sets on
the performance of our fuzzy classifier system. Instead of
the five fuzzy sets in Fig. 1, we used three fuzzy sets and
four fuzzy sets. In both cases, each axis of pattern spaces
was homogeneously partitioned into triangular fuzzy sets in
the same manner as in Fig. 1. Our fuzzy classifier system
with the three fuzzy sets and “don’t care” was applied to
the appendicitis data for evaluating its performance for test
data by the leaving-one-out procedure in the same manner
as in Section IV-D. The four fuzzy sets and “don’t care”
were also examined in the same manner. Simulation results
are summarized in Table VII where the previous result with
the five fuzzy sets is also shown. From this table, we can see
that the performance of our fuzzy classifier system is not very
sensitive to the choice of antecedent fuzzy sets.

V. CHARACTERISTIC BEHAVIOR

OF FUZZY CLASSIFIER SYSTEM

We have already demonstrated that our fuzzy classifier
system has high classification ability while it involves no
learning mechanism of membership functions. In the computer
simulations of the previous sections, we did not use any expert
knowledge for specifying the membership function of each
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Fig. 10. Fuzzy partition with four fuzzy if–then rules.

antecedent fuzzy set, either. We simply used the homogeneous
fuzzy partition for each axis of the pattern space. In this
section, we discuss why our fuzzy classifier system with such
simple specifications worked well for the real-world pattern
classification problems with many attributes.

A. Classification Boundary

If we use a crisp partition for each axis of the pattern
space as in many machine learning techniques, classification
boundaries between different classes are usually parallel to the
axes of the pattern space (for example, see [44, ch. 10]). While
our fuzzy classifier system employs the fixed membership
functions and the simple fuzzy grid as shown in Fig. 1, it
can generate various classification boundaries because it uses
the fuzzy reasoning method that takes into account the grade
of certainty of each fuzzy if–then rule.

For simplicity of discussion, let us assume that we have
only the following four fuzzy if–then rules generated by the
fuzzy partition in Fig. 10:

: If is small and is small then Class

with CF CF

: If is small and is large then Class

with CF CF

: If is large and is small then Class

with CF CF

: If is large and is large then Class

with CF CF

When these four fuzzy if–then rules have the same grade of
certainty (e.g.,CF for ), the classification
boundary is very simple as shown in Fig. 11(a) where each
real number in parentheses denotes the grade of certainty of the
corresponding fuzzy if–then rule. Various classification bound-
aries, however, can be generated as shown in Fig. 11(b)–(d)
by assigning different grades of certainty to the fuzzy if–then
rules. In Fig. 11(b)–(d), the certainty grade of each fuzzy
if–then rule is shown as a real number in parentheses as in
Fig. 11(a). There is no region of Class 2 in Fig. 11(d) because
we specified the grade of certaintyCF of the corresponding
fuzzy if–then rule asCF in this figure. As shown in
Fig. 11, our fuzzy classifier system has the ability to generate
complicated classification boundaries while each fuzzy if–then
rules is very simple. This is one reason of high performance

(a) (b)

(c) (d)

Fig. 11. Classification boundary generated by the four fuzzy if–then rules
in Fig. 11. Real numbers in parentheses denote the grades of certainty of the
fuzzy if–then rules. In (d),CF2 = CF3 = 0.

of our fuzzy classifier system. That is, while our fuzzy
classifier system involves no tuning mechanism of membership
functions, it can generate complicated classification boundaries
by means of the heuristic specification of the grade of certainty
of each fuzzy if–then rule. From Fig. 11(b)–(d), we can see
that the classification boundaries generated by fuzzy if–then
rules are not always parallel to the axes of the pattern space.
This is one characteristic feature of the fuzzy rule-based
classification in comparison with other methods based on
nonfuzzy if–then rules. From Fig. 10, we can see that the
four fuzzy if–then rules with different consequent classes
overlap one another. Such overlap plays an important role
in generating various classification boundaries in Fig. 11.
The overlap of multiple fuzzy if–then rules with different
consequent classes is another characteristic feature of the fuzzy
rule-based classification. The conflict is automatically resolved
through the membership functions of antecedent fuzzy sets and
the grade of certainty of each fuzzy if–then rule.

