
Received July 10, 2019, accepted August 8, 2019, date of publication August 22, 2019, date of current version September 6, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936840

Performance Evaluation of Generalized
Frequency Division Multiplexing Systems
Over Non-Linearities With Memory

ALEXANDER HILARIO-TACURI 1, JOSE MAURO P. FORTES2, RAIMUNDO SAMPAIO-NETO2,
LEONEL SONCCO1, DIEGO DONAIRES1, AND JUAN BORJA1
1Department of Electronic Engineering, Universidad Nacional de San Agustín de Arequipa, Arequipa 04000, Perú
2Department of Electrical Engineering, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro 22451-900, Brazil

Corresponding author: Alexander Hilario-Tacuri (ahilariot@unsa.edu.pe)

This work was derived from the research project funded by the Universidad Nacional de San Agustín de Arequipa under Contract No

IBAIB-05-2019-UNSA.

ABSTRACT The fifth generation (5G) of mobile communications systems plans to support different types

of applications, where each of these applications may have different requirements. For this reason, the main

characteristic of 5G mobile communications systems is the flexibility of their architecture. An interesting

proposal that can meet the requirements of these applications is the multi-carrier waveform Generalized

Frequency Division Multiplexing (GFDM). However, due to its multi-carrier nature, this new waveform is

highly sensitive to non-linear distortions arising mainly from high-power amplifiers (HPA). In addition,

the wideband characteristics of multi-carrier signals result in frequency-dependent distortions, typically

know as memory effects. This paper presents the development of closed-form analytical expressions that

could be used to evaluate the impact of the distortions induced by non-linearities with memory in the out-

of-band emissions and the bit error rate performance of GFDM-based systems. The resulting analytical

expressions are general enough to obtain numerical results for different parameters of the GFDM-based

system.

INDEX TERMS 5G mobile communication, bit error rate, GFDM, non-linear distortion, out-of-band

emission, performance analysis, spectral analysis.

I. INTRODUCTION

The main feature in the evolution of mobile communication

systems was the progressive increase of the transmission data

rate. Unlike its predecessors, it is expected that the next

generation of mobile communication systems (5G systems)

will have the flexibility of its architecture as main feature,

mainly due to the fact that it is expected that diverse applica-

tions can be implemented over these communication systems.

Some of these applications are: Tactile Internet [1], Machine

Type Communications [2], Cognitive Radio [3], Industrial

Automation [4], and Autonomous Vehicles [5]. The flexi-

bility of the 5G mobile communication systems is required

because in addition to a high data rate, each of these applica-

tions has different requirements that may include: ultra low

latency, long battery life, low out-of-band emission among

others.

The associate editor coordinating the review of this article and approving
it for publication was Abbas Jamalipour.

Proposals to meet the requirements of 5G systems

that can be found in literature include: Massive MIMO

systems [6], mmWave systems [7] and new waveforms [8].

Although many new waveforms have been proposed in

recent years [8], [9], many researchers around the world

considers (mainly because of their flexibility) that the most

promising waveform is the Generalized Frequency Division

Multiplexing (GFDM). GFDM is a non-orthogonal multi-

carrier waveform that transmit a data block composed of

M sub-symbols and N sub-carrier which are cyclic filtered

by a shaping pulse that is shifted into frequency and time

domains [10]. Studies on GFDM that can be found in the

literature include: Bit Error Rate (BER) analysis in differ-

ent scenarios [11]–[13], spectral analysis [14]–[16], receiver

and filter design [17]–[19], interferencemitigation [20], [21],

practical implementation [22], [23] among others. Despite

the great advantages of this new waveform, due to its

multi-carrier nature, the GFDM is highly sensitive to
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non-linear distortions arising mainly from high-power ampli-

fiers (HPA). Due to all modern communication systems use

HPAs, the studies that analyze the performance degradation

caused by non-linear distortions in GFDM-based systems are

very important. Nevertheless, only a few studies about this

research topic can be found in literature [24]–[26]. These

studies presents results on the performance of GFDM-based

systems in terms of spectral efficiency and bit error

rate, obtained by computer simulations and restricted to

memory-less non-linear systems.

