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Abstract—In this paper the performance of I-SD ADCs based
on the spectral description is discussed. It is based on the
modulator and the reconstruction filter and accounts for the
applied reset. The definition of the overall noise transfer function
(NTF) enables the analysis of the performance of I-SD ADCs
in frequency domain and consequently makes it possible to
explain the inherent behavior of this type of ADC including
reconstruction filter and non-idealities. In the state of the art,
the performance of an I-SD ADC is either obtained by simu-
lations or predicted via time-domain considerations. However,
these simulations can become time consuming and time-domain
considerations neglect non-idealities, especially in the case of a
CT modulator. Only recently, a general way to describe the NTF
of DT and CT I-SD ADCs was introduced. This work gives a
detailed analysis of the NTF of I-SD ADCs and the impact of
its properties on the resulting SQNR. It discusses the influence
of common reconstruction filters and based on this analysis, it
introduces as an example a modified CoI filter that allows to
improve the ADC’s performance.

Index Terms—Incremental, Sigma-Delta, noise transfer func-
tion, reconstruction filter.

I. INTRODUCTION

In modern signal processing, high performance analog-to-

digital converters (ADCs) are inevitable as speed and power

requirements are becoming more challenging. By trading cir-

cuit precision against time, one commonly used type of ADC

is the Sigma-Delta (SD) ADC, which is based on oversampling

and noise shaping. However, its averaging behavior excludes

it from being used in applications where sample-to-sample

conversion is required [1]. A solution for this drawback can

be the usage of an incremental Sigma-Delta (I-SD) ADC

[2]. It provides the benefits of both worlds, the Nyquist-rate

behavior and the oversampling and noise shaping capabilities

of a conventional SD ADC.

Although I-SD ADCs share the same principles as free-

running SD ADCs, the behavior of an incremental and a free-

running ADC are fundamentally different. Due to the applied

periodic reset, the incremental system can not be considered as

linear time invariant (LTI) system but rather has to be seen as a

linear periodically time variant (LPTV) system. Consequently,

the performance analysis of the I-SD ADC in the frequency

domain with the noise transfer function (NTF) and the white

noise model of the quantizer can not be performed in the

same way as for a free-running SD ADC. Moreover, as the

reconstruction filter is also reset, it has to be considered and

an overall transfer characteristic of the quantization noise has

to be determined. As a consequence, the analysis approaches
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Fig. 1. NTF of an I-SD ADC with a CoI reconstruction filter and NTF of a
free-running modulator with an ideal brick-wall filter before decimation. Both
are based on the same free-running modulator NTF (dash dotted).

of I-SD ADCs as e.g. in [3], [4] or [5] focus on architecture

dependent time-domain considerations. In [6], the same LTI

FIR model as in this work is used, however, it only considers

ideal, discrete-time (DT) I-SD ADCs, again in the time-

domain. Thus, non-ideal behavior, as finite DC gain and finite

gain-bandwidth product (GBW) in continuous-time (CT) I-SD

ADCs can not be addressed in a straightforward way. In [7],

a general way to calculate the overall NTF is described for

CT and DT I-SD ADCs. For the CT case, the calculation

approach makes use of the lifting method and is able to directly

include non-idealities such as excess-loop-delay (ELD), finite

DC gain and finite GBW into calculations [8]. In Fig. 1,

the overall NTFs (including modulator and subsequent digital

filters) of a free-running SD ADC and an incremental SD

ADC before decimation are shown, illustrating the difference

of both: whereas the NTF of the free-running Sigma-Delta

modulator (SDM) is only considered until the bandedge, where

the digital decimation filter will ideally cut off all out-of-

band (OOB) components, the performance of the I-SD ADC

is heavily determined by the OOB components.

Whereas the general approach to determine the overall NTF

was derived in [7], there was no in-depth analysis on its

behavior. Therefore, this work focuses on the properties of

the overall NTF of I-SD ADCs, which has, to the authors

knowledge, not been covered in literature so far. As the signal-

to-quantization-noise ratio (SQNR) can be estimated based

on the NTF, the performance of I-SD ADCs is analyzed

alongside. The estimate makes time-consuming simulations

redundant and allows a systematic system design approach.

Consequently, the influence on the ADC’s performance of

common reconstruction filters and of the modulator with

applied reset are discussed. Based on these findings, this work

exemplarily introduces a modified chain-of-integrators (CoI)

filter that allows to improve the ADC’s performance in order

to emphasize the significance of this analysis.

Section II discusses the working principle of I-SD ADCs
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Fig. 2. Basic block diagram of an I-SD ADC (a) and the corresponding reset
diagram for an OSR of M+1 (b).

in time domain. The calculation of the overall NTF of I-SD

ADCs and its differences to the free-running counterpart is

reviewed in Section III. In Section IV, properties of the NTF

depending on the modulator and the reconstruction filter are

discussed. Based on this analysis, in Section V an improved

version of a CoI filter is given. Section VI concludes the paper.

