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Abstract: This study focuses on suitable site identification for constructing a hospital in Malacca,
Malaysia. Using significant environmental, topographic, and geodemographic factors, the study
evaluated and compared machine learning (ML) and multicriteria decision analysis (MCDA) for
hospital site suitability mapping to discover the highest influential factors that minimize the error ratio
and maximize the effectiveness of the suitability investigation. Identification of the most significant
conditioning parameters that impact the choice of an appropriate hospital site was accomplished
using correlation-based feature selection (CFS) with a search algorithm (greedy stepwise). To model
the potential hospital site map, we utilized multilayer perceptron (MLP) and analytical hierarchy
process (AHP) models. The outcome of the predicted site models was validated utilizing CFS 10-fold
cross-validation, as well as ROC curve (receiver operating characteristic curve). The analysis of CFS
indicated a very high correlation with R2 values of 0.99 for the MLP model. However, the ROC curve
indicated a prediction accuracy of 80% for the MLP model and 83% for the AHP model. The findings
revealed that the MLP model is reliable and consistent with the AHP. It is a sufficiently promising
approach to the location suitability of hospitals to ensure effective planning and performance of
healthcare delivery.

Keywords: GIS; hospital site suitability; multilayer perception (MLP); analytical hierarchy process
(AHP)

1. Introduction

Hospitals have become the most critical facilities where people go for health-related
issues and to improve their health standards. Over the past three years, the need for
hospitals has tremendously increased due to the COVID-19 pandemic, which has revealed
enormous shortcomings in hospitals worldwide [1]. Many countries and institutions give
great focus to hospital site selection. Selecting a suitable hospital site in any area with some
specific selected factors is a very challenging procedure. It is not just the technical build-up,
but also social, environmental, and contradictory political points. The location of a new
service, such as a hospital location, is a significant decision-making problem for both urban
planners and decision makers. Choosing the most suitable location from several alternative
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sites is demanding and complex. Site selection is a decision-making process that requires
the weighing of criteria and the evaluation and classification of alternatives [2,3].

Over time, the need for healthcare facilities has spontaneously increased across the
globe [4,5]. Health care services have a vital role in the socio-economic growth of any
country. The principal purpose of medical services is to accomplish the demand for health
care establishments for everyone at any given time [6–8]. The necessity for medical services
is increasing in areas of urban expansion due to constant migration from rural areas, which
leads to a difference in the admission of these services [9–11].

It is necessary to establish more hospitals to enhance healthcare facilities. The first step
to accomplishing this is to choose the sites to establish the hospitals. Choosing hospital
locations is a many-sided issue. It involves considerable interveners, such as patients,
doctors, healthcare staff, and real estate developers, and needs suitable harmonization
among authorities, urban planners, and health-affiliated policymakers [12–14]. Optimal
location of a hospital will enhance the operation of hospitals in terms of service delivery.
Unsolicited location selection consistently results in expanded costs and a reduction in
customer fulfillment. Accordingly, to fulfill improved healthcare facility requirements, it is
necessary to appoint new optimal hospital locations.

Choosing optimal hospital locations hinges on several factors. These factors are
heterogeneous and involve an optimization technique to assess their influences [15,16]. A
multidimensional method for making a decision is needed that can be satisfied using the
machine learning (ML) method [17,18]. A geographic information system (GIS) integrated
with ML can help in site selection by analyzing its spatial dimensions. This capability allows
urban pioneers to make a refined decision regarding the selection of hospital sites. This
combination would be well-suited when planning mechanisms do not provide prescriptive
procedures for the findings. A recent study was conducted to choose optimal hospital
locations using ML. The study was carried out by applying different ML classifications,
such as support vector machine (SVM), multilayer perceptron (MLP), and linear regression
(LR) [19]. Given the above discussion, establishing new hospitals is undeniably a basic
requirement. Hospital site selection is challenging and needs to be supported by cutting
edge decision-making techniques, such as ML and GIS. A gap exists in the literature on this
topic, so a detailed assessment of hospital site selection parameters and criteria including
ML classifications is necessary. For this study, an MLP model was selected based on the
fact that it was successfully applied in hospital site suitability assessment and proven to be
the most effective model. This study validates the effectiveness of the MLP model in a new
study area and compares it with the analytical hierarchy process (AHP), the most widely
applied model in the Multiple-Criteria Decision Analysis (MCDA) literature.

This study aims to evaluate and compare MLP and AHP as evidence of the significant
influence of ML methods in hospital site suitability. For this purpose, in the first stage, three
main criteria and 14 sub-criteria are selected according to the literature review and study
area characteristics. The subsequent stage includes the geographical mapping of parameters
utilizing a GIS environment. The next stage involves the GIS-based multicriteria decision
analysis (MCDA) and ML algorithms, which comprise prioritizing the main criteria and
sub-criteria utilizing MLP and AHP. In the penultimate stage, two-site suitability maps
are produced to govern the ideal locations for the hospital. Finally, a critical comparison
is made between the MLP and AHP methods for the hospital site selection process. The
objectives of this study are:

1. To investigate suitable sites for establishing new hospitals in Malacca;
2. To identify and map relevant environmental, topographic, and geodemographic

conditioning factors and discover their weighted commitment in selecting suitable
sites for new hospitals;

3. To identify the most-influencing factors that impact the choice of a suitable hospi-
tal location using correlation-based feature selection (CFS) and a search algorithm
(greedy stepwise);
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4. To apply MLP, AHP, and weighted overlay analysis to prepare hospital site suitabil-
ity maps;

5. To validate the results of the suitability maps based on sensitivity, specificity, area
under the curve (AUC), and 10-fold cross-validation.

2. Literature Review
2.1. MCDA Technique for Site Selection

Several studies have used MCDA methods to analyze the complexity involved in
assessing site suitability. Hopkins (1977) provided a comparative evaluation for site suit-
ability methods as a methodological basis in suitability analyses. The study indicated
several key points: (1) A spatial suitability model should be used with an emphasis on
cartographic modeling to identify areas suitable for a particular use and to determine the
suitability of an area for a particular use. (2) To determine the suitability of a particular
area, the suitability modeling must include several criteria. (3) When multiple criteria and
conflicting priorities appear, it is necessary to use a multi-criteria analysis [3].