B. Effect of “Don’t Care” Attribute

As we have already mentioned in Section III, the use of
“don’t care” as an antecedent fuzzy set has a significant effect
on the performance of our fuzzy classifier system. In order to
demonstrate the importance of “don’t care” as an antecedent
fuzzy set, we applied our fuzzy classifier system without “don’t
care” to the wine classification problem. That is, we used
only the five linguistic values in Fig. 1 as antecedent fuzzy
sets. Simulation results by our fuzzy classifier system over ten
trials are as follows.

Average classification rate obtained

without don’t care: %

Average classification rate obtained

with don’t care: % (see Section IV-A)
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Fig. 12. Average ratio of “don’t care” at each generation.

Fig. 13. Average classification rate at each generation.

From the comparison between these two results, we can
see that the performance of our fuzzy classifier system was
significantly deteriorated when we did not use “don’t care” as
an antecedent fuzzy set.

In order to examine the effect of “don’t care” further, we
monitored the number of “don’t care” at each generation in
computer simulations on the wine data. We applied our fuzzy
classifier system to the wine data using three different initial
populations of 60 fuzzy if–then rules. Three initial populations
were generated by assigning “don’t care” to each antecedent
fuzzy set with the probability of 0.1, 0.5, and 0.9, respectively.

In Fig. 12, we show the ratio of “don’t care” to 13 60
antecedent fuzzy sets of 60 fuzzy if–then rules at each gener-
ation. Fig. 12 is the average result over ten trials. From this
figure, we can see that the ratios of “don’t care” approached
the same value in these three conditions while the initial ratios
were different. In Fig. 13, we show the corresponding results
about classification rates at each generation. From this figure,
we can see that the initial classification rates were relatively
high when the initial ratios of “don’t care” were high.

The effect of “don’t care” can be also explained from the
point of view of the covered area by each fuzzy if–then rule.
For example, a fuzzy if–then rule with “small” for all the
13 attributes of the wine data can cover only (1/4)of the
13-dimensional (13-D) pattern space because the antecedent
fuzzy set “small” only covers 1/4 of each axis (see Fig. 1).
Thus we can see that such a fuzzy if–then rule can cover only
a very small area in the pattern space. The area covered by
each fuzzy if–then rule is enlarged by introducing “don’t care”
as an antecedent fuzzy set. For example, a fuzzy if–then rule
with “small” for two attributes and “don’t care” for the other
11 attributes of the wine data can cover 1/16 of the 13-D
pattern space.

While we demonstrated the positive effect of “don’t care”
on the performance of fuzzy if–then rules by computer sim-
ulations, it may have a negative effect at the same time. A
fuzzy if–then rule with “don’t care” attributes can extend the
region of its consequent class beyond where there are training
data. This may cause the increase of the error rate for test data.
While our fuzzy classifier system does not have any safeguard
against such over-generalization, the negative effect was not
clear in computer simulations of this paper. The inclusion of a
misclassification penalty in the fitness function can be viewed
as a safeguard against the over-generalization of fuzzy if–then
rules. This will be discussed in the next section.

The introduction of “don’t care” has also a large effect on
the comprehensibility of generated fuzzy if–then rules. As
shown in Fig. 12, about 85% of antecedent fuzzy sets were
“don’t care” in the generated fuzzy if–then rules for the wine
data. This means that each of the generated fuzzy if–then rules
has only a few antecedent conditions. Short fuzzy if–then rules
with a few antecedent conditions can be understood by human
user much easier than long rules with many conditions.

The use of general fuzzy if–then rules with many “don’t
care” conditions was also discussed in Bonarini [51] where
fuzzy classifier systems were employed for designing fuzzy
logic controllers. Ishibuchi and Murata [52] demonstrated that
the introduction of “don’t care” decreased the number of fuzzy
if–then rules in fuzzy rule-based classification systems whose
antecedent fuzzy sets were trained by a genetic algorithm in
the framework of the Pittsburgh approach. Fuzzy switching
functions with “don’t care” conditions were discussed in
[53]–[55] for concise function representation, data reduction
and error correction.

VI. EXTENSIONS

We have already explained the simplest version of our fuzzy
classifier system in the previous sections. In this section, we
suggest some directions to extend our fuzzy classifier system.