Unlike the previously mentioned studies, this paper

presents the development of closed-form analytical expres-

sions that could be used in the spectral and bit error rate per-

formance analysis of GFDM-based systems operating over

non-linear systems with memory. These non-linear systems

with memory, are defined using the Wiener-Hammerstein

model. The rest of the paper is organized as follows. Section II

presents the considered GFDM signal and the model of the

non-linear system with memory. Section III shows the devel-

opment of mathematical expressions to be used for spectral

and bit error rate analysis of GFDM-based systems operat-

ing over non-linear systems with memory. Numerical results

obtained using these mathematical expressions are presented

in Section IV and finally, in Section V some conclusions are

drawn.

II. SYSTEM MODEL

A. GFDM SIGNAL

The low-pass equivalent of theGFDMsignal can be described

by [14], [27]

x̃(t) =
∞
∑

k=−∞
x̃k (t − kT ) (1)

with x̃k (t) representing the GFDM symbol written as

x̃k (t) =
N−1
∑

n=0

M−1
∑

m=0

Xk,n,m gm(t)e
j2πnt
Ts (2)

where Xk,n,m denotes them-th complex sub-symbol transmit-

ted over the n-th subcarrier in the k-th time interval, N the

number of sub-carriers,M the number of sub-symbols, Ts the

sub-symbol duration, T = MTs the GFDM symbol duration

and gm(t) the shaping pulse, defined as

gm(t) = wT (t)g(t − mTs), (3)

with wT (t) being a windowing pulse of duration T and g(t)

denoting a periodic pulse with period T .

1) POWER SPECTRAL DENSITY

The auto-correlation function (ACF) of the GFDM signal,

described by

Rx̃(t, τ ) = E[x̃(t + τ )x̃∗(t)], (4)

is given by

Rx̃(t, τ ) =
∑

k1,n1,m1

∑

k2,n2,m2

E[Xk1,n1,m1
X∗
k2,n2,m2

]

× gm1
(t + τ − kT )g∗

m2
(t − kT )e

j
2π [(n1−n2)t+n1τ ]

Ts .

(5)

Considering that, for different subcarriers and time intervals,

sub-symbols Xk,n,m are statistically independent, that is,

E[Xk1,n1,m1
X∗
k2,n2,m2

]=
{

EX ; (k1, n1,m1) = (k2, n2,m2)

0; (k1, n1,m1) 6= (k2, n2,m2)

(6)

it is possible to rewrite (5) as

Rx̃(t, τ )=EX

∞
∑

k=−∞

N−1
∑

n=0

M−1
∑

m=0

gm(t+τ −kT )g∗
m(t−kT )e

j2πnτ
Ts

(7)

where EX denote the mean energy of sub-symbols Xk,n,m.

Due to the ACF of the GFDM signal is periodic in time with

period T , the mean of the ACF is defined as

R̄x̃(τ ) = 1

T

∫

T

Rx̃(t, τ )dt. (8)

From (7) and (8) and after some mathematical manipulations

is possible to write

R̄x̃(τ ) = EX

T

N−1
∑

n=0

M−1
∑

m=0

pm(τ )e
j2πnτ
Ts (9)

where pm(τ ) = gm(τ ) ∗ g∗
m(−τ ) with ‘‘∗’’ representing the

convolution operation. Finally, the power spectral density of

the GFDM signal is given by the Fourier transform of R̄x̃(τ ),

meaning that,

Sx̃(f ) = EX

T

N−1
∑

n=0

M−1
∑

m=0

Pm

(

f − n

Ts

)

(10)

where Pm(·) denote the Fourier transform of pm(·). Consider-
ing the definition of pm(τ ), is possible to rewrite (10) as

Sx̃(f ) = EX

T

N−1
∑

n=0

M−1
∑

m=0

∣

∣

∣

∣

Gm

(

f − n

Ts

)∣

∣

∣

∣

2

(11)

with Gm(f ) representing the Fourier transform of gm(t).

