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Abstract 

Using simulation and probabilistic analysis, we study 
the performance of an algorithm to read entire data­
bases with locking concurrency control allowing mul­
tiple readers or an exclusive writer. The algorithm 
runs concurrently with the normal transaction procesa­
ing (on-the-fly) and locka the entities in the database 
one by one (incremental). The analysis compares differ­
ent strategies to resolve the conflicts between the global 
read algorithm and update. Since the algorithm is par­
allel in nature, its interference with normal transactions 
is minimized in parallel and distributed databases. A 
simulation study shows that one variant of the algo­
rithm can read the entire database with very little over­

head and interference with the updates. 

1 Introduction 

In many situations we would like to read an entire data­
base (usually called a checkpoint). Data in a database 
must satisfy certain aaaertioa. called co~j,tenc, can­
straant.,. In order to preserve data coruistency under 

concurrent access, the usual lockin, concurrency con­

trol allows mUltiple readen or an exclusive writer. A 

common assumption in the literature it that a consis­

tent and complete picture can be obtained only with 

a quiescent database. The reaaon is that 2-pha.ae lock­

ing [2]-necessary for consistency- would require a naive 
reader of the entire database to lock aU data at leaat 

for a moment, thus updates must stop. 
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We should note that checkpointing in databases that 
allow multiple readers and a writer presents no prob­
lem. In principle, any database that maintains two 
versions of its data can provide this level of concur­
rency [1]. However, for efficiency reasons, most prac­
tical databases write in-place. It is in these cases that 
our work should become useful. 

We have previously described an algorithm [7,8] that 
can read the database entities one by one (it is nacre­
mental), avoiding deadlocks and allowing update activ­
ities to proceed concurrently (it works on-the-fir). The 
algorithm haa two characteristics that facilitate its im­
plementation. First, our algorithm consumes modest 
hardware resources; it does not maintain extra copies 
of the databaae and produces only sequential output. 

Second, no additional disk storage is required, so only 

modifications on the concurrency control are needed to 
adapt the algorithm to existing database systems. 

In this paper, we analyze the different strategies to 
resolve conflict. between the global-read algorithm and 
update transactiolU. We show that one variant of the 
global-read (the Save-Some strategy) avoids aborting 

the updates, delaying them very little, and carries very 

small system overhead. A simulation study provides 
a quantitative confirmation of the qualitative analysis. 

The global-read is especially useful in parallel data­
bases, since it increa.aes system concurrency (and a~all­

ability) at modest resourCe consumption, abundant In 

a parallel or distributed environment.. 

The paper is organized as follows. The global read 

algorithm [7] is summarized in section 2 to make the pa­
per self-contained. In section 3, we expand on a prevI­

ous paper [8] describing in detail the different strategl(~~ 

to resolve the conflicts and estimate their performance 



In section 4, we outline the simulation program writ­
ten to study quantitatively the performance of the most 
promising strategies. Section 5 outHnes the application 
of global-read to database checkpoints, including a sim­
ple availability analysis. Finally, section 6 concludes 
the paper. 

2 The Algorithm 

2.1 Definitions and Introduction 

A database is a set of entitie.! [2]. Each entity may 
be individually read through shared locks or written 
under an exclusive lock. We will use the term global­
read to denote an incremental query reading the entire 
database. Normal transactions on the database will be 
referred to as either update tran.taction.! or read-ani, 
tran.!actions. Even though data movement may be in 
larger chunks (e.g. pages) for I/O efficiency, the lock 
granularity of the global-read and normal transactioIll 
is the same - entities. 

The algorithm haa three part •. Firat, we read entitie.s 
one by one. Second, the global-read divides the entities 
in the database into two subseu; entitie.s not yet read 
(white), and the ones already procesaed (black). Third, 

update transactions writing both white and black en­
tities are not allowed to conunit, becaUle they cannot 
be serialized either before or after the global-read. For 
simplicity of presentation, we summarize only the algo­

rithm to perform one global-read at a time. Concurrent 

global-reads may be used for totalizations and statistics 
in addition to checkpointing the databue. 

2.2 Basic Global-Read Algorithm 

The following data strudUlei are needed in the volatile 

storage. as an addition to the lock table: 

• One entity color bit per entity. (Entities can only 
take one of two "colors". black or white.) 

• One paint bit per database. used in a trick to re­
paint all entity color bit... 

