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Abstract. In spite of significant advances in image segmentation tech-
niques, evaluation of these methods thus far has been largely subjective.
Typically, the effectiveness of a new algorithm is demonstrated only by
the presentation of a few segmented images that are evaluated by some
method, or it is otherwise left to subjective evaluation by the reader. We
propose a new approach for evaluation of segmentation that takes into
account not only the accuracy of the boundary localization of the cre-
ated segments but also the under-segmentation and over-segmentation
effects, regardless to the number of regions in each partition. In addi-
tion, it takes into account the way humans perceive visual information.
This new metric can be applied both to automatically provide a ranking
among different segmentation algorithms and to find an optimal set of
input parameters of a given algorithm.

1 Introduction

In a conventional sense, image segmentation is the partitioning of an image into
regions, where parts within a region are similar according to some uniformity
predicate, and dissimilar between neighbouring regions. Due to its importance,
many segmentation algorithms have been proposed, and a number of evaluation
criteria have also been proposed. In spite of this, very few comparative studies
on the methods used for evaluation have been published [14].

Typically, researchers show their segmentation results on a few images and
point out why the results ’look good’. We never know from such studies if the
results are good or typical examples. Since none of the proposed segmentation
algorithms are generally applicable to all images, and different algorithms are not
equally suitable for a particular application, there needs to be a way of comparing
them, so that the better ones can be selected. The majority of studies proposing
and comparing segmentation methods evaluate the results only with one evalu-
ation method. However, results vary significantly between different evaluators,
because each evaluator may have distinct standards for measuring the quality of
the segmentation.
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Only a few evaluation methods actually explore the segments obtained from
the segmentation process. Most measures are best suited to evaluate edge de-
tection [12], working directly on the binary image of the regions’ boundaries [3].
Although we can always treat segmentation as a boundary map, the problem is
in the simplified use of the edge map, as simply counting the misclassified pixels,
on an edge/non-edge basis. Pixels on different sides of an edge are different in
the sense that they belong to different regions - that is why it may be more
reasonable to use the segmentation partition itself.

Evaluation of image segmentation differs considerably from the binary fore-
ground/background segmentation evaluation problem examined in [3,13], in that
the correctness of the two class boundary localization is not the only quantity to
be measured. This derives from the presence of an arbitrary number of regions
in both the reference segmentation and the segmentation to be evaluated.

An evaluation metric is desired to take into account the following effects:

– Over-segmentation. A region of the reference is represented by two or
more regions in the examined segmentation.

– Under-segmentation. Two or more regions of the reference are represented
by a single region in the examined segmentation.

– Inaccurate boundary localization. Ground truth is usually produced by
humans that segment at different granularities.

– Different number of segments. We need to be able to compare two
segmentations when they have different numbers of segments.

Under-segmentation is considered to be as a much more serious problem
as it is easier to recover true segments through a merging process after over-
segmentation rather than trying to split an heterogeneous region. One desirable
property of a good evaluation measure is to accommodate refinement only in
regions that human segmenters could find ambiguous and to penalize differences
in refinements elsewhere. In addition to being tolerant to refinement, any evalua-
tion measure should also be robust to noise along region boundaries and tolerant
to different number of segments in each partition.

This work will focus on discrepancy evaluation methods, that consist in com-
paring the results of a segmentation algorithm with a reference and measuring
the differences or discrepancy between them. We introduce a new approach for
segmentation evaluation that takes into account, using a single metric, not only
the accuracy of the boundary localization of the created segments but also the
under-segmentation and over-segmentation effects, regardless to the number of
regions in each partition. In addition, it takes into account the way humans
perceive visual information, given different weights to false positive and false
negative pixels. In order to test the accuracy of the proposed measure we com-
pared it with a set of key methods used for the evaluation of image segmentation
using real and synthetic images.

The remainder of this paper is organized as follows: in Section 2, previous
segmentation evaluation methods are presented. In Sections 3 and 4, we present
region-based and boundary-based evaluation methods currently in literature.
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The proposed metric for evaluation is presented in Section 5. In Section 6, ex-
perimental evaluation is analysed and discussed, and, finally, conclusions are
drawn in Section 7.