MCDA offers a range of measures and procedures to unravel challenging decision-
making issues in hierarchy order [20]. AHP is among the most-used MCDA methods
for site selection [21,22]. It uses deterministic data values to analyze decision making.
However, the data are often incomplete and intricate. Experts create different opinions
from different perceptions. This initiates doubt and hesitation in making a decision [23].
The MCDA method is regularly employed in the assessment of location selected because
it is a multidimensional solution that contains various factors in decision making. The
issues of evaluating the location of a facility are among the critical problems in decision
making. It is a decisive mission of the authorities to solve land tenure problems, avert
unwanted environmental burdens, and exploit the profitability of land use [24–26]. Site
selection supported by GIS could have an essential function in creating an environment to
solve spatial data problems [27]. Though GIS and MCDA are two diverse areas of study,
their incorporation could profit the complexity of location selection by investigating the
geographical decision and assessing the order of other factors [8,28]. Site selection studies,
such as railway stations [29,30], fire stations [31,32], solar photovoltaic plants [33,34],
regional landfills [35,36], and disposal of wastewater [37], have validated that MCDA could
be the most suitable model for solving site-based issues (Table 1).

Choosing a hospital site is one of the difficulties that planners face, particularly in
developed countries [38,39]. Several research articles concentrated on hospital site selection
have been discovered. The literature has presented several methods used for the selection of
hospital sites. For instance, [7,40–42] have projected a GIS-based technique for the selection
of hospital sites. However, they have not taken into account the importance of the standards
influencing hospital location and concentrated solely on GIS analysis. Consequently, an
MCDA GIS-based method was conducted to select hospital sites that contained the priorities
of influenced factors and their spatial allocation. This method can achieve evident scientific
decision making for the selection of hospital locations. Various factors can be considered
which cannot be ignored for a realistic solution. These factors differ by site [43,44]. Critical
parameters that influence hospital locations are specified through the literature review.
These parameters are altitude, aspect, slope, curvature, topographic roughness index
(TRI), topographic wetness index (TWI), stream power index (SPI), proximity to roads,
proximity to highways, distance to river networks, distance to residential areas, distance to
agricultural areas, population size, and population density [45–49].

Additionally, when choosing influence factors, it is important to define their relation-
ships to one other and their levels of influence on the overall site suitability.
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Table 1. List of MCDA models and main criteria used in the literature.

Name MCDA Model Decision Problem and Criteria Used

Vahidnia et al. [50] Fuzzy AHP Prioritizing hospital location for target population with minimum
time, pollution, and cost.

Alavi et al. [51] AHP & TOPSIS
Determining optimal location of hospitals based on road access
factors and green spaces, as well as distance from industrial and

military centers.

Abdullahi et al. [52] AHP & OLS
Comparing AHP and the ordinary least square (OLS) evaluation

model based on technical, environmental, and socio-economic
factors for selecting new suitable sites.

Ahmed et al. [12] AHP Determining the optimal location of a new hospital based on
urban, environmental, and economic factors.

Rahimi et al. [53] AHP Determining optimal locations for hospitals based on urban land
and social factors.

Youzi et al. [49] AHP
Determining the optimal location of a new hospital based on the

criteria of utility, performance, safety, population, density,
proximity, and adaptability factors.

Soltani et al. [26] AHP Choosing optimal sites for hospitals based on spatial analysis and
urban land use planning factors.

Kahraman et al. [54] Fuzzy TOPSIS Developing spherical fuzzy TOPSIS and applying it to a hospital
site selection problem.

Tripathi et al. [55] AHP & Fuzzy AHP Determining a suitable MCDA method for selecting hospital sites
on a social, geographic, and environmental basis.

2.2. ML for Site Suitability

ML has been widely used in the field of geohazards, and several works have explored
the capability of ML for spatial data analysis for landslides [56,57], land suitability, flood
hazards [58], water applications, wind, and energy [48,59–63].

Few studies have applied ML models to assess site suitability (Table 2). Three ML
models (MLP, SVM, and LR) were introduced to hospital site suitability. The proposed
methodology was tested in Palestine, and the results showed that the MLP model achieved
a higher performance, which shows that the model is suitable and promising for assessing
the suitability of hospital sites [19]. Yang [64] developed a web-based GIS platform and
ML technique package called HOLSAT (Hotel Location Selection and Analyzing Toolset)
that can be utilized to predict suitable sites for building hotels, and the system has been
successfully used in the tourism industry for locating optimal spaces for hotel sites. An-
other study developed a framework based on a multilayer feed-forward neural network
to generate suitability maps at a regional scale for the identification of potentially safe
landfill sites. The results reliably identified suitable and safe locations for effective waste
management [65]. In a related work [66], the authors developed an ArcGIS spatial data
mining toolbox based on MLP neural networks to detect suitable sites for landfills. The
toolbox was tested using a dataset from the northern states of Malaysia, and the results
showed that the toolbox simplified the process of landfill site selection across the states. A
study also proposed MLP-BP and fuzzy inference methodology to optimally rank locations
of large hydro power plant according to level of suitability. Overall, the results produced
a comprehensive classification of location suitability and the best alternatives among the
sites [67].
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Table 2. List of ML models of site suitability used in the literature.

Name ML Model Decision Problem

Yang et al. [64] MLP, LR, SVR, PPR, & BR Hotel location selection

Abujayyab et al. [65]
Abujayyab et al. [66] MLP and ANN Landfill site suitability

Shimray et al. [67] MLP-BP Hydro power plant site
selection

Al-Ruzouq et al. [68] FR, BTR, SVM, & AHP Dam site suitability

Taghizadeh-Mehrjardi et al. [69] SVM & RF
Land suitability and the

sustainability of agricultural
production

Almansi et al. [19] MLP, SVM, & LR Hospital site suitability

3. Materials and Methods
3.1. Study Area

Malacca is a state in the central region of Malaysia (Figure 1); the state has an approx-
imate area of 1664 square kilometers and a population of 934,600 people [70]. Malacca
is divided into three regions (Jasin, Alor Gajah, and Malacca Tengah),and is the smallest
administrative unit in any state in Malaysia. Malacca Tengah has taken the lead towards
achieving the status of city network state and main development corridor in Malacca. Fur-
thermore, Malacca Tengah is the economic hub, with tourism, education, administration,
and employment opportunities [71]. Geographically, Malacca has a flat topography and
is drained by rivers flowing northeast–southwest through the Strait of Malacca. There
are areas in the northern region with high elevation, such as Bukit Manis (169 m), Hill
End (210 m), Bukit Punggur (397 m), and Bukit Batang Malacca (433 m). Terrain analysis
shows that about 0.10% of the land lies on a critical slope > 25 degrees, and those areas are
unsuitable for development. Agriculture is the most-widespread land use in Malacca, as
well as settlement, industrial, institutional, and business [71].

3.2. Data Description and GIS Techniques
3.2.1. Hospital Sites

Prediction tasks using data mining require a process of using existing data to classify
new datasets by determining the relationship (weight) between the input data (variables).
In this study, hospital locations comprised the dependent variable, i.e., the tested and
measured variable, upon which the weight and relationship of the independent variables
(conditioning factors) were discovered. Eight hospital locations were collected from Jabatan
Kesihatan Negeri Melaka for Malacca (Figure 2). In Melaka, there are three government
hospitals (one for each district) and five private hospitals, all located in Melaka Tengah.