• Accompanying the paint bit we have a global-read 

semaphore to guarantee only one global-read runs 

at anyone time. 

At database (lock table) initialization time, the paint 
bit is copied onto all entity color bits. Global-Reads 
can start only after all entity color bits agree with the 
paint bit. We also assume that the update transactions 
will start only after the initialization is complete. In 
case of a crash, the recovery consists simply of a re­
initialization. 

Figure 1 describes the Basic Global-Read algorithm, 
which is incremental and worlu on-the-fly. The global­
read's consistency is maintained by ensuring that all 
update transactions writing both white and black enti­
ties (gray transaction.s) are aborted. In order to enforce 
this rule, if a global-read is in progress, every update 
transaction needs to p888 an additional color te.!t be­
fore it can execute and commit. After the acquisition 
of all exclusive locks (before commit), the color bits of 
exclusively locked entities have to be checked. If all 
color bits are the same, the update can proceed, oth­
erwise it is aborted. Please note that if no global-read 
is executing, all entity color bits are the same and the 
updates will always pass the color test. A formal proof 
of global-read consistency can be found in a previous 
paper [81. 

3 Performance of Strategies 

3.1 Basic Algorithm Performance 

In the previoua paper [81, we have shown that the gray 
transactions must be aborted. Therefore the basic al­

gorithm is optimal in the sense that it aborts only the 
update transactions that cannot be serialized with re­

spect to the global-read. However, a simple probabilis­

tic analysis shows that the abort rate increases rapidly 

with the increasing number of entities being updated. 

For simplicity, we assume that the update transac­
lions access the entities in the database uniformly. This 
assumption ignores the locality of acce88, 80 our anal­

ysis is a conservative estimate. Since the interference 

exist.. only during an active global-read, let us consider 

a database with n entities, r of them painted black. 

An update transaction writing on k randomly chosen 
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{ Pre-condition: all entity color bits are the same as the paint bit (black). } 
step 1: P(semaphore) { Global-Read runs in a critical section. } 

change the paint bit. { This re-paints all entities white. } 
step 2: while there are white entities 

do begin {This loop paints the white entities black. } 
if all white entities are exclusively locked { Optimization. } 

request shared lock on a white entity and 
wait until lock is granted 

else lock any sharable white entity; 
read entity, change entity color, release entity lock. 

step 3: 
end while 
V( semaphore) 

{ All entities are black, the same as the paint bit. } 
{ Let the next checkpoint go. } 

Figure 1: Basic Global-Read 

en tities does not conflict with the global-read if all k 

entities are either white or black. The probability of 

this happening is: 

(;) (n;r) 
Pn.r(k) = ill +~. 

Figure 2 shows this probability as a function of the r In 
ratio for k = 1,2,3, and 4. Taking an example, the 

probability of non-interference of an update writing on 

3 random entities, in the middle of a global-read, IS 

slightly less than 1 in 4. 

For the duration of a global-read, the average prob­

ability of abort is equal to the area above each curve 

integrated from 0 to 1. After some algebraie trans­

formations. we obtain the following expreaaion for the 

average probability: 

2 n k -1 (r _ i) 

P(k) = n + 1 L n (n - i) 
rail laO 

:"iumerically calculatina the probability for k = 2,3,4,5 

we obtain 0.333.0.500,0.600,0.667, respectively. These 

numbers will be ~ ill IeCtion 4.3 to validate the sim­

ulation program. 

3.2 Turn-White Strategies 

Besides the abort. there are two basic ways to resolve 

the conBicts between global-read and updates (summa­

rized in table I). First. we can turn the gray transac­

tions whj;e. forcing the global-read to backtrack and 
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read some black entities again. Second, we can turn 

the gray transactions black by making them wait. Here. 

we shalJ consider the turn-white strategy first. In sec­

tion 3.3 we deseribe the turn-black strategy. 

The main idea of turn-white approach is to make 

the global-read include the updated values from the 

gray transactions, serializing them before the global­

read. The basie difficulty with this method is that the 

black entities in a gray transaction may have been up­

dated by some black transactions. Therefore. if we turn 

the gray transaction white, we have to find thoee blac" 

transactions and turn them white, too. 