• General expression for Gm(f ): Considering (3), is possi-

ble to define Gm(f ) as

Gm(f ) = [WT (f )] ∗
[

G(f )e−j2πmTsf
]

(12)

withWT (f ) and G(f ) representing the Fourier transform

of wT (t) and g(t) respectively. Since g(t) is a periodic

pulse of period T , its Fourier transform is given by

G(f ) = 1

T

∞
∑

i=−∞
GT (i/T )δ(f − i/T ) (13)

where GT (·) denote the Fourier transform of the trun-

cated version (in a period T ) of g(t). After some mathe-

matical manipulation, is possible to rewrite (12) as

Gm(f ) =
∞

∫

−∞

G(α)e−j2πmTsαWT (f − α)dα (14)
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FIGURE 1. Power Spectral density of GFDM signals with N = 64 and
different M values.

or, by substituting (13) into (14),

Gm(f ) = 1

T

∞
∑

i=−∞
GT (i/T )WT (f − i/T )e−j2πmi/M .

(15)

In order to demonstrate the use of the previously developed

mathematical expressions, Fig. 1 shows power spectral den-

sity curves for GFDM signals considering different values

of M . In this figure it was also considered that Ts = 1µs,

N = 64, wT (t) is a rectangular pulse and g(t) is a raised

cosine shaping pulse.

B. NON-LINEAR SYSTEM WITH MEMORY

In this work, the Wiener-Hammerstein model is used to char-

acterize the non-linear system with memory. As can be seen

in Fig. 2, two linear time-invariant systems (with impulse

responses ũ(t) and h̃(t)) are used to consider the memory

effects of the non-linear system.

FIGURE 2. Block diagram of the Wiener-Hammerstein model.

The memoryless non-linearity in Fig. 2 is assumed to be of

polynomial type [28], that is,

w̃(t) =
L

∑

ℓ=0

γ2ℓ+1z̃
ℓ+1(t)z̃∗

ℓ

(t). (16)

with L denoting the maximum odd order of the non-linearity

and γ2ℓ+1 the coefficients used for modeling the

non-linearity.

Note that, the relationship between the input and output

signals of the non-linear system presented in Fig.2 can also

be modeled using the Volterra series [29], that is,

ỹ(t) =
L

∑

ℓ=0

∞
∫

−∞

· · ·
∞

∫

−∞

k̃2ℓ+1(α1, . . . , α2ℓ+1)

ℓ+1
∏

r=1

x̃(t − αr )

×
2ℓ+1
∏

s=ℓ+2

x̃∗(t − αs)dα1, . . . , dα2ℓ+1 (17)

with k̃2ℓ+1(α1, . . . , α2ℓ+1) denoting the Volterra kernels

defined by

k̃2ℓ+1(α1, . . . , α2ℓ+1) = γ2ℓ+1

∞
∫

−∞

h̃(v)

ℓ+1
∏

r=1

ũ(αr − v)

×
2ℓ+1
∏

s=ℓ+2

ũ∗(αs − v)dv (18)

III. PERFORMANCE EVALUATION

A. SPECTRAL ANALYSIS: OUT-OF-BAND EMISSIONS

The Price’s Theorem for complex values [14], [30], states

that the relationship between the ACFs of inputs and output

signals of a memory-less non-linear system is given by

∂Rw̃(τ )

∂Rz̃(τ )
= E

[

∂2w(t)w∗(t + τ )

∂ z̃(t)∂ z̃∗(t + τ )

]

. (19)

Considering (16), is possible to rewrite (19) as

∂Rw̃(τ )

∂Rz̃(τ )
=

L
∑

ℓ1=0

L
∑

ℓ2=0

γ2ℓ1+1γ
∗
2ℓ2+1(ℓ1 + 1)(ℓ2 + 1)

×E
[

z̃ℓ1 (t + τ )z̃∗
ℓ1
(t + τ )z̃ℓ2 (t)z̃∗

ℓ2
(t)

]

. (20)

The expected value in (20) can be computed using the Reed’s

Theorem [31]. Note that, using (20), is posible to compute

the ACF of the memory-less non-linear output signal, for

instance, if a third order non-linearity is considered (meaning

that L = 1), the ACF of w̃(t) is defined by

Rw̃(τ ) = C1Rz̃(τ ) + C3R
∗
z̃ (τ )R

2
z̃ (τ ) (21)

where Rz̃(τ ) represent the ACF of z̃(t) and the complex coef-

ficients C1 and C3 are given by

C1 = |γ1 + 2γ3Pz̃|2 (22)

and

C3 = 2|γ3|2 (23)

respectively. In (22), Pz̃ represent the mean power of z̃(t) and

can be computed using

Pz̃ = Rz̃(0). (24)