Sustainability 2022, 14, 3731 6 of 36

Figure 1. (a) Map of Malaysia and (b) map of Malacca.

3.2.2. Conditioning Factors

To assess the suitable sites for hospital locations in Malacca, datasets obtained in
numerical format from different institutions were compiled in a GIS environment. The
conditioning parameters utilized were classified into three categories: environmental,
topographic, and geodemographic factors. According to the literature, researchers have no
agreement on precise parameters for location suitability assessments. Nevertheless, some
parameters that researchers have used extensively indicate their preference in location-
based decision making [72]. From the classifications, layers of data related to the study
area were prepared and further processed. The conditioning parameters were converted to
raster resolution of 10 m using ArcGIS 10.5.
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Figure 2. Hospitals of Malacca.

The terrain of an area directly influences location selection because it handles many of
the natural processes that shape environmental processes, such as floods and erosion. In
this study, seven topographical factors applicable to evaluating the suitability of hospital
sites were identified: aspect, altitude, slope, curvature, SPI, TRI, and TWI (Figure 3a–g).

Human settlement, such as landscape, availability of water, vegetation and woodland
distribution, and productive soil for the production of crops, is primarily controlled by
natural phenomena. For environmental variables, five data layers were derived: roads,
highways, river networks, residential areas, and agricultural areas of land use or land cover.
Euclidean distance was used to extract the distance from residential areas, agricultural
areas, river networks, roads, and highways (Figure 3h–l). Euclidean distance quantifies the
relation between the proper site and the conditioning factors in linear distance [46,48,73,74].
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Figure 3. Malacca conditioning factors: (a) altitude, (b) aspect, (c) slope, (d) curvature, (e) distance
from road, (f) distance from highway, (g) distance from river, (h) distance from residential, (i) distance
from agriculture, (j) TRI, (k) SPI, (l) TWI, (m) population, and (n) population density.

Hospital facilities close to where people live directly affect emergency response during
disasters in terms of cost and response time. In any society, the population is not populated
evenly, and this explains the variance in population density, along with various societal
measurements that impact the selection of locating a new hospital [49,75–77]. The combina-
tion of demographic and geographic parameters qualifies the inclusion of population size
and population density as significant parameters to deliver an extensive basis for studying
and developing health care services. In this study, the Malacca case study utilized 30 m
resolution ASTER GDEM data acquired in 2015 and obtained from Tindak Malaysia. Other
relevant data, such as Mukim boundaries, district boundaries, highways, road networks,
rivers, residential areas, and agricultural areas were obtained from Jabatan Perancangan
Bandar Dan Desa (Figure 3m,n).

3.3. Hospital Site Suitability Conditioning Factors

Conditioning factors is the general name used to describe a range of parameters (data,
value, or conditions) that favor selecting space as suitable to locate facilities [46]. The
correlations between conditioning factors and hospital sites were examined in this study
for suitability analysis. To achieve this, a spatial database containing the conditioning
factors selected from the literature sources (specifically, from the works of [46,48,72,78])
was prepared and constructed. First, all the identified influential conditioning factors
considered in our study were listed (Table 3) and analyzed as data layers for the study area
of Malacca to produce the independent variables.
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Table 3. List of the conditioning factors used.

No. Conditioning Factors

1 Altitude

2 Slope

3 Aspect

4 Curvature

5 SPI

6 TWI

7 TRI

8 Distance from river network

9 Distance from highway

10 Distance road

11 Distance from the agricultural area

12 Distance from the residential area

13 Population size

14 Population density

The dataset parameters exist in continuous formats, e.g., elevation, slope, TRI, and
categorized data (such as land use). However, for successful analysis, it was necessary to
convert the parameters to an organized data format. Therefore, the conditioning factors
were converted to categorize data classified into 10 classes (adopted from the maximum
number of classes in the literature). An exception was curvature, which was classified into
three classes: concave, convex, and flat (Table 4) [46].

Table 4. Conditioning factor suitability rating.

Factors Classes Suitability Rating

Altitude (m)

0–9 1

9–12 2

12–16 3

16–21 4

21–27 5

27–34 6

34–43 7

43–56 8

56–75 9

75–489 10

Aspect

Flat 1

North 9

Northeast 9

East 5

Southeast 5
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Table 4. Cont.

Factors Classes Suitability Rating

South 1

Southwest 1

West 1

Northwest 5

Slope (◦)

0 1

0–1 2

1–2 3

2–3 4

3–4 5

4–6 6

6–8 7

8–10 8

10–14 9

14–61 10

Curvature

Concave 10

Flat 1

Convex 10

TWI

3–5 1

5–6 2

6–7 3

7–8 4

8–9 5

9–10 6

10–11 7

11–12 8

12–13 9

13–17 10

TRI

1–2 1

2–3 2

3–4 3

4–5 4

5–6 5

6–7 6

7–8 7

8–9 8
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Table 4. Cont.

Factors Classes Suitability Rating

SPI

−7 1

−1–−4 2

−4–−3 3

−3–−2 4

−2–−1 5

−1–0 6

0–1 7

1–2 8

2–3 9

3–4 10

Agriculture (m)

0 10

0–53.7 9

53.7–107.5 8

107.5–161.2 7

161.2–268.7 6

268.7–376.2 5

376.2–537.5 4

537.5–752.5 3

752.5–1128.8 2

12,128–13,706 1

Residential (m)

0 1

0–108.5 2

108.5–217.1 3

217.1–379.8 4

379.8–542.7 5

542.7–759.7 6

759.7–976.8 7

976.8–1302.5 8

1302.5–1790.9 9

1790.9–13,839.1 10

Highway (m)

0–1070.5 10

1070.5–2542.4 9

2542.4–4014.4 8

4014.4–5486.3 7

5486.3–6958.2 6

6958.2–8564.1 5

8564.1–10,303.6 4

10,303.6–12,578.4 3

12,578.4–15,254.7 2

15,254.7–34,122.4 1
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Table 4. Cont.

Factors Classes Suitability Rating

Road (m)

0 1

0–110.2 2

110.2–220.5 3

220.5–330.8 4

330.8–496.2 5

496.2–661.6 6

661.6–882.2 7

882.2–1157.9 8

1157.9–1654.1 9

1654.1–14,060.6 10

River (m)

0 10

0–1150.2 9

1150.2–2091.4 8

2091.4–2927.9 7

2927.9–3764.5 6

3764.5–4653.3 5

4653.3–5699.1 4

5699.1–6953.9 3

6953.9–8993.1 2

8993.1–13,332.7 1

Population Density

55–82 10

82–110 9

110–146 8

146–241 7

241–291 6

291–412 5

412–558 4

558–1068 3

1068–1678 2

1678–4837 1

Population

500–2500 10

2500–4800 9

4800–5700 8

5700–8300 7

8300–8700 6

8.700–11,300 5

11,300–16,200 4

16,200–21,300 3

21,300–29,300 2

29,300–64,400 1
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Natural break, quantile, standard deviation, and equal interval are the most common
techniques used by researchers to convert data into categorized formats. A quantile
algorithm distributes a set of grid values into groups, each made up of an equal number
of unique values assigned using the middle and extreme values. Quantile algorithms are
designed so that each class of the conditioning factors is well-represented on the map
for easy computation after it is converted to ordinal data [46]. For these advantages, the
quantile classification method was used to classify the parameters.