Since the main advantage of two-phase locking coo­

currency control is to serialize database access WIthout 



explicitly calculating the dependencies between trans­
actions, to maintain these dependencies only for the 
global-read will be impractical for two reasons. First, 
significant processing overhead will be necessary to cal­
culate the dependencies at the transaction commit time 
for the locks held by the committing transaction. Sec­
ond, considerable main memory would have to be ded­
icated to the maintenance of data structures storing 
the dependencies. Therefore, we do not consider this 
strategy (called Repaint-Some) further. 

To avoid maintaining the dependencies, we might re­
paint all updated black entities white. This Repaint­
All strategy effectively serializes the global-read after 
all update transactions. However, towards the end of 
global-read, when alm06t all updates are black. global­
read may make little progress because of the re-reading. 
As soon as the rate of update surpasses that of read­
ing in global-read, the global-read will be unable to 
complete. Since Repaint-All will not work for large 
databases with frequent updates we will not consider it 

further. 

3.3 Turn-Black Strategies 

Compared to the turn-white strategy, the turn-black 
approach is easier to implement. An update tran8&C­
tion, realizing that a global-read is in progresa. checks 
the color of its entities before locking them. If an en­
tity is white, the update waita until the entity haa been 

painted black. In other words. we prevent the "white" 

transactions from turning gray by executing them aa 
black transactions. To decreaae the waiting time. the 

global-read may be modified t.o read the waited-for en­

tities before the idle ones. In lIe, t. fil'1re 1. instead of 
requesting a lock on &I1y wbite entity. we look for those 

entities with update. waiting and read thOlle first. 

:--; ear the beginning 0( a &iobal-read. the above Wait­

All strategy may be suboptimal for two reasons. First. 

the update transactions that started before the global­
read may have already locked a white entity and there­

fore cannot turn black. Second. many white trans­

actions that could have started and finished as white 

transactions now wait to turn black. 

Instead of preventing white transactions from turn-

ing gray. an alternative avoids aborting the already 
gray transactions by passing their white entities to 
the global-read. This Save-Some strategy turns a gray 
transaction black by storing the before-images of its 
white entities in a buffer, and painting their entity color 
bits black. The global-read will see none of the then­
gray transaction's updates, which are now all black. 
The white entities have been saved in the buffer for the 
global-read. 

The only implementation complication of Save-Some 
is that at the beginning of a transaction. it may not 
know whether it is going to be white or gray. Con­
sequently, all before-images of white entities should be 
saved in a private buffer before they are updated. If the 
transaction turns gray. the private buffer is transferred 
to the global-read buffer and the appropriate entity col­
ors are painted black. At the beginning of the global­
read. most transactions remain white. It is only to­

wards the middle of the global-read that more tr&Il8&C­
tions become gray and buffer transfers become intense. 

In a parallel or distributed environment, the global-read 
buffer can be distributed among several processing ele­
ments. minimizing the interference with normal trans­
actions. In partie ular, if multiple disk! tape devices are 
available for global-read output. arbitrarily large trans­
action loads can be accommodated. We simply add as 
many output devices (and ita buffer and processing el­
ement) aa the peak gray transaction rate requires. 

3.4 Ordered Reading 

Since the global-read accesses the disk only for the nec­
essary entity reading (and writing if copying the entity). 
its main cost is in memory requirements. Specifically. 

an entity color bit per entity may occupy significant 

areu of memory for large databases. As explained In 

the previous paper [8J, reading the database entities In 

order allowl the global-read to encode the entity color 

bits. thus reducing memory requirements. (The readln~ 
order may be a key or physical adjacency.) 

However. both the turn-white and turn-black strate­

gies depend on the ability to paint individual enlily 

color bits to avoid conflicts. For example, Save-Some 

requires the gray updates to save the white entiti~ Q'''r 

the entire database and paint their color bits [\-' ... 



Turn-White Turn-Black 

STRATEGY} Global Remedy Global Prevention Local Remedy 

Tran8action 
REPAINT-SOME REPAINT-ALL WAIT-ALL SAVE-SOME Type - '" 

, 

Wait for white Save before-
Gray Repaint black entities entities to turn images of 

black white entities 

Wait for all 
White - - entities to turn -

black 

Keep dependen-
Repaint all Black cies, repaint if - -
black entities necessary 

Read again 
Read again all Read Read saved 

Global-Read selected black waited-for 
output 

black output 
en tities first 

before-images 

Table 1: Summary of Abort-Avoiding Strategies 

Wait-All strategy relies on the speedy reading of global­
read, but since the global-read may be delayed more 

often in an ordered reading, the waiting of the updates 

will be even longer. Since the cost of main memory 

has been dropping the trade-off between memory and 

response-time would favor Save-Some and Wait-All. 