A. Misclassification Penalty

In our fuzzy classifier system, each fuzzy if–then rule
receives a unit reward when it correctly classifies a training
pattern. Thus fuzzy if–then rules that correctly classify many
training patterns receive a large amount of reward. Now let
us consider a fuzzy if–then rule that correctly classifies 20
training patterns and misclassifies ten training patterns. In this
case, a high fitness value is assigned to this fuzzy if–then
rule (i.e., fitness ) while it also misclassifies many
training patterns. In our fuzzy classifier system, such a fuzzy
if–then rule survives the generation update because of its high
fitness value.

Such a fuzzy if–then rule can be removed during the
generation update by introducing the misclassification penalty.
Let us denote the penalty for the misclassification of a single
training pattern by . Using the misclassification penalty,
the fitness value of each fuzzy if–then rule in (11) is modified
as follows:

fitness NCP NMP (17)
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TABLE VIII
SIMULATION RESULTS FORTRAINING DATA

WITH VARIOUS MISCLASSIFICATION PENALTIES

TABLE IX
SIMULATION RESULTS FORTEST DATA WITH

VARIOUSMISCLASSIFICATION PENALTIES

whereNCP is the number of correctly classified training
patterns by the fuzzy if–then rule , and NMP is the
number of misclassified patterns.

In order to demonstrate the effect of the misclassification
penalty, we applied the modified fuzzy classifier system with
the misclassification penalty to the cancer data. We iterated
the ten-fold cross-validation procedure ten times in the same
manner as in Section IV for each of six penalty values (i.e.,

). Simulation results for training
data and test data are summarized in Tables VIII and IX,
respectively. It should be noted that the fuzzy classifier system
with corresponds to its original version in the
previous sections. From these tables, we can observe the
following.

(1) By appropriately specifying the misclassification
penalty, we can improve the performance of our fuzzy
classifier system for the cancer data (see Table IX for
test data). In fact, the result with for test
data (i.e., 75.8% classification rate, 18.7% error rate,
and 5.5% reject rate) can be viewed as outperforming
all the reported results of 19 classification methods in
[47] and [49], and being comparable to the best result
(i.e., 77.4% classification rate, 22.6% error rate, and
0.0% rejection rate) in Grabisch [50].

(2) By assigning large values to the misclassification
penalty, high reject rates and low error rates were
obtained (see Table VIII for training data and Table IX
for test data).

The second observation can be explained by the definition
of the fitness value in (17). That is, fuzzy if–then rules that
misclassify some training patterns may have negative fitness
values in the modified fuzzy classifier system with a large
misclassification penalty even if those rules correctly classify
many training patterns. Thus such fuzzy if–then rules are
replaced with new rules in the next generation. In this way,
high rejection rates remain during the generation update.

Fig. 14. Simulation results by the hybrid algorithm.

B. Learning of the Grade of Certainty

It has been demonstrated that the performance of fuzzy
if–then rules can be improved by adjusting the grade of
certainty of each rule in Nozakiet al. [56]. The learning pro-
cedure in [56] is the following simple reward-and-punishment
scheme. When a training pattern is correctly classified by a
fuzzy if–then rule (say, ), its grade of certainty is increased
as the reward of the correct classification as

CF CF CF (18)

where is the learning rate for increasing the grade of cer-
tainty. On the other hand, if the training pattern is misclassified
by the fuzzy if–then rule , its grade of certainty is decreased
as the punishment of the misclassification as

CF CF CF (19)

where is the learning rate for decreasing the grade of
certainty.

This learning procedure can be combined with our fuzzy
classifier system to construct a hybrid algorithm. In the hybrid
algorithm, the learning procedure is applied to each population
of fuzzy if–then rules before the fitness value is assigned to
each rule.

In order to demonstrate the effect of the learning procedure,
we applied the hybrid algorithm to the wine data in the same
manner as in Section IV. The learning procedure was iterated
ten times for each pattern (i.e., ten epochs) at each generation.
Simulation results are summarized in Fig. 14 together with
the previous results by the original fuzzy classifier system
in Section IV. This figure shows the average classification
rate for training data at each generation over ten trials. From
this figure, we can observe that the hybrid algorithm can
find fuzzy if–then rules with high classification performance
in early generations. In fact, 100% classification rate for
training data was obtained in all the ten trials. On the average,
all the training patterns were correctly classified after 138
generations. This means that 138 rule set examinations in the
hybrid algorithm were required for 100% classification rate
on the average. This result clearly outperformed the reported
result of the genetics-based machine learning system in [42].