3.3.1. Topographical Factors

Since digital elevation model (DEM) data are valuable instruments for suitability
assessment of surface topographical and hydrological analysis, several terrain features are
derivable for site suitability studies. The DEM has had an enormous impact on terrain
analysis among environmental scientists, agricultural experts, geotechnical engineers, and
hydrologists. Derived terrain factor reliability has been further enhanced by advances in
data capture tools and GIS analysis capabilities [79]. The following subsections describe all
the topographic conditioning factors extracted by the DEM.

3.3.2. Surface Elevation (Altitude)

Surface elevation has been vital in several suitability studies. A conditioning factor
shows deviation of the maximum and minimum elevation of terrains [80]. Altitude controls
microclimate factors, such as vegetation distribution, geomorphological characteristics, and
surface runoff. High elevation combined with other terrain characteristics determines where
facilities, such as hospitals, should be built due to accessibility and geohazard exposure.

3.3.3. Surface Slope

Surface slope is an important topographical factor often used in many terrain-related
studies, especially in hydrology, due to its effects on surface runoff accumulation and
velocity of excess rainfall [72]. Slope regulates the direction of water flow and the speed and
extent to which it spreads. It also impacts vehicular movement, particularly at steep slopes.

3.3.4. Surface Aspect

Aspect is an essential factor that also influences hospital site selection. It reveals the
direction the slope faces. Aspect affects the microclimate of the slope, as it bonds to solar
insulation and wind moisture content, etc. Hillsides fronting the sunshine usually provide
better illumination than those facing away. It equally determines the intensity and pattern
of rainfall, lineament, and wind effects.

3.3.5. Surface Curvature

Curvature measures the rate of change of a slope characterized as profile and planimet-
ric (planar) curvature [81]. Curvature is usually coded as zero, negative, and positive on a
raster map, where positive values describe a convex landscape, negative values describe
concave, and pixels coded zero describe flat terrain. Concavity and convexity show high
water runoff and accumulation areas, respectively, while flat terrain favors water stagnation,
indicating a susceptibility to flooding [46].

3.4. Hydrological Indices (SPI, TWI, TRI)

SPI and TWI are precipitation-related topographic factors obtained by applying
Equations (1) and (2), respectively [82]:

SPI = As tan β (1)

TWI = In
(

As
tanβ

)
(2)
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where As represents the catchment area or flow accumulation (m2 m−1) and β is the local
slope gradient measured in degrees.

Flow algorithms are a vital component of hydrological and terrain analysis and are par-
ticularly relevant in this case, since surface flow determines the amount and concentration
of surface and sub-surface runoff, which, together with slope, control the stability of any
location. Several hydrological parameters are derivable from the DEM, such as flow direc-
tion and flow accumulation, and can be generated using ArcGIS software. valign="middle"
indicates the erosive power of water flow [83], while TWI characterizes the effects of topog-
raphy on runoff generation and the amount of flow accumulation at any location within a
river catchment [84].

TRI is another morphological parameter widely used in flood analysis, which can be
calculated using Equation (3):

TRI =
√

Abs(max2 −min2) (3)

where max and min show the most significant and most negligible values, respectively, of
cells in nine rectangular neighborhoods of altitude.

3.5. Environmental Factors

The land use data used in this study were essentially the available data with precise
classifications for a particular area. In this study, land use data were derived from the vector
map using an ArcGIS 10.5 analysis of Euclidean distance. Then, the derived conditioning
factor shapefiles were converted into a 10 m raster map for each category and divided into
ten classes using the quantile method.

3.5.1. Distance from River Network

Distance from rivers was regarded as another relevant conditioning factor. With
increased runoff and discharge into rivers and streams, there may be a chance of flooding
in regions adjacent to rivers, especially at descending elevations and slopes. In such cases,
the interval of a possible location from rivers and streams is essential to incorporate into
hospital site suitability criteria.

3.5.2. Distance from Highway and Road

As proximity to rivers was an important parameter to consider, the distance from
roads was also critical. Accessibility is significant to locate a new hospital, so decision
makers are sometimes concerned with locations near roads, especially major roads; the
closer the hospital is to the road, the easier to provide services and maintain the facility. In
addition to the advantages of proximity to roads, there are also concerns about car or train
noise pollution. For this reason, there is always a middle ground between how close or far
the ideal site is located.

3.5.3. Distance from an Agricultural Area

For the well-being of any society, food security is fundamental. Policies exist world-
wide to prohibit the location of agricultural grounds. Therefore, a distance from agricultural
areas was enforced to evaluate the suitability of land for hospital buildings.

3.5.4. Distance from the Residential Area

Distance from residential areas was also regarded as a relevant conditioning factor.
The closer healthcare facilities are to urban areas, the more convenient they are. Residential
parameters are usually scanned based on population and distribution data converted to an
objective map layer in the form of bitmaps. The more details available, the more acceptable
the overall accuracy of the resulting factor.
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3.6. Geodemographic Factors
3.6.1. Population Factors

The location of a hospital close to an urban area directly influences emergency response
in times of disaster for cost-benefit emergency service in the event of emergencies. It is
essential to know the population dynamics, such as size, density, age, and gender in the
neighborhoods of potential hospital sites. For this reason, population size and density were
selected as conditioning factors in this study. The population data were created using a
population census and the vector data of every area in ArcGIS 10.5.

3.6.2. Population Size

Population size is related to hospital demand and performance. A population census
was collected and divided according to each local governorate and district. The population
data of Malacca were collected from Jabatan Perangkaan Malaysia for 2019.

3.6.3. Population Density

Population density is also linked with hospital prospective demand and significant
performance. Population density estimates the number of people in a measured unit area
as a function of the values of individual kilometers or per square meter, estimated using
census data on the base of census tracts as a spatial unit for analysis. Population density
was measured using Equation (4).

Population density =
Number o f people

Land area
(4)

In terms of suitability, the conditioning factors were reclassified into different suitabil-
ity levels to be weighed according to the results of both AHP and MLP. Table 4 shows the
suitability rating of each conditioning factor.