The power spectral density of w̃(t) is then obtained applying

the Fourier transform to Rw̃(τ ), thus,

Sw̃(f ) = C1Sz̃(f ) + C3S
∗
z̃ (−f ) ∗ Sz̃(f ) ∗ Sz̃(f ) (25)
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with Sz̃(f ) representing the power spectral density of z̃(t)

given by

Sz̃(f ) = |Ũ (f )|2Sx̃(f ). (26)

Finally, the power spectral density of the non-linear output

ỹ(t) can be obtained using

Sỹ(f ) = |H̃ (f )|2Sw̃(f ). (27)

In (26) and (27), Ũ (f ) and H̃ (f ) denote the Fourier transform

of ũ(t) and h̃(t) respectively.

In this work, the spectral analysis is quantified according

to the out-of-band emissions (OOB) of the GFDM signal. The

OOB is defined as the ratio between the energy that is inside

and outside a certain allocated bandwidth B [14], [32].

OOBe =
∫

f /∈B Sỹ(f )df
∫

f ∈B Sỹ(f )df
(28)

B. BIT ERROR RATE

According to the Bussgang’s Theorem [33], in any time

interval the relationship between the input and output signal

of a memoryless non-linear channel is defined as

w̃k (t) = αz̃k (t) + b̃k (t) (29)

where α is a complex coefficient that, for a third-order mem-

oryless non-linearity of polynomial type, is given by

α = γ1 + 2γ3Pz̃ (30)

and bk (t) represent a zero mean non-linear noise uncorrelated

of z̃k (t). For a larger number of subcarriers this non-linear

noise can be approximated by a random Gaussian process.

The received signal distorted by the non-linear channel and

corrupted by an additive white Gaussian noise (AWGN), with

power spectral density N0, is given by

r̃k (t) = ỹk (t) + ñ(t) (31)

where the non-linear distorted output ỹk (t) can be write as

ỹk (t) = αx̃k (t) ∗ ũ(t) ∗ h̃(t) + b̃k (t) ∗ h̃(t). (32)

To obtain analytical expressions for the bit error rate of

GFDM systems, matched filters are considered in the receiver

as shown in Fig. 3. According to this block diagram, the

m-th complex sub-symbol received on the n-th subcarrier in

the k-th time interval is given by

X̂k,n,m =
∞

∫

−∞

r̃k (t)g
∗
m(t)e

−j2πnt
Ts dt. (33)

By using (2), (32) and (31) it is possible to rewrite (33) as

X̂k,n,m = Rn,mXk,n,m + Ik,n,m + Bk,n,m + Nk,n,m (34)

where Ik,n,m represents the self-interference of the GFDM

symbol given by

Ik,n,m =
N−1
∑

n1=0
(n1 6=n,

M−1
∑

m1=0
m1 6=m)

Xk,n1,m1
R(n,m)n1,m1

, (35)

FIGURE 3. Matched filter receiver for GFDM systems.

with R
(n,m)
n1,m1

defined as

R(n,m)n1,m1
= α

∞
∫

−∞

Gm1

(

f − n1

Ts

)

G∗
m

(

f − n

Ts

)

Ũ (f )H̃ (f )df .

(36)

Still in (34), Bk,n,m denotes the term due to the non-linear

noise given by

Bk,n,m =
∞

∫

−∞

∞
∫

−∞

b̃k (t)H̃ (f )G∗
m

(

f − n

Ts

)

e−j2π ftdtdf , (37)

Nk,n,m represents the term due to AWGN given by

Nk,n,m =
∞

∫

−∞

ñ(t)g∗
m(t)e

−j2πnt
Ts dt (38)

and Rn,m represents a particular case of R
(n,m)
n1,m1

where

(n1,m1 = n,m), that is,

Rn,m = α

∞
∫

−∞

∣

∣

∣

∣

Gm(f − n

Ts
)

∣

∣

∣

∣

2

Ũ (f )H̃ (f )df . (39)