2 Previous Work

A review on evaluation of image segmentation is presented by Zhang in [14],
who classifies the methods into three categories: analytical, where performance
is judged not on the output of the segmentation method but on the basis of their
properties, principles, complexity, requirements and so forth, without reference
to a concrete implementation of the algorithm or test data. While in domains
such as edge detection this may be useful, in general the lack of a general theory
of image segmentation limits these methods; empirical goodness methods, which
compute some manner of ’goodness’ metric such as uniformity within regions [3],
contrast between regions [4], shape of segmented regions [12]; and finally, empir-
ical discrepancy methods, which evaluate segmentation algorithms by comparing
the segmented image against a manually-segmented reference image, which is
often referred to as ground truth, and computes error measures.

As stated by Zhang [14], the major difficulty in applying analytical methods
is the lack of general theory for image segmentation. The analytical methods
may only be useful for simple algorithms or straightforward segmentation prob-
lems, where the researchers have to be confident in the models on which these
algorithms are based.

Empirical goodness methods have the advantage that they do not require
manually segmented images to be supplied as ground truth data. The great
disadvantage is that the goodness metrics are at best heuristics, and may exhibit
strong bias towards a particular algorithm. For example the intra-region grey-
level uniformity metric will assume that a well-segmented image region should
have low variance of grey-level. This will cause that any segmentation algorithm
which forms regions of uniform texture to be evaluated poorly. Although these
evaluation methods can be very useful in some applications, their results do not
necessarily coincide with the human perception of the goodness of segmentation.
For this reason, when a reference image is available or can be generated, empirical
discrepancy methods are preferred.

Empirical discrepancy methods, which compare segmentation output with
ground truth segmentation of the test data and quantify the levels of agree-
ment and/or disagreement, have the benefit that the direct comparison between
a segmented image and a reference image is believed to provide a finer resolu-
tion of evaluation, and as such, they are the most commonly used methods of
segmentation evaluation.

Zhang [14] has proposed a discrepancy evaluation method based on misclas-
sified pixels. Yasnoff et al. [13], in one of the earliest attempts, have shown that
measuring the discrepancy based only on the number of misclassified pixels does
not consider the pixel position error. Their solution is based on the number of
misclassified pixels and their distance to the nearest correctly segmented pixels.
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They only applied it to foreground/background segmentation. Other discrep-
ancy measures calculate the distances between wrong segmented pixels and the
nearest correctly segmented pixels [8], thus introducing a spatial component to
the measure, or are based on differences between feature values measured from
regions of the correctly segmented and output images. Huang and Dom [3] in-
troduced the concept of distance distribution signatures.

3 Region-Based Evaluation

The region-based scheme evaluates the segmentation accuracy in the number
of regions, the locations and the sizes. A region-based evaluation between two
segmented images can be defined as the total amount of differences between
corresponding regions.

3.1 Hamming Distance

Huang and Dom [3] introduced the concept of directional Hamming distance
between two segmentations, denoted by DH (S1 ⇒ S2). Let S and R be two seg-
mentations. They began by establishing the correpondence between each region
of S with a region of R such that si∩rj is maximized. The directional Hamming
distance from S to R is defined as:

DH (S ⇒ R) =
∑

ri∈R

∑
sk �=sj ,sk∩ri �=0

|ri ∩ sk| , (1)

where |·| denote the size of a set. Therefore, DH (S ⇒ R) is the total area under
the intersections between all ri ∈ R and their non-maximal intersected regions
from S. A region-based evaluation measure based on normalized Hamming dis-
tance is defined as

p = 1 − DH (S ⇒ R) + DH (R ⇒ S)
2 × |S| , (2)

where |S| is the image size and p ∈ [0, 1]. The smaller the degree of mismatch,
the closer the p is to one.

3.2 Local Consistency Error

To compensate for the difference in granularity while comparing segmentations,
many measures allow label refinement uniformly through the image. D. Martin’s
thesis [6] proposed an error measure to quantify the consistency between image
segmentations of differing granularities - Local Consistency Error (LCE) that
allows labelling refinement between segmentation and ground truth.

LCE (S, R, pi) =
1
N

∑

i

min {E (S, R, pi) , E (R, S, pi)} , (3)

where E (S, R, p) measures the degree to which two segmentations agree at pixel
p, and N is the size of region where pixel p belongs.
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Note that the LCE is an error measure, with a score 0 meaning no error and
a score 1 meaning maximum error. Since LCE is tolerant to refinement, it is
only meaningful if the two segmentations have similar number of segments. As
observed by Martin in [6], there are two segmentations that give zero error for
LCE - one pixel per segment, and one segment for the whole image.