3.7. Methodology
3.7.1. Overview

Eight hospital inventory sampling datasets were acquired from Jabatan Kesihatan
Negeri Melaka, and an additional eight non-hospital locations (as the dependent variables)
were selected randomly and counted to the hospital pinpoints. Then, the extractions
of 14 factors (as independent variables) were obtained from different authorities. The
conditioning factor values associated with the sampling point positions were collected as
modeling process inputs.

AHP modeling was carried out through weighting and pairwise comparison of the
input variables (conditioning factors). Operationally, pairwise comparison forms judgments
between pairs of the set of factors, rather than prioritizing the elements [85]. The AHP
procedures comprise seven steps: (1) constructing a pairwise comparison, (2) normalizing
the matrix weight, (3) deriving the priority sector, (4) calculating the maximum Eigenvalue,
(5) computing the consistency index (CI) using Eigenvalue, (6) computing the random
index (RI), and (7) calculating the consistency ratio (CR). Note that the value of the CR
obtained must be lower than 0.1 (10%) for the results to be acceptable [46].

For the MLP modeling operation in the Waikato Environment for Knowledge Analysis
(Weka), the sampling data, comprising a combination of independent and dependent
variables, was split into 70% training and 30% validation datasets. The outcomes were
consecutively employed to create the maps of hospital site suitability. The implementation
of both approaches was assessed utilizing the test sample data set with statistical evaluation
metrics and ROC curves. Figure 4 illustrates the general workflow of this paper.
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Figure 4. General methodological flowchart.

3.7.2. Factor Analysis

An exploration of filter-based feature selection algorithms and classifiers to increase
learning algorithm performance in high-dimensional datasets was carried out in this study.
A filter-based feature selection algorithm, correlation-based feature selection (CFS), was
applied for the best feature selection depending on the relevance of the criterion. CFS was
cited as the best selection feature that improved the quality of topographic and hydrological
factors, as it consists of two steps: ranking the initial features and removing less significant
features through an iterative process [86]. CFS utilizes appropriate correlation measures
and a heuristic search strategy [87]. Many authors have studied the heuristic and greedy
stepwise search strategies, and they have been reported to be the best methods [88]. Here,
a greedy stepwise search strategy was used to distinguish stable features from the pool
of features. The greedy stepwise filter feature selection technique was more suitable for
criterion selection in this case because it is robust, and it is easy to interpret the stability of a
selected feature. Vanaja and Kumar [89] defined the advantages of this search methods as:

• Allows the learning algorithm to train faster;
• Minimizes ambiguity of a model and makes it easier to analyze;
• Improves the performance of the learner;
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• Eliminates redundancy.

Because of the highlighted advantages above, a CFS filter with greedy stepwise search
techniques was used to optimize and rank the significance of the conditioning factors
according to their influence based on the location of the hospital. Through this, model
performance was strengthened by the exclusion of irrelevant factors.

3.8. AHP

AHP is a widely employed multicriteria method for analyzing complicated decisions
where parameters are structured in a hierarchical order. This methodology considers the
relative significance of the factors according to the AHP scale. The stated scale directs
urban planners and decision makers to create a pairwise comparison matrix (PCM). The
pairwise comparison matrix reveals the possibility of each element to be equally strong,
slightly firm, reasonably strong, very strong, or more robust than the other factors. These
relative intensities are further converted into numbers, (shown in Table 5). Furthermore,
various procedures are available to resolve the preference vector W. In a consistent matrix,
each procedure provides a true preference vector V. Depending on the decision problem
size and the accuracy of expert assessment and, thus, the inconsistency degree of pairwise
comparison matrices, individual procedures allow for the determination of a different
estimation of the vector V [90]. In this study, a normalized column sum was used to
calculate the PCM.

Table 5. Scale for pairwise comparison.

Intensity of Importance Definition

1 Equal importance

2 Equal to moderate

3 Moderate to importance

4 Moderate to strong importance

5 Strong importance

6 Strong to very strong importance

7 Very strong importance

8 Very to extremely strong importance

9 Extreme importance
Source: [91].

The following steps were applied to classify the weight of the criteria during the
AHP process:

1. Development of a pairwise comparison matrix.

The method used a scale with values ranging from 1–9 (Table 5) to rate the relative
preferences for each pair of criteria evaluated.

2. Computation of criterion weight.

Computation of criteria weights involved three operations: First, the values were
summed in each column of the matrix and then each element was divided by its column
total (the resulting matrix is referred to as the normalized pairwise comparison matrix).
After that, the average of the elements in each normalized row was computed by dividing
the sum of normalized values for each row by the number of criteria. The resulting
standards provided an estimate and compared the relative weights of the criteria. The next
steps were followed to calculate the final weights for all factors [92].

Sum the pairwise comparison matrix values in every column by the following formula:

Lij = ∑n
n=1 Cij (5)
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where Lij represents the pairwise comparison matrix total column value and Cij represents
the criteria applied for the analysis.

Divide every component in the matrix by its total row to obtain a normalized pairwise
comparison matrix:

Xij =
Cij

∑n
n=1 Cij

(6)

where Xij is the normalized pairwise comparison matrix.
Divide the sum of the matrix’s normalized row by the number of the parameter (N) to

obtain the standard weight by applying the following formula:

Wij =
∑n

j=1 Xij

N
(7)

where Wij is the standard weight.
To calculate the consistency vector values, the following formula was applied:

λ = ∑n
i=1 CVij (8)

where λ is the consistency vector.
The weighted sum vector was first calculated by multiplying the pairwise matrix with

the weight to approximate consistency and then followed by the division of individual
elements by their corresponding weights, i.e., the first element divided by its weight, after
which the consistency vector was created by dividing the weighted sum by the weights.
The lambda and CI were then computed from the consistency vector. Lambda is the mean
of the consistency vector, while the CI is derived according to an inspection that must be
equivalent to or higher than the numeral of parameters. A measure of inconsistency degree
was computed by subtracting the number of parameters from lambda (λ-n).

3. Estimation of the CR.

The CR is important for establishing whether the comparisons are consistent or not.
The process of estimating CR involved a few steps: First, the weighted sum vector was
determined by multiplying the weight of the first criterion by the initial column of the
original pairwise comparison matrix, and so on, until the last criterion was multiplied by
the previous column. Then, the values were summed over the rows. Second, the consistency
vector was created by dividing the weighted sum vector by the criterion weights. Third,
lambda (λ), the average value of the consistency vector, and CI (Equation (9)), which
measures the departure from consistency, were computed.

CI = (λ− n)(n− 1) (9)

Lastly, the CR was obtained using Equation (10):

CR = CI/RI (10)

where RI is the random index. RI depends on the number of elements being compared
(Table 6). A CR value of < 0.10 means that the pairwise comparison is consistent and
acceptable, but if the CR value is ≥ 0.10, the pairwise comparison is inconsistent, and the
entire process must be revised.
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Table 6. Random inconsistency indices (RI).

n RI

1 0.00

2 0.00

3 0.58

4 0.90

5 1.12

6 1.24

7 1.32

8 1.41

9 1.45

10 1.49

11 1.51

12 1.48

13 1.56

14 1.57

15 1.59
Source: [91].