• Characterization of Ik,n,m: From (35) and using the Cen-

tral Limit Theorem, it is possible to approximate the

self-interference Ik,n,m (for larger values of M and N) by

a gaussian random variable with zero mean and variance

Var[Ik,n,m] =
N−1
∑

n1=0
(n1 6=n,

M−1
∑

m1=0
m1 6=m)

|R(n,m)n1,m1
|2. (40)

• Characterization of Bk,n,m: From (37) and considering

the statistical characteristics of b̃k (t), it can be shown

that Bk,n,m is a gaussian random variable with zero mean

and variance given by

Var[Bk,n,m] =
∞

∫

−∞

Sb̃k (f )|H̃ (f )|2
∣

∣

∣

∣

Gm

(

f − n

Ts

)∣

∣

∣

∣

2

df

(41)
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with Sb̃k (f ) denoting the power spectral density of b̃k (t).

For a third-order memoryless non-linearity of polyno-

mial type, Sb̃k (f ) is given by

Sb̃k (f ) = C3S
∗
z̃ (−f ) ∗ Sz̃(f ) ∗ Sz̃(f ). (42)

• Characterization of Nk,n,m: From (38) and consider-

ing the statistical characteristics of the AWGN, ñ(t),

it results that Nk,n,m is a gaussian random variable with

zero mean and variance σ 2
Nn,m

= N0 Rn,m.

Assuming that the GFDM receiver has a perfect knowledge

of Rn,m, the decision can be made based on the variable

Dk,n,m = X̂k,n,m

Rn,m
= Xk,n,m + Zk,n,m, (43)

where

Zk,n,m = Ik,n,m

Rn,m
+ Bk,n,m

Rn,m
+ Nk,n,m

Rn,m
(44)

is a zero mean gaussian random variable with variance

σ 2
Zn,m

= Var[Ik,n,m]

|Rn,m|2 + Var[Bk,n,m]

|Rn,m|2 +
σ 2
Nn,m

|Rn,m|2 . (45)

The approximated bit error rate (BER) for each subsymbol

and subcarrier of a GFDM system using a M-PSK modula-

tion is given by

Pb(n,m) ≃ 2Q
(

√

2 SNR(n,m) sin
( π

M

))

(46)

where Q(·) is the well-known Q-function defined by [34]

Q(x) = 1√
2π

∫ ∞

x

e−α2/2dα (47)

and

SNR(n,m) = EX

σ 2
Zn,m

. (48)

Finally, the average BER can be computed by

P̄b = 1

N M

N−1
∑

n=0

M−1
∑

m=0

Pb(n,m). (49)

IV. NUMERICAL RESULTS

In this section, the mathematical expressions previously

developed are used to evaluate the performance of a particular

GFDM systems using BPSK modulation with sub-symbol

duration Ts = 1µs. In this particular case, is also considered

that wT (t) is a rectangular windowing pulse and g(t) is raised

cosine shaping pulse, periodic with period T , meaning that,

the truncated version of g(t) is given by

gT (t) = sinc(π t/Ts)
cos(πβt/Ts)

1 − (2βt/Ts)2
. t ∈

[

−T

2
,
T

2

]

(50)

where β denotes the roll-off factor of the raised cosine shap-

ing pulse. The non-linear system is considered of third order

with complex coefficients γ1 = 1 and γ3 = −0.25 [14]

and the frequency response of the two linear time-invariant

systems are given by

Ũ (f ) = G̃(f ) = 1

1 + j
2f
B0

(51)

where B0 denotes the 3dB bandwidth. Results were obtained

for different values of Input Back-Off (IBO), defined as

IBO = 10 log10

(

Psat

Pin

)

(52)

with Psat and Pin being the saturation and average input

power, respectively.

A. OUT-OF-BAND EMISSIONS

Figs. 4 and 5 shows the power spectral density of the

non-linear distorted GFDM signal for different values of the

parameters N and M and considering IBO = 4 dB and

β = 0.5. At this point, is good to point out that these

figures were obtained using only (11), (25), (26) and (27).

All these figures, also shows the power spectral density of

the input GFDM signal with the same parameters.

FIGURE 4. Power Spectral density of the non-linear distorted GFDM
signal for M = 12 and different N values.