3.3 Bidirectional Consistency Error

To overcome the problem of degenerate segmentations, Martin adapted the LCE
formula and proposed a measure that penalizes dissimilarity between segmen-
tations proportional to the degree of region overlap. If we replace the pixelwise
minimum with a maximum, we get a measure that does not tolerate refinement
at all. The Bidirectional Consistency Error (BCE) is defined as:

BCE (S, R, pi) =
1
N

∑

i

max {E (S, R, pi) , E (R, S, pi)} . (4)

3.4 Partition Distance Measure

Cardoso and Corte-Real [1] proposed a new discrepancy measure - partition
distance (dsym) defined as: ”given two partitions P and Q of S, the partition
distance is the minimum number of elements that must be deleted from S, so
that the two induced partitions (P and Q restricted to the remaining elements)
are identical”. dsym (Q, P ) = 0 means that no points need to be removed from
S to make the partitions equal, i.e., when Q = P .

4 Boundary-Based Evaluation

Boundary-based approach evaluates segmentation in terms of both localization
and shape accuracy of extracted regions boundaries.

4.1 Distance Distribution Signatures

Huang and Dom in [3] presented a boundary performance evaluation scheme
based on the distance between distribution signatures that represent boundary
points of two segmentation masks.

Let BS represent the boundary point set derived from the segmentation and
BR the boundary ground truth. A distance distribution signature from the set
BS to the set BR of boundary points, denoted DB (Bs, BR), is a discrete function
whose distribution characterizes the discrepancy, measure in distance, from BS

to BR. Define the distance from x in set BS to BR as the minimum absolute
distance from all the points in BR, d (x, BR) = min {dE (x, y)} , ∀y ∈ BR, where
dE denotes the Euclidean distance between points x and y.

The discrepancy between BS and BR is described by the shape of the signa-
ture, which is commonly measured by its mean and standard deviation. As a rule,
DB (Bs, BR) with a near-zero mean and a small standard deviation indicates
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high between segmentation masks. Since these measures are not normalized, we
cannot determine which segmentation is the most desirable.

We introduce a modification to the distance distribution signature of Huang
and Dom, in order to normalize the result between 0 and 1. Doing d (x, BR) =
min {dE (x, y) , c}, where the c value sets an upper limit for the error, the two
boundary distances could be combined in a framework similar to the one pre-
sented in Eq. (2):

b = 1 − DB (BS , BR) + DB (BR, BS)
c × (|R| + |S|) , (5)

where |R| and |S| are the number of boundary points in reference mask and
segmented mask, respectively.

4.2 Precision-Recall Measures

Martin in his thesis [6], propose the use of precision and recall values to char-
acterize the agreement between the oriented boundary edge elements (termed
edgels) of region boundaries of two segmentations. Given two segmentations, S
and R, where S is the result of segmentation and R is the ground truth, precision
is proportional to the fraction of edgels from S that matches with the ground
truth R, and recall is proportional to the fraction of edgels from R for which a
suitable match was found in S. Precision measure is defined as follows:

Precision =
Matched (S, R)

|S| Recall =
Matched (R, S)

|R| , (6)

where |S| and |R| are the total amount of boundary pixels. In probabilistic terms,
precision is the probability that the result is valid, and recall is the probability
that the ground truth data was detected.

A low recall value is typically the result of under-segmentation and indicates
failure to capture salient image structure. Precision is low when there is signifi-
cant over-segmentation, or when a large number of boundary pixels have greater
localization errors than some threshold δmax.

Precision and recall measures have been used in the information retrieval
systems for a long time [10]. However, the interpretation of the precision and
recall for evaluation of segmentation are a little different from the evaluation of
retrieval systems. In retrieval, the aim is to get a high precision for all values of
recall. However in image segmentation, the aim is to get both high precision and
high recall. The two statistics may be distilled into a single figure of merit:

F =
PR

αR + (1 − α)P
, (7)

where α determines the relative importance of each term. Following [6], α is
selected as 0.5, expressing no preference for either.

The main advantage of using precision and recall for the evaluation of seg-
mentation results is that we can compare not only the segmentations produced
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by different algorithms, but also the results produced by the same algorithm
using different input parameters. However, since these measures are not toler-
ant to refinement, it is possible for two segmentations that are perfect mutual
refinements of each other to have very low precision and recall scores.

4.3 Earth Mover’s Distance

The concept of using the Earth Mover’s Distance (EMD) to measure perceptual
similarity between images was first explored by Peleg et al. in [9] for the purpose
of measuring distance between two grey-scale images. More recently EMD has
been used for image retrieval [11].