The identification and selection of factors that impact achieving the best output are
essential. AHP provides weights and ranks the conditioning factors according to how well
they predict the best location. In this study, AHP was executed to weigh the conditioning
factors in the Expert Choice package. The steps involved were:

Creating a pairwise matrix: an evaluation scale of 1 to 9 was assigned to the parameters
to rate the relative importance of each pair of input data layers. For example, if alternative
A has double preference over B, then B has half priority compared to A, but a comparison
of each criterion alone will result in a score of 1, which is interpreted to mean equivalent
priority. Therefore, in the pairwise comparison matrix, all the diagonal elements were 1.

Criteria weighting: this stage included:

a. Summing up the values of each column in the pairwise matrix;
b. Dividing the matrix element by its column total (to derive the normalized matrix);
c. Calculating the average of the elements in every row of the normalized matrix to

obtain an estimated relative priority of the elements being compared.

Table 7 presents the matrix of the relative importance of the conditioning factors.

Table 7. The fundamental assessment scale for the AHP.

Description Intensity of Importance

Extremely less important 1/9

1/8

Very strongly less important 1/7

1/6

Strongly less important 1/5

1/4

Moderately less important 1/3

1/2

Equal importance 1
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Table 7. Cont.

Description Intensity of Importance

2

Moderately more important 3

4

Strongly more important 5

6

Very strongly more important 7

8

Extremely more important 9
Source: [93].

Assessing the consistency matrix: this process involved:

a. Determining the total weighted vector. To achieve this, the weight of the first scale
was multiplied by the first column of the leading binary comparative matrix and
then multiplied by the second scale of the second column. Then, the third scale was
multiplied by the third column of the primary matrix, and, finally, these values were
summed;

b. Determining the consistency vector: we divided the weight vector by the scale
weights. Using the weight produced by AHP, the conditioning factors were combined
in an ArcGIS environment using the weighted sum overlay tool to create a final
suitability map. Table 8 presents the pairwise comparison matrix of the selected
conditioning factors for hospital site suitability in Malacca.

Table 8. Pairwise comparison matrix (Malacca): (A) residential, (B) road, (C) agriculture, (D) highway,
(E) population density, (F) population, (G) curvature, (H) aspect, (I) SPI, (J) slope, (K) altitude, (L)
river, (M) TWI, and (N) TRI.

A B C D E F G H I J K L M N

A 1 2 2 1 4 5 2 7 8 9 7 6 5 3

B 1/2 1 3 3 4 6 6 4 6 6 6 4 3 4

C 1/2 1/3 1 2 2 5 4 3 6 7 6 2 5 3

D 1 1/3 1/2 1 1 4 3 3 1 5 4 1 2 8

E 1/4 1/4 1/2 1 1 3 2 1/2 5 3 5 1 2 6

F 1/5 1/6 1/5 1/4 1/3 1 1/3 1/3 1 3 4 1 3 7

G 1/2 1/6 1/4 1/3 1/2 3 1 1 4 6 5 1 3 1

H 1/9 1/8 1/7 1/5 1/5 1/3 1/6 1 1/2 6 1 1 2 4

I 1/2 1/2 1/2 1/5 1/7 1/7 1/5 1/5 1 7 2 2 2 3

J 1/9 1/6 1/7 1/5 1/3 1/3 1/6 1/6 1/7 1 1/2 1/7 4 2

K 1/7 1/6 1/6 1/4 1/5 1/4 1/5 1/2 1/2 1/2 1 1/9 2 2

L 1/6 1/4 1/2 1 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1 9 3

M 1/2 1/3 1/4 1/3 1/9 1/9 1/5 1/6 1/5 1/7 1/2 1/7 1 5

N 1/9 1/4 1/3 1/3 1/5 1/9 1/3 1/2 1/7 1/2 1/2 1/6 1/5 1

3.9. ML Model

This study also implemented an MLP model in WEKA 3.8.2, which was designed
by the University of Waikato, New Zealand [94]. The sample data was subdivided into
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70% training and 30% validation subsets by applying Weka’s random partitioning algo-
rithm. Technically, there is no typically accepted technique to segment a sampling data
set; selection differs according to the literature and usually depends on the quantity and
quality of sample data [74]. In the pre-data modeling stage, the data were subjected to
CFS and a greedy stepwise search algorithm with a 10-fold cross-validation technique
to minimize failure, improve effectiveness, and reach adequate implementation [95,96].
CFS is a promising feature selection method; the greedy stepwise algorithm counts either
the foremost satisfactory feature or eliminates the foremost unsuitable feature in every
round [97]. In this study, the procedure ranked parameters according to their impact on
the model. Both models were analyzed and performed in ArcGIS 10.5. Using quantile
classification, the outputs were reclassified into five suitability classes to create the output
maps [46]. The quantile classification process measured the equivalent illumination of
every class by statistically estimating the raster value ranges in the inputs [98].

Selecting suitable ML classification algorithms is vital for accuracy improvement [99,100].
The two main classification algorithms are supervised and unsupervised [62,101]. MLP is a
promising supervised classification for hospital site suitability [19].

MLP has three different layers (Figure 5): the input layer, which transfers the input
vector to the network; the hidden layers that contain the computation neurons; and the
output layer, which is made up of at least a computation neuron that produces the output
vector. Many perceptrons link the layers, and each connection has associated weight. The
work of the hidden layers is identical to the kernel function in SVM, which is projecting the
feature vectors to high-dimensional space to find a hyper plain that separates the training
data properly. In MLP, each layer creates a feature vector for the input data based on
the assigned weight value. Features from one layer are transferred onto the next via a
non-linear initiation operation that alters the feature space to project the data as input into
the next layer to be mapped to a new feature space [49,102].

Figure 5. MLP layers.

A perceptron is a mathematical model similar to a biological neuron transmission,
similar to the propagation of electrochemical stimulation in a neuron [103]. During trans-
mission, only the filtered information via activation rule (non-linear function) is passed
to the next perceptron, a process called feed-forward computation [81]. Binary or bipolar
sigmoid activation functions are often preferred [79].
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The main objective of a training task in MLP is to discover an appropriate weight set
that will reduce cost function, preferably to 0. Generally, the cost function estimates the
difference between the predicted and actual values. For every iteration, all the weights in
the network are updated to minimize the output of the cost function. The mechanism of
deciding the degree of the weights is known as a learning algorithm, and gradient descent is
commonly used by researchers. The receiving weight is adjusted to be equal to the learning
rate depending on the quality of the cost function, but in the opposite direction of the
cost function. When a lesser learning rate is used, the cost function requires considerable
time and computation tasks to reach a minimum value, but the reverse is the case with a
significant learning rate [79].