C. Alternative Coding

Let us consider a classification problem in Fig. 15. All
the given training patterns may be correctly classified by the
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Fig. 15. Example of a pattern classification problem.

Fig. 16. Alternative coding method.

following three fuzzy if–then rules if we introduce combined
antecedent fuzzy sets such as “small or medium small”:

: If is small or medium smalland is don’t care

then Class 1 withCF CF

: If is don’t careand is medium largeor large

then Class 1 withCF CF

: If is mediumor medium largeor large and

is small or medium smallor medium

then Class 2 withCF CF

These fuzzy if–then rules can not be generated by our fuzzy
classifier system because only a single antecedent fuzzy set is
assigned to each attribute in the coding of each fuzzy if–then
rule.

In our fuzzy classifier system, we can introduce an alterna-
tive coding method for representing the above fuzzy if–then
rules. The alternative coding method has six boxes for each
attribute as shown in Fig. 16 where each of the above three
fuzzy if–then rules is denoted by a string with 12 boxes.
In the alternative coding, “1” means that the corresponding
antecedent fuzzy set appears in the fuzzy if–then rule. A
similar coding method has already been used in [26] where
“don’t care” was not explicitly used as an antecedent fuzzy
set. A string with all 1’s in [26] corresponds to “don’t care”.
But they are not equivalent to each other because “don’t care”
has a rectangular membership function as shown in Fig. 2
while the string with all 1’s in [26] is the union of triangular
membership functions.

D. Biased Probabilities

As we have already demonstrated, the antecedent fuzzy set
“don’t care” plays a very important role in our fuzzy classifier

system. In fact, it did not work well without this special
antecedent fuzzy set as shown in Section V-B. In order to
effectively utilize “don’t care” in our fuzzy classifier system,
we can use the following two tricks:

1) To assign a larger probability to “don’t care” than the
other antecedent fuzzy sets when an initial population
is generated. For the effect of this trick, see Fig. 13 in
Section V.

2) To bias the mutation probability in order that the mu-
tation to “don’t care” has a larger mutation probability
than the mutation from “don’t care” to the other an-
tecedent fuzzy sets.

These tricks force fuzzy if–then rules to have many “don’t
care” symbols in their antecedent parts. Because attributes
with “don’t care” can be omitted in fuzzy if–then rules, we
can obtain general fuzzy if–then rules with a small number of
linguistic conditions in the antecedent parts by these two tricks.

E. Heuristic Procedure for Generating an Initial Population

As Nakaokaet al. [29] have already pointed out, the per-
formance of a randomly generated initial population is usu-
ally very poor (see also Figs. 9 and 13). This is because
many training patterns have no compatible initial fuzzy if–then
rules. That is, the classification of many training patterns is
rejected by the initial population of randomly generated fuzzy
if–then rules. Nakaokaet al. [29] proposed an idea to count the
number of antecedent fuzzy sets that are compatible with an
input vector in their fuzzy classifier system for fuzzy control
problems. Bonarini [51] proposed a fuzzy classifier system
to efficiently design fuzzy logic controllers, in which a special
rule generation mechanism was employed to insure that useless
fuzzy if–then rules with no compatible input cases were never
generated.

For pattern classification problems, an initial population
with high classification performance can be easily generated
as follows:

Step 1: For each training pattern, find a fuzzy if–then rule
that has the largest compatibility with the training
pattern. Because “don’t care” has the largest com-
patibility to any attribute value, this special fuzzy
set is not considered as an antecedent fuzzy set in
this stage. For example, from a three-dimensional
training pattern , the fol-
lowing fuzzy if–then rule is found as the most
compatible rule when we use the five linguistic
value in Fig. 1:

If is small and is mediumand

is large then Class with CF CF

In this step, fuzzy if–then rules are generated
from the given training patterns.

Step 2: With a pre-specified probability, replace antecedent
fuzzy sets with “don’t care”.

Step 3: From the generated fuzzy if–then rules, ran-
domly select rules where is the pop-
ulation size. In this stage, we can also use the rule
selection method in [40], [41].