EMD evaluates dissimilarity between two distributions or signatures in some
feature space where a distance measure between single features is given. The
EMD between two distributions is given by the minimal sum of costs incurred
to move all the individual points between the signatures.

Let P = {(p1, wp1) , ..., (pm, wpm)} be the first signature with m pixels, where
pi is the pixel representative and wpi is the weight of the pixel; the second
signature with n pixels is represented by Q = {(q1, wq1 ) , ..., (qn, wqn)}; and D =
[dij ] the distance matrix where dij is the distance between two contour points’
image coordinates pi and qj . The flow fij is the amount of weight moved from
pi to qj . The EMD is defined as the work normalized by the total flow fij , that
minimizes the overall cost:

EMD (P, Q) =

∑
i

∑
j

fijdij

∑
i

∑
j

fij
, (8)

As pointed by Rubner et al [11], if two weighted point sets have unequal total
weights, EMD is not a true metric. It is desirable for robust matching to allow
point sets with varying total weights and cardinalities. In order to embed two
sets of contour features with different total weights, we simulate equal weights
by adding the appropriate number of points, to the lower weight set, with a
penalty of maximal distance. Since normalizing signatures, with the same total
weight do not affect their EMD, we made

∑
i,j fij = 1. Equation (8) becomes,

EMD (P, Q) =
∑

i

∑

j

fijdij , (9)

subject to the following constraints: fij ≥ 0,
∑

j fij = wpi and
∑

i fij = wqj .
As a measure of distance for the EMD ground distance we use

dij = 1 − e−
‖pi−qj‖

α , (10)

where ‖pi − qj‖ is the Euclidean distance between pi and qj and α is used in
order to accept some deformation resulted from manual segmentation of ground
truth. The exponential map limits the effect of large distances, which otherwise
dominate the result.
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5 New Discrepancy Measure

In the context of image segmentation, the reference mask is generally produced
by humans. There is an agreement that interpretations of images by human sub-
jects differ in granularity of label assignments, but they are consistent if refine-
ments of segments are admissible [6]. One desirable property of a good evaluation
measure is to accommodate refinement only in regions that human segmenters
could find ambiguous and to penalize differences in refinements elsewhere. In
addition to being tolerant to refinement, any evaluation measure should also be
robust to noise along region boundaries and tolerant to different number of seg-
ments in each partition. The section introduces a new evaluation measure that
addresses the above concerns.

For the purpose of evaluating image segmentation results, a correspondence
between the examined segmentation mask, S, and the reference mask, R, has
initially be established, indicating which region of S better represents each ref-
erence region. This is performed by associating each region ri of mask R with a
different region sj of mask S on the basis of region overlapping, i.e. sj is chosen
so that ri∩sj is maximized. The set of pixels assigned to sj but not belonging to
ri are false positives, Fp, that can be expressed as Fp = sj ∩ ri, where ri denotes
the complement of ri. The pixels belonging to ri but not assigned to sj are false
negatives, Fn, and can be expressed as Fn = sj ∩ ri.

The minimum required overlap between ri and sj is 50% of the reference
region. Pixels belonging to regions where this ratio is not achieved are consid-
ered as false pixels. These measure quantify the errors due to under and over
segmentation. Clearly, more visually significant regions that were missed in the
segmented mask are assigned a significantly higher error.

The normalized sum of false detections is an objective discrepancy measure
that quantifies the deviation of the results of segmentation from the ground truth
and can be expressed as:

εF =
Fp + Fn

2N
, (11)

where N is the set of all pixels in the image. The value of εF is proportional
to the total amount of errors and indicates the accuracy of region boundaries
localization. The quality of the segmentation is inversely proportional to the
amount of deviation between the two masks.

In applications where the final evaluator of quality is the human being, it is
fundamental to consider human perception to deal with the fact that different
kind of errors are not visually significant to the same degree. To accommodate
human perception, the different error contributions are weighted according to
their visual relevance. Gelasca el al. [2], present a psychophysical experiment to
assess the different perceptual importance of errors. They conclude that a false
positive pixel contributes differently to the quality than a false negative. False
negatives are more significant, and the larger the distance, the larger the error.