According to [104], the two historically standard activation functions are sigmoid, as
expressed in Equation (11):

y(vi) =
(
1 + e−vi

)−1 (11)

Equation (11) is called a logistic activation function, and the value ranges from 0 to 1.
Note that yi in the ith is the neuron output that accepts the weighted sum of input connec-
tions vi. The error degree in output node j in the nththe data point is obtained through:

ej(n) = dj(n)− yj(n) (12)

where d and y are the target and produced value by the perceptron, respectively. Based on
the error, node weights are updated to minimize error in the output using the expression in
Equation (13):

ε(n) =
1
2 ∑j e2

j (n) (13)

and the weight is updated using Equation (14):

∆wij(n) = −η
∂ε(n)
∂vj(n)

yi(n) (14)

where yi is the output and η is the learning rate, which is simplified using Equation (15):

− ∂ε(n)
∂vj(n)

= ej(n)∅′
(
vj(n)

)
(15)

where ∅′ is the derivative activation function. The change in weight in the hidden node
can be effectively computed using Equation (16):

− ∂ε(n)
∂vj(n)

= ∅′
(
vj(n)

)
∑k−

∂ε(n)
∂vk(n)

(
wkj(n)

)
(16)

The error depends on the change in weights backward from the output layer, the
hidden layer, and, finally, to the input layer—backpropagation [105].

3.10. Validation

Validation is an important part of any predictive modeling. In this analysis, the data
were subdivided into two different data sets: 70% training, and 30% validation. For the MLP
model, 10-fold cross-validation was performed. The process of cross-validation divided the
data set into ten subsets; nine subsets were used for training and the residual subset for
testing. Individually, in each round of the 10-fold process, a distinct component was used
to test the accuracy, and the last outcome signified an average of the ten outcomes [106].
Model performance was evaluated using the correlation coefficient (R2), and the statistical
evaluation metrics were root mean square error (RMSE), root relative squared error (RRSE),
relative absolute error (RAE), and mean absolute error (MAE) in the cross-validation test.
Model implementation was also validated using the receiver operating characteristic (ROC).
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4. Results

The AHP method was used to weigh the conditioning factors (Table 9). These factors
were also overlayed using a weighted sum algorithm to identify potentially suitable areas to
build a hospital. Table 9 shows the AHP weight for the Malacca case study dataset. Mainly,
distance to residential area contributed significantly to assessing hospital site suitability by
22%, and due to its influence, it was ranked the best variable. Following narrowly in the
contribution rank were roads (21%), distance from agricultural areas (14%), and highways
(10%). The next group comprised population density and curvature, which made up 7%
each, and SPI (5%). Least in the rank were population and aspect (3%), altitude, TRI, and
TWI (2%), and the least contributing factor, slope, had just one. Also, the AHP pairwise
comparison matrix consistency results produced a promising agreement with a CR value
of 0.08, which is within the acceptable limit.

Table 9. AHP conditioning factor weights (Malacca).

Conditioning Factors Weights

Population Density 0.074

Population 0.034

Altitude 0.015

Agriculture 0.136

Residential 0.218

Road 0.208

Highway 0.096

River 0.03

Slope 0.012

Curvature 0.066

Aspect 0.027

TRI 0.016

TWI 0.02

SPI 0.048

The AHP-weighted overlay hospital site suitability map of Malacca (Figure 6) has five
classes of suitability distributed almost equally in the coverage area (i.e., an average of 20%).
For instance, 19.5% of the site was classified as very highly suitable, 22% was high suitability
class, and 19.7%, 20.5%, and 18.3% were shared among the moderate, low, and very low
suitability classes, respectively. The best two classes, the very high and high suitability
classes, were about 41.5% of the total areas common in a highly populated urban area in
the three districts of Malacca, and the other less suitable classes were located in less densely
populated areas. The distribution of the suitability classes was proportional to conditioning
factors, such as residential areas, highways, agriculture areas, roads, population density,
altitude, slope, and SPI. The Malacca hospital site suitability map shows similarity with the
map produced using the MLP model.
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Figure 6. Suitability map produced using Analytical Hierarchy Process (AHP).

The suitability maps produced with the AHP-created weights are presented in Figure 6.
The AHP performance was validated using a pairwise comparison matrix (consistency test)
delivering a CR value of 0.083. The result is rather suitable and reliable since the CR value
was less than the CR < 0.1 threshold.

Evaluation of hospital location-related conditioning factors using CFS provided insight
into the significance level of conditioning factors. The CFS ranked the conditioning factors
based on class label correlation and other factors (Table 10). It was deduced from Table 10
that the relative impact between hospital sites and other factors indicated that population
density had the highest influence (100%), followed by distance from the road, distance from
agriculture, distance from residential areas (90%), distance from the highway, distance from
the river, and population number (80%). The factors in the mid-range were slope, altitude,
TRI and TWI (70%), SPI, and plan curvature with a relative influence value of 60% and
an aspect of 40%. The CFS was evaluated on merit and was evaluated using a correlation
coefficient and error rates.



Sustainability 2022, 14, 3731 28 of 36

Table 10. The relative influence of the conditioning factors.

Parameters Values Relative Influence %

Population density Density of population 100%

Road Distance from the road 90%

Agriculture Distance from agriculture 90%

Residential Distance from residential areas 90%

Highway Distance from the highway 80%

River Distance from the river 80%

Population Population number 80%

Slope Slope degree 70%

Altitude Altitude 70%

TRI Topographic roughness index 70%

TWI Topographic wetness index 70%

SPI Stream power index 60%

Curvature Plan curvature 60%

Aspect Aspect 40%

In this study, we analyzed the MLP model performance at different levels of processing.
Initially, the feature selection level evaluated the conditioning factors associated with
the models by analyzing cross-validation accuracy measurements (correlation coefficient,
RMSE, RRSE, RAE, and MAE). Also, the implementation of the model and specification
utilizing the metrics of the ROC curves were evaluated. Table 11 shows the outcome for
both evaluation stages.

Table 11. Model validation results: area under the curve and CFS 10-fold cross-correlation.

95% Confidence Interval

Model AUC Std. Error Lower Bound Upper Bound

MLP 0.922 0.066 0.793 1.000
AHP 0.914 0.070 0.777 1.000

10-Fold Cross-Correlation Method

R2 RMSE RRSE (%) RAE (%) MAE

MLP 0.998 0.0027 0.54 0.38 0.0019

The hospital site suitability map is shown in Figure 7. The map was created according
to the influence of the conditioning parameters to determine potentially suitable locations
for hospital construction in the study area. The models exploited the inter-relationships
between the conditioning factors based on the sampled dataset to designate a relationship
that ideally created the map of suitable hospital sites using the MLP model. The suitability
map was classified into five classes from very low to very high (Figure 7) using the quantile
classification method [46]. Quantitative assessment revealed that, for the MLP model, the
suitability classes of the study area were distributed as very low (18.1%), low (20.2%),
moderate (20.5%), high (20%), and very high (21.2%).
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Figure 7. Suitability map produced using multilayer perceptron (MLP).