II. WORKING PRINCIPLE OF I-SD ADCS

In order to give a first overview of an I-SD ADC, the

working principle of a first order ADC is introduced in time

domain as commonly described in literature [1][3]. In general,

an I-SD ADC as in Fig. 2a consists of the incremental Sigma-

Delta modulator (I-SDM), the digital reconstruction filter and

the decimator. In the DT case, the continuously running input

signal u(t) is sampled at the integrator input resulting in

samples un[k]. Here n denotes the n-th Nyquist-rate sample

and k = 1 . . .M is the running variable of the oversampled

modulator, where M samples at fs – the oversampling rate –

are used to generate one Nyquist sample at fN. In I-SDM, M
is equal to the oversampling ratio (OSR) for an infinitely short

reset. Consequently, the integrator output is calculated in time

domain by

yn [k] =
k

∑

l=1

(un [l]− dn [l]) . (1)

The basic difference of an I-SDM to a conventional SDM is

its periodically applied reset window as shown in Fig. 2b. In

all further considerations, a linearized model is used where the

quantizer is replaced by a noise source e[k] and the linear gain

q. Therefore, the I-SDM generates M samples dn[k] for k ∈
[1,M ] with dn[k] = q ·yn [k]+ e [k], which the reconstruction

filter and the subsequent decimator use to create one sample

D[n] =
1

M

M
∑

l=1

dn [l] . (2)

The output D[n] yields the digital representation of the analog

input at Nyquist-rate fN. Therefore, each conversion cycle is

independent from each other and true Nyquist ADC behavior

is obtained. Based on the difference of the digital output and

the input, the conversion error and thus the performance of

the converter can be estimated. However, these calculations

are architecture specific and often require assumptions and

simplifications. This is especially true for CT I-SDMs as

their specific behavior and non-idealities are usually neglected.

Additionally, an upfront sample-and-hold (S/H) element is

assumed, although not always present in the actual design [4].

III. OVERALL NTF OF I-SD ADCS

In Section II and in most prior literature, it is shown that

I-SD ADCs can be described in time domain. Nonetheless, a

description in frequency domain is often desired, which can

be used especially in the CT case to include non-idealities.

Therefore, in this chapter the description of an I-SD ADC

in the frequency domain – as introduced in [7] – is shortly

reviewed. In the following a normalized sampling frequency

fs = 1 is assumed for simplicity and readability of the

analysis. The NTF of a conventional SDM is usually obtained

with the help of the Z-transform by using the LTI system

model. However, in the overall transfer characteristic for

I-SD ADCs also the reconstruction filter and the time-variant

behavior due to the reset have to be considered, resulting in

a modified definition of the NTF: it describes the transfer

characteristic of quantization noise introduced by the quantizer

to the output of the reconstruction filter. For a free-running

SD ADC, this ideally corresponds to the multiplication of the

NTF with a brick-wall filter, as illustrated in Fig. 1. After the

downsampling, all components of the overall NTF above fN
are folded back in the frequency range between 0 and fN,

usually resulting in a flat spectrum seen from I-SD ADCs.

A. Lifting Method for CT I-SD ADCs

Due to the mixed signal character of the CT SDM, the

calculation of the NTF is not straightforward. In order to derive

a NTF, an equivalent DT model has to be obtained. For this

purpose, in [7] the lifting method is used [8]. In [9] CT SDMs

with arbitrary feedback digital-to-analog converters (DACs)

and the CT filter function HCT (s) including non-idealities –

such as finite DC gain and GBW – can be transformed by the

lifting method to a DT filter H(z). The analytically derived,

equivalent DT model behaves exactly as the CT model at the

sampling instants and serves as basis for the incremental NTF

in the same way as the filter of a genuine DT ADC.

B. NTF Calculation

The applied reset alters the system characteristics of an I-SD

ADCs from an LTI to an LPTV system. However, it has been

shown that I-SD ADCs can be modeled as a LTI system finite

impulse response (FIR) [10], [7]. With the DT filter H(z) or

the DT equivalent of the CT filter, the NTF of the free-running

SDM can be expressed by

NTFsdm(z) =
1

1 + q ·H(z)
. (3)

The Z-transform of the overall transfer function of a free-

running DT SD ADC, NTFfree, is given by

NTFfree (z) = NTFsdm (z) ·Hrec (z) (4)

with Hrec (z) being the transfer function of the reconstruction

filter. In time domain, this yields an infinite convolution sum

with the respective impulse responses of the two subsequent

systems. Without reset, also the impulse response hfree [n] of

the ADC would be infinite due to the infinite impulse response

hsdm [n] of the modulator. However, it is proven in [10] that by
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TABLE I
DIFFERENCE OF CALCULATED AND MATLAB SIMULATED SQNRS OF THE

ADCS WITH DIFFERENT GBW AND DC GAIN COMBINATIONS AT

Ain = −10 dBFS AND fin = 0.5 fN FOR M = 100.

GBW [fs] / DC Gain 10 / 1000 5 / 100 1 / 20

Single-Bit: 0.1 dB 0.1 dB 1.3 dB

Multi-Bit: 0.6 dB 0.5 dB 0.4 dB

truncating the infinite convolution sum, the impulse response

of an equivalent FIR filter

hFIR [k] =

M−1
∑

l=0

hsdm [k−l] · hrec [l]

= Z−1 {NTFfree (z)} [k] · rectM [k] . (5)

can be obtained for k ∈ [0,M−1], which accounts for the

reset. The expression rectM [k] is a DT rectangular window

function with length M and NTFfree (z) is the combination of

the NTF of the free-running SDM and the reconstruction filter

transfer function as defined in (4). In the frequency domain,

this calculation corresponds to the circular convolution of the

overall free-running NTF

NTFincr(f) = NTFfree(f)⊛Xrect,M (f) (6)

with the DT sinc function

Xrect,M (f) =
sin (Mπf)

sin (πf)
· e−j(M−1)πf (7)