Fig. 4 shows the power spectral density for a GFDM sig-

nal with a specific number of subsymbols (M = 12) and

for different numbers of subcarriers (N = 12, 32, 48, 64).

As can be seen in these figures, the larger the value of N ,

the lower the out-of-band emissions of the non-linear dis-

torted signal. Analogously, Fig. 5 illustrate the power spectral

density for a GFDM signal with a specific number of sub-

carriers (N = 64) and for different numbers of subsymbols

(M = 1, 12, 32, 64). Again, from this figure it is possible to

conclude that, the larger the value of M , the lower the out-

of-band emissions of the non-linear distorted GFDM signal.

Note that, the exact values of the OOB emissions can be

computed using (27) and, for the specific values considered

in this section, they are listed in Table 1.

VOLUME 7, 2019 119135



A. Hilario-Tacuri et al.: Performance Evaluation of GFDM Systems Over Non-Linearities With Memory

FIGURE 5. Power Spectral density of the non-linear distorted GFDM
signal for N = 64 and different M values.

TABLE 1. Out-of-band emission for different values of M and N.

FIGURE 6. Power Spectral density of the non-linear distorted GFDM
signal for different values of IBO.

Fig. 6 shows the power spectral density of the non-linear

distorted GFDM signal with β = 0.5, M = 12, N = 32

and for different values of IBO. In order to demonstrate the

robustness and flexibility of the develop analytical expres-

sions, this figure also shows the power spectral density of a

GFDM signal distorted by a memory-less non-linear system

with the same parameters. As expected, this figure confirms

that the larger the IBO value, the lower the out-of-band

emission of the non-linear distorted GFDM signal. The exact

values of these emissions are listed in Table 2.

TABLE 2. Out-of-band emission for different IBO values.

B. BIT ERROR RATE

To obtain the BER of GFDM-based systems (46), (48)

and (49) were used. For comparison purposes, Figs. 7 to 10

show BER curves corresponding to GFDM-based systems

corrupted by AWGN and non-linearities and BER curves

of GFDM-based systems corrupted only by AWGN. The

effect of the total number of subcarriers N on the BER of

a GFDM-based system with IBO = 4 dB and β = 0.5 is

illustrated in Fig. 7. This figure indicates that the BER varies

very little with N , for both situations considered AWGNwith

and without a non-linear system with memory.

FIGURE 7. BER of a GFDM-based system for different N values.

To illustrate the effects of the total number of

sub-symbols M , Fig. 8 shows the BER curves for a

GFDM-based system with IBO = 4 dB, β = 0.5 and for

different values of M . This figure confirms that, the larger

the value of M the worse is the performance of the GFDM

system. Note that, the curve form = 1 also represent the BER

of a classical OFDM system and as can be seen in Fig 8, it has

the worst BER performance.

The effect of the shaping pulse on the BER of

GFDM-based systems with IBO = 4 dB, M = 7, N = 64

and for different values of β can be visualised in Fig. 9. This

figure shows that, the larger the value of β, the worse the

performance of the system.

Finally, to illustrate the effects of the non-linear system

with memory, Fig. 10 presents the BER of GFDM-based

systems with M = 7, N = 64, β = 0.5 and for different

values of IBO. This figure confirms that the closer to the

linear region the non-linear channel operates, the better is the

performance of the system.
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FIGURE 8. BER of a GFDM-based system for different M values.

FIGURE 9. BER of a GFDM signal for different values of β.

FIGURE 10. BER of a GFDM signal for different values of the IBO.

V. CONCLUSION

This paper presented the development of closed-form analyt-

ical expressions that can be used to evaluate the performance

of GFDM-based systems operating over non-linear systems

with memory. The considered performance metrics were

the out-of-band emissions and the bit error rate. As shown

in Figs. 4 to 6 the analytical expressions obtained for the

power spectral density of the non-linear distorted GFDM

signal are general enough to be usedwith different parameters

of the GFDM-based system and of the non-lineariaty. In addi-

tion, these expressions allow for easily obtained out-of-band

emission values. Analogously, as shown in Figs. 7 to 10,

the derived analytically expressions for the bit error rate, can

easily provide BER performance curves for different parame-

ters of the GFDM-based system and of the non-linearity with

memory.
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