The cross-validation results of the model showed a high correlation between the
conditioning factors and the location of the hospitals (Table 11). The MLP model had a very
high correlation with an R2 value of 0.99. The MLP model also had a low error rate, with
RMSE, RRSE, RAE, and MAE values of 0.0027, 0.54%, 0.38%, and 0.0019, respectively. The
cross-correlation was a pre-modeling estimation of the practicability of the MLP model for
proper location forecasting with consideration to the conditioning factors.

Figure 8 and Table 11 present the performance of the model assessment using the
validation dataset. The sensitivity-specificity indicators present a graphical and statistical
knowledge of the efficiency of the models in distinguishing non-suitable locations from
suitable locations for hospitals. It is noticeable in Figure 8 that the model curves converge
upwards in the left corner of the plot, indicating that the outcomes have high overall
accuracy [107]. Relatively, the modeling process outcomes had high classification ability
with sensitivity and specificity values of 0.79 and 1.00 for the MLP model (Table 11). The
model performance based on the analysis of ROC curves provided an overall accuracy
value of 92%, including a standard error of 0.066 at a 95% confidence interval.
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Figure 8. ROC curves of MLP and AHP.

5. Discussions

The AHP model was developed based on a pairwise matrix (weighted conditioning
factors), and the model results were applied to the conditioning factors by weighted overlay
(sum operator). AHP-weighted overlay uses discrete boundaries based on crisp sets, where
each cell is either in a class or not. The AHP map discreet boundaries for suitability
classification in the Malacca case study is clear.

The AHP and ML models were applied using the same weighted overlay tool. Com-
pared to the other models, the AHP method is comprehensive and frequently used for
hospital site suitability. AHP and MLP are more efficient for handling challenging and
non-linear datasets. Both models are reliable, although they have a few differences in
function and procedure. The AHP and MLP models produced good and reliable hospital
site suitability studies, regardless of functional and practical differences.

According to Table 10, the relative influence of the conditioning factors indicated that
population density had correlation values of 100%, followed by distance from the road,
distance from the agriculture, and distance from residential areas (90%); and distance from
the highway, distance from the river, and population number (80%). The factors in the
mid-range were slope, altitude, TRI, and TWI (70%), as well as SPI and plan curvature, with
a relative influence value of 60%, and an aspect of 40%. This revealed that demographic
and topographic factors have a commanding influence on site selection.

Identification of suitable sites for hospital construction is a complex process that
requires decision-making on the right conditioning factors considering their spatial het-
erogeneity. Accordingly, the first step to ensure a reliable outcome is to evaluate the
relationships of the selected factors considered for choosing possible hospital sites by
studying their correlation with models using the cross-correlation method. The correlation
value obtained was 0.998 for the MLP model, indicating that the factors selected for the
purpose were suitable.

The evaluation of model performance depends on the sensitivity and specificity of
the ROC curves. The estimation of the curves was on a typical scale of 0 to 1, where
a value less than 0.6 shows low accuracy while values between 0.6–0.7, 0.7–0.8, 0.8–0.9,
and more than 0.9 are indicated to be within the medium, good, and very good accuracy
ranges, respectively. [74]. Interactively, sensitivity and specificity measures provide an
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understanding of model classification efficiency. Sensitivity, also known as true positivity,
shows model ability to categorize data from samples to determine the ideal placement
for constructing a hospital. In contrast, specificity, known as true negative, shows model
ability to categorize data from samples to determine unsuitable sites. The acquired AUC
values for the MLP and AHP models were 0.92 and 0.91, respectively. According to [107],
on a scale of 0 to 1, the closer the value acquired is to 1, the better model ability of data
classification. The evaluation performance of this study provided high accuracy results and
demonstrated the superiority of the MLP model.

Based on author knowledge of the area of study integrated with the exploration
of a Google Earth high-resolution map, we noticed that the MLP outcome reflected the
environment of the study area. For example, very high and high suitability classes occurred
in accessible and densely populated areas (Figure 7). Similarly, very low and low suitability
classes were labeled as uninhabited and sparsely populated areas. Similarly, the AHP
outcome (Figure 6) showed almost an identical classification with MLP.

The performance of the MLP and AHP methods in this study provides scientific
evidence for the effectiveness of the ML method for assessing the suitability of a hospital
site similar to findings in other study areas, such as floods [108,109], landslides [48,110],
forest fires [111,112], erosion and water resources [113–115], etc. MLP and AHP performed
satisfactorily in this investigation with AUC values of 92% and 91%, respectively. The
MLP model is a suitable and convenient model due to its capability to construct and
weigh the influencing criteria employing non-linear projection. The MLP model, for each
subset of the training samples, computed the results of neurons from each layer and
predicted the final output layer (forward pass). The prediction depended on the speed of
calculating the variance between the expected and actual results to obtain the prediction
error, which was subsequently run to change the weightiness of neurons in all previous
layers (backpropagation) until achieving superior prediction precision [116,117]. This
sophisticated process allowed it to accurately handle linear and non-linear data sets.

6. Conclusions

Hospitals are considered facilities of great importance, especially after the COVID-
19 pandemic, and, therefore, choosing appropriate locations for new hospitals is very
important. The research gap is motivated by the application of methods for predicting the
suitability of a hospital location.

In this paper, a model that combined CFS, MLP, and GIS was proposed to optimize
and rank 14 conditioning factors that affect hospital sites. The proposed model identified
the factors that contribute to appropriate location selection and removed the inappropriate
parameters observed to reduce the error in the model. The MLP model was chosen because
it has recently been successfully applied in several fields of study and was established to be
more promising than other ML models.

The MLP and AHP models were examined and compared in this paper to explore the
effectiveness of some chosen factors that affect the ability to assess hospital site suitability.
This study experimented with and validated the MLP model successfully. The MLP model
was shown to function optimally and provided more consistent outcomes in terms of
the validity of the study area. The outcome of this study showed that it is accurate to
summarize that MLP is an acceptable model according to the validation values of CFS
and AUC.

In conclusion, the performance of the MLP model showed that the proposed model is
applicable and appropriate for assessing the suitability of a hospital site, and we believe that
the MLP model should be used to assess the suitability of hospital sites, since it has been
successfully used in different study area characteristics. Future studies may apply different
ML models to an identical objective, combining advanced and ensemble techniques to
enhance the capability of the models.
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