We use the weighted functions wp and wn to deal with that fact. They are
normalized by the diagonal distance, D. Let dp be the distance of a false positive
pixel from the boundary of the reference region, and dn be the distance of a false



256 F.C. Monteiro and A.C. Campilho

negative pixel. The weight function for each false pixel is defined by Eq. (12)
and represented in Fig. 1.

wp =
αp log (1 + dp)

D
wn =

αndp

D
. (12)

Distance

0 2 4 6 8 10

w
ei

gh
t

0,0

0,2

0,4

0,6

0,8
weight false positive
weight false negative

Fig. 1. Weight functions for false negative and false positive pixels

The weights for false negative pixels increase linearly and are larger than those
for false positive pixels at the same distance from border. As we move away
from the border of an object, missing parts are more important than added
background, e.g., in medical imaging, it may be enough that the segmented
region overlaps with the true region, so the tumour can be located. But if there
are missing parts of the tumour the segmentation results will be poor.

To obtain a measure between [0, 1], we normalize the total amount of weight
by the image size. The discrepancy measure of weighted distance, εw, becomes:

εw =
1
N

⎛

⎝
∑

fn

wn +
∑

fp

wp

⎞

⎠ , (13)

where fn and fp represent the false pixels. We define a measure of similarity
as sw = 1 − εw. The value of sw = 1 indicates a perfect match between the
segmentation and the reference mask.

6 Analysis on Evaluation Methods

To achieve comparative results about different evaluation methods, two strate-
gies can be followed: the first one consists in applying the evaluation methods
to segmented images obtained from different segmentation approaches. The sec-
ond one consists in simulating results of segmentation processes. To exempt the
influence of segmentation algorithms, the latter has been adopted and a set of
images obtained from manual segmentation available in [5] was used (Fig. 2).

A good evaluation measure has to give large similarity values for images (b) to
(g) and has to strongly penalize other images. Figure 3.a) shows the comparative
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2. The image and its ground truth are shown in (a) and (b), respectively. From
(c) to (g) we have different segmentations of image (a). (h) is the reflected image of
ground truth. Images (i) to (l) are segmentations of other images.

study between the proposed method and the methods presented in Section 3,
expressed in terms of region-based evaluation.

Due to its tolerance to refinement, LCE gives low error (high similarity) scores,
even when the segmentation is very different from the ground truth. Measure p
has a similar behaviour. BCE and dsym give good results for images ((h)-(l)),
however, since they are not tolerant to refinement, the results are poor for other
images. Note that the proposed measure is tolerant to refinement and at the
same time strongly penalizes images ((h)-(l)).

Results of boundary-based evaluation on the same set of images of Fig. 2 are
reported in Fig. 3.b). On comparing the results of the boundary-based measures,
it is made evident that they are well correlated. EMD tolerates well some amount
of deformations that normally happens in the manual segmentation process.
However, when the number of pixels in ground truth differs a lot from the number
of pixels in the segmented image, EMD gives poor results. Despite its success, the
EMD method still needs to be refined to address the limitation in the complexity



258 F.C. Monteiro and A.C. Campilho

(b) Boundaries
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Fig. 3. Evaluation of segmentation, in terms of similarity, from Fig. 2

(a) (b) (c) (d)

Fig. 4. Synthetically generated set of segmentations, where (a) is the reference

Table 1. Numerical evaluation of segmentations from Fig. 4

images LCE BCE dsym p sw

(b) 0.99380 0.98088 0.99349 0.99349 0.99741

(c) 0.99380 0.98088 0.99349 0.99349 0.99612

(d) 0.99380 0.98088 0.99349 0.99349 0.99159

of algorithm that require to be further reduced. The b-measure gives results
similar with F-measure, but is even more intolerant to refinement.

Table 1 presents the evaluation results obtained from a set of trivial synthet-
ically generated segmentations presented in Fig. 4, where we make constant the
number of false detections in each segmentation.

Since LCE, BCE, dsym and p, are just proportional to the total amount of
false detections, different position of those pixels do not affect the similarity.
This makes those methods unreliable for applications where the results will be
presented to humans. Note that sw produces results that agree with the visual
relevance of errors.

7 Conclusion

In this paper, we introduce a new approach for segmentation evaluation that
takes into account, using a single metric, not only the accuracy of the bound-
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ary localization of the created segments but also the under-segmentation and
over-segmentation effects according to the ambiguity of the regions, regardless
to the number of segments in each partition. We experimentally demonstrated
the efficiency of this new measure against well known methods. This new metric
can be applied both to automatically provide a ranking among different seg-
mentation algorithms and to find an optimal set of input parameters of a given
algorithm according with their results of segmentation evaluation. Moreover, this
paper introduces a modification to the distance distribution signature of Huang
and Dom, b-measure; it applies the concept of Earth Mover’s Distance to the
evaluation of image segmentation.
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