4 Simulation Study 

4.1 The Simulation Model 

The main motivatioD rcr this simulation study is the 

difficulty in the probabilittic analysis of the abort­

avoiding strategies. Therefore. the simulation study 

starts from the result.! of probabilistic analysis (section 

3.1), which are used for validation, and investigates the 

(most promising) turn-black strategies. 

Since our database is reasonably a.bstract, the sim­

ulation model follows closely the assumptions of the 

algorithm. A database is a set of entities; it supports 

shared read and exclusive write operations. Read-only 

tranaactiona do not conflict with the global-read. Even 
though they may delay the update transactions, the 

net effect is the same as longer updates. Therefore, we 

have omitted read-only transactions from the simula­

tion model. 

The goal of the simulation is to compare different 

strategies regarding their throughput, response time, 

and number of aborted transactiona. Of the three 

strategies being compared, only the Basic Algorithm 

abort. update transactions. To obtain the throughput, 

we run the simulation and count the number of suc­

cessfully conunitted transactions. As we shall see in 

section 4.2, we have chosen to measure "time" (clock 

ticks between events) indirectly in the simulation prcr 

gram. So we estimate the response time by looking at 

the average waiting time of each transaction due to the 

global-read. 

To isolate the above va.riables of interest. we assume 

that the database system has a constant multiprogra.m­

ming level during the simulation. which starts and ends 

With a single run of global-read. To smooth out the 



transient at the beginning of the simulation, we create 
a number of initial update transactions before start­
ing the global-read. M 800n &8 one of these transac­
tions finishes, another is created to take its place. So 
global-read always execute. with a constant number of 
competing update transactions. 

Each update transaction locks" entities and releases 
them. In the simulation, we do not require significant 
amount of work to be performed by the update trans­
actions. In other words. we assume the update transac­
tions are traditional short transactions, in accordance 
to a database that supports multiple readers or an ex­
clusive writer. Each successful lock acquisition implies 
a read or write, so it is counted as an I/O operation 
to the disk by an update transaction. Similarly. each 
entity locked by the global-read counts as a read oper­
ation plus a write operation. 

4.2 The Simulation Program 

The simulation model W&.l implemented usinS Concur­
rent Euclid (CE) [4J. CE supports concurrent proceuea 
and monitors for their synchronization. Global-Read 
runs in its own procea, and the other proceaees execute 

update transactions. Each CE proces. may be seen &.I a 
transaction manager. running on the same or different 
physical procesaors. The multiproganuninS (mUltipro­
cessing) level in our study is ten. A monitor containins 
the lock table maintains concurrency control 

If a transaction prOCeM requesta locu being held by 

another transaction. then the simulation prosram puta 
the requester on a waiting queue. When the lock is re­
leased, the first proce81 in the qUetM pta the lock and 

proceeds. The waitinl lime is counted in terrTll of im­

plied I/O operatioD.l is the acquwtion of locu. We 
avoid deadlocu by makiD, updat.e tranaactions lock 

the entities in the same order. Thil deadlock avoid­

ance may decrease the conflicta with the global-read 
somewhat. since randomly choeen entitiello may have 

mixed colors but ordered choice would be black. We 

use a counter to detect this situation and the number 

of transactions in this category is negligible. the reason 

being the slow progress rate of global-read - about one 

entity traversed for each completed update transaction. 

For a run consuming more than a few seconds of CPU 
time, the CE kernel scheduling of processes approxi­
mates round-robin very closely. Since all of our trans­
actions are exactly the same, l~king the same number 
of entities and consuming the same CPU resources, we 
decided to factor out the CPU part. Instead of us­
ing the CE sleep command to count time (which does 
busy wait), we use an artificial clock tick. The clock 
used is the total amount of I/O operations the simu­
lation has counted from all transactions, including the 
global-read. 

Our I/O model is abstract. Each I/O operation is 

counted as a unit of cost. In a sense we are using the 
average cost for each I/O operation. Admittedlythia is 
a simplification. Using a realistic configuration would 
be more precise, but also make the conclusion specific 
to the machine we are simulating. The abstract I/O 
model applies to just about all conventional machine 
configurationa, although at a lesser precision. 