616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 29, NO. 5, OCTOBER 1999

F. Variable Population Size

Because the number of fuzzy if–then rules in each popu-
lation of our fuzzy classifier system is constant, it can not
be directly applied to the rule selection problem with two
objectives: to maximize the classification rate and to minimize
the number of fuzzy if–then rules. When we try to minimize
the number of fuzzy if–then rules as well as to maximize the
classification rate, unnecessary fuzzy if–then rules have to be
removed from each population in our fuzzy classifier system.
This can be done by replacing all the fuzzy if–then rules that
have no reward (i.e.,fitness ) with a small number of
newly generated fuzzy if–then rules. In this way, unnecessary
fuzzy if–then rules are removed from a current population at
each generation. It should be noted that the population size is
not constant in this scheme.

Another idea for minimizing the number of fuzzy if–then
rules is to assign a flag to each fuzzy if–then rule to indicate
whether the corresponding fuzzy if–then rule should be in-
cluded in the fuzzy rule-based system or not. That is, a fuzzy
if–then rule is included in the fuzzy rule-based system if its flag
is “1”. Otherwise (i.e., its flag is “0”), the corresponding fuzzy
if–then rule is not included in the fuzzy rule-based system. In
this scheme, the population size is constant. A similar idea
was used in Shimojimaet al. [22] and Ishibuchiet al. [40],
[41] for the Pittsburgh approach.

VII. CONCLUSION

In this paper, we demonstrated high performance of a
fuzzy classifier system for pattern classification problems with
many continuous attributes. Our fuzzy classifier system is very
simple because

1) antecedent fuzzy sets of each fuzzy if–then rule are
prespecified linguistic values with fixed membership
functions;

2) the consequent class and the grade of certainty of each
fuzzy if–then rule are determined by a simple heuristic
procedure.

No tuning mechanism of membership functions is involved in
our fuzzy classifier system. The simplicity of the algorithm is
one advantage of our fuzzy classifier system. Because we use
pre-specified linguistic values as antecedent fuzzy sets, fuzzy
if–then rules are always linguistically interpreted by human
users. The comprehensibility of the generated fuzzy if–then
rules is another advantage of our fuzzy classifier system. Since
the generated fuzzy if–then rules involve many “don’t care”
conditions (e.g., about 85% of antecedent fuzzy sets were
“don’t care” in the computer simulation on wine data; see
Fig. 12), they can be rewritten as short fuzzy if–then rules with
a small number of antecedent conditions. This makes the gen-
erated fuzzy if–then rules more comprehensible. By computer
simulations on real-world test problems, we examined the
performance of our fuzzy classifier system. Simulation results
demonstrated that our fuzzy classifier system outperformed
many other classification methods. We also suggested various
directions to extend our fuzzy classifier system in order to
improve its performance. Some variants of our fuzzy classifier
system were examined in [57] and [58].

It has been often claimed that fuzzy rule-based systems with
grid-type fuzzy partitions can not scale up high-dimensional
problems with many inputs while such systems work well for
low-dimensional problems. This paper clearly demonstrated
that our fuzzy classifier system based on simple fuzzy grids
worked well for real-world pattern classification problems with
more than ten continuous attributes. The main contribution
of this paper is to have proposed an approach to the design
of fuzzy rule-based systems with both high performance and
high comprehensibility, and to have clearly demonstrated its
effectiveness by computer simulations on real-world pattern
classification problems. One difficulty of our fuzzy classifier
system is that the number of fuzzy if–then rules is not
minimized. In our fuzzy classifier system, the fitness function
is assigned to each fuzzy if–then rule and the quality of the
rule set is not taken into account in the evolution of fuzzy
if–then rules. Thus, it is difficult to directly minimize the
number of fuzzy if–then rules by including it in the fitness
function even if we extend the population size to an adaptable
parameter. For example, it is known that only five fuzzy
if–then rules can classify all the 178 samples in the wine
data (see [59]). This result was obtained by a multi-objective
genetic algorithm based on the Pittsburgh approach where each
individual corresponds to a rule set. Because a fitness value
is assigned to each rule set in the Pittsburgh approach, we
can minimize the number of fuzzy if–then rules by a genetic
algorithm. The computation load of the Pittsburgh approach,
however, is much larger than our fuzzy classifier system.
Including a minimization procedure of the number of fuzzy
if–then rules in our fuzzy classifier system without involving
significant increase of computation load is left for future work.
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