An independent monitor maintains the accounting 
data. The measurement data collected by the simula­
tion program are: 

• total I/O operations, 

• waiting time per transaction, and 

• total number of aborted and conunitted update 
transactions. 

Accounting data are printed out. in a log file. The statis­
tics on I/O operations, waiting time, and update trans­

actiona are saved at regular intervala as the global-read 

progresae. and calculated at its end. 

The entities being locked by the update transac­

tions are chosen uniformly from the set of entities by a 

pseudo-random number generator. To make the com­

parison between strategies more direct, we run the dif· 

ferent. strategies with the same seed to the pseudo­

random number generator, causing the same sequence 

of entities to be locked by all strategies. 

4.3 The Simulation Results 

Simulation results shown are numbers averaged O\i~r 

several runs (between 10 and 20), with the results 
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within the 98% confidence interval 

In the first place, we ran the Buic Algorithm to vali­
date the simulation program using the analytical result. 

from Section 3.1. In this case, we ran each value of It 
independently. Each update transaction chooeea It en­
titiea randomly from the total (1000) and locka them. 
The global-read chooses the next unlocked entity (ac­
cording to number) and reads/paint. it. Update trau­
actions are aborted if their It entitiea contain both black 
and white entities. Simulation result. are shown in the 
graph in figure 3. which matchea weU with the theore~ 
ical values in figure 2. 

The main disadvantage ofthe Buie Algoritbm it the 
need to abort update transactiona. Both tbe simulated 
turn-black strategiea avoid abortin, the update trau­
actions. Table 2 sho," ~ abort ratio for It = 1 to 4 of 
the Basic Algorithm. The tbeoretical valu~ Call within 

the range of values in Table 2. Thil it the leCond valida­

tion of the simulation prosnm lain, the probabilistic 
analysis. 

Once we have obtained the buic valK:J.tion of the 
simulation program. we took tbe next variab&e of inter­

est. the total amount of I/O activity allowed by eacb 

strategy. From figure 4, we can see that of the three 
strategies. Save-Some allows consistently high I/O rate, 

Wait-All consistently low I/O rate, and the Basic AI-

total UO 
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Figure 4: Total I/O OperatiollA 

gorithm from middle to lowest u It increuea. Since 
the multiprogramming level is the 8&Dle for all shat. 
giea, the difference in I/O rate reflect. the difference in 
cone urrency allowed. 

The curves in the grapb admit an intuitive explana­
tion. The Wait-AU strategy's constant low I/O rate is 

euy to explain. Since we have a relat.ively high trans­
act.ion rate, global-read becomes the bottleneck delay­
ing the updates waiting for it to paint t.he white entities 
black. The Save-Some strategy's constant high I/O rate 
is due to it. high throughput, which we will see in fig­
ure 6. The decline of the Buic Algorithm I/O rate is 
due to the decline of ita throughput a8 It increases. as 
shown in table 2. 

The second variable of interest is the amount of time 
update transactions wait for each other and the global­
read. Since we start all the strat.egies with the same 

seed for the p~udo-random number generator, we ex­
pect the strategy to playa major role in determining 
the amount of waiting in the system. Figure 5 shows 
that Wait-All dos require the longest waiting time over 
the Basic Algorithm and Save-Some. At first, we were 
surpri5ed that Save-Some caused as little waiting as the 

Basic Algorithm, since the only waiting in the Basic Al­
gorithm is between update transactions. But remem­
bering that Save-Some allows the update to proc~d 
once the white-turned-black entities have b~n plac~ 
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within the 98% confidence interval. 

In the first place, we ran the Basic Algorithm to vali­
date the simulation program using the analytical result. 
from Section 3.1. In this case, we ran each value of k 
independently. Each update transaction chooses Ie en­
tities randomly from the total (1000) and loco them. 
The global-read chooses the next unlocked entity (ac­

cording to number) and reads/paint.. it. Update trana­
actions are aborted if their k entities contain both black 
and white entities. Simulation result.. are shown in the 
graph in figure 3, which matches weU with the theoret­
ical values in figure 2. 

The main disadvantage of the Buw: Algorithm is the 
need to abort update tran.s&CtioD.l. Both the simulated 
turn-black strategies avoKi abortins the update trans­
actions. Table 2 shoft the abort ratio for c = 1 to 4 of 

the Basic Algorithm. The theoretical values fall within 
the range of values in Table 2. Thit it the second valida­

tion of the simulation progam tuins the probabilistic 
analysis. 

Once we have obtained the basic validation of the 

simulation program. we took the next variable of inter­

est, the total amount of I/O activity allowed by each 

strategy. From figure 4, we can see that of the three 

strategies, Sa\'e-Some allows consistently high I/O rate, 

Wait-All consistently low I/O rate, and the Basic AI-
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gorithm from middle to lowest 8.8 Ie increase.. Since 
. the multiprogramming level is the same for all strate­

gies, the difference in I/O rate reflects the difference in 
concurrency aUowed. 

The curves in the graph admit an intuitive explana­
tion. The Wait-AU strategy's constant low I/O rate is 

easy to explain. Since we have a relatively high trans­
action rate, global-read becomes the bottleneck delay­
ing the updates waiting for it to paint the white entities 
black. The Save-Some strategy's constant high I/O rate 
is due to its high throughput, which we will see in fig­

ure 6. The decline of the B8.8ic Algorithm I/O rate is 
due to the decline of ita throughput as .c increases. as 
shown in table 2. 

The second variable of interest is the amount of time 
update transactions wait for each other and the global­
read. Since we start all the strategies with the same 

seed for the pseudo-random number generator, we ex­
pect the strategy to playa major role in determining 

the amount of waiting in the system. Figure 5 shows 

that Wait-All does require the longest waiting time over 
the Buic Algorithm and Save-Some. At first, we were 

surprised that Save-Some caused as little waiting as the 

Basic Algorithm. since the only waiting in the Basic Al­
gorithm is between update transactions. But re~m­

bering that Save-Some allows the update to proc~d 

once the white-turned-black entities have been plau'l 
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in the buffer, then the amount of waiting iI negligible 

in the simulation based on I/O operations. Therefore, 

Save-Some seems to be the strategy of choi<e. 

Finally, the total throughput of the three atrategiea 

is compared in figure 6. Since the througbput of each 

strategy varies with c, we have norma.li~ the graph for 

easy visualization. W. ute the throughput of the Ba­

sic Algorithm as the norm, and compare the other two 

strategies relative to it. At c = 1 there iI no interfer­
ence and the three stratepee are equivalent. At c = 2 

Save-Some is the best, Bui< in the middle, and W&it.­

All performs the worst. A.. c incfe&ael, Save-Some wUu 
by far and Wait-All takes over Basic gradually. Since 

Save-Some has very low waiting time and high I/O 

rate, its highest throughput is not surprising. W&it­

All's throughput is limited by the I/O that global-read 

can provide, so as the Basic Algorithm's throughput 
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declinea (table 2), Wait-All overtakes the Basic Al~o­

rithm. 

5 Checkpoint and Availability 

S.l Asynchronous Checkpoints 

One application of global-read. ia the asynchronous 

checkpointing of databases. Fischer et a1. [3] have men­

tioned several applications using global-reads. such as 

checking conaiatency conatrainta in a database, and me­
dia recovery. However, like their global checkpoint, our 

global-read ia conaiatent but may not reflect any sched­

ule based on chronological order. Conllider a global­

read that started at time tl and terminated at t'2' The 

global-read will reBect all updates committed before 11 



plus ail white transactions which must terminate before 
t'J. In other words, the global-read may include "later" 
white transactions but not "earlier" black transactions. 
This characteristic should not affect applications like 
totals, statistics or consistency checking, where the ac­
tual transaction scheduling is not important. 

In order to use a backup copy made by our global­
reads to recover from media failures, a log contain­
ing the committed transactions is still necessary. Logs 
in both shadow pages and fuzzy dump methods are 
logs of actions on "physical addresses" because their 
backup copies are not necessarily consistent. Since a 
backup copy made with our algorithms is transaction­
consistent, we need only logs that contain transaction 
actions. There are two possibilities for recovery. First, 
we can redo the black transactions onto the backup 
copy to reach the database at t2' Alternatively, we can 
undo the white transactions from the backup to find the 
database at tl. In either case, in addition to actions, 
the log must include the color of each transaction. 

5.2 Availability Analysis 

Studies on the performance of backup procedures [6,10] 
have assumed that update transaction procesaing is not 
allowed during the backup copying time (synchronoUl 
checkpoints). Several optimization criteria and optimal 
checkpoint policies [5] are based on the above assump­
tion, trading interrupted transaction time for short re­
covery time. In contraat, our algorithm provides overall 
consistent availability with little interference. 

The increase of availability l15inS slobaJ-read may be 
significant. For example, Ta.ntatri and Ruachitzka [10] 

define the system availabili,y in the cue of their check­

point strategies as 

A = 1 - n( CI + 6 • E( X) + t) 

where a and b represent the initialloadins time for the 
database and the proportionality factor for reproceu­

ing, respectively. During a fixed interval of real time, 

there are on average n failures. For each failure the 

mean error recovery time is E(X} and the total check­

pointing time (with a quiescent system) of t. Since 

mean error recovery time is defined as half the interval 

---------------------- --- --- -

between checkpoints, we can use their equation to cal­
culate the benefits of using global-read for backup and 
recovery. Global-Read makes t = o. 

If the global-read interfered significantly with the 
normal transaction processing, we would have to take 
the interference into account when calculating the sys­
tem availability. For example, the Basic Algorithms 
makes a good percentage of the update transactions 
"unavailable" for a good interval of time. However, in 
the case of Save-Some, there is no interference other 
than resource consumption in the form of buffer and 
I/O requirementa. In a database with parallel hardware 
the global-read would be able to proceed with enough 
buffers and I/O bandwidth. It is under this assump­
tion that we compare synchronous and asynchronous 
checkpoints directly. 

This point was brought home in a recent study 
comparing different checkpointing algorithms on main 
memory databases [9]. According to the authors, "Most 
of the [high] cost comes from rerunning transadions 
that are aborted for violating the tW(Kolor restriction." 
But even the basic algorithm haa cost and performance 
comparable to other database checkpoint algorithms, 
such aa Copy-on-Update Checkpointa by Dewitt et al. 
Since the abort-avoiding strategies (e.g. Save-Some) 
show significant gailUl compared to the Basic Algo­
rithm, we expect more interesting results from compar­

ing Save-Some to the other checkpointing algorithms. 

In a numerical example [10], the optimal system 
ava.ilability with equidistant checkpoints is 0.9818 for 
an inter-failure time l/n = 60 hours, a mean check­
point time of 1 minute per interval, a restart and load­

ing time of a = 6 minutes, a reprocessing proportional­
ity factor b = 0.5 and the optimal checkpoint interval of 

118.9 minutes. If we simply substitute the global-read 

for the quiescent checkpoint, we obtain an availabl~ 

ity of 0.9818. (1 + 1/118.9) = 0.9901 by gaining the 
checkpoint time of 1 minute. To improve the system 

ava.i1&bility further, we can reduce the interval between 

global-reads to 30 minutes, since there is no checkpOInt 
quiescent time. Substituting the numbers in the equa­

tion, we have 1- (1/3600)(6 + 0.5. IS) = 0.9963 whic h 

is significantly higher. 



6 Conclusion 

\Ve have studied the performance of the global-read al­
gorithm to checkpoint entire databases on-th-fiy using 
a combination of simple probabilistic analysis and sim­
ulation. The global-read algorithm does not voluntarily 
abort, does not cause deadlocks, does not incur excess 
writes to disk. and terminates given a fair lock manage­
ment. The Save-Some strategy reads and writes each 

entity only once for the entire global-read and avoids 
aborting the update transactions. We have written a 
simulation program validated by probabilistic analy­
sis. Using the simulation study. we have shown that 
the Save-Some strategy allows high concurrency, and 
causes negligible delays in update transaction response 

time. 

According to recent research [9], the main cost ofthe 
global-read algorithm is due to rerunning the aborted 

transactions. not the global-read itself. Since Save­
Some avoids aborts with little additional coet, we be­

lieve that the global-read algorithm with the Save-Some 

abort avoiding strategy is a promising solution to in­

cremental, on-the-fly, consistent reading of entire data· 

bases. Since global-read algorithms are parallel in n~ 

ture and they only compete with normal transactions in 

memory buffer and disk I/0. we exped the global-read 
algorithm to be even more useful for databases running 
on parallel or distributed hard ware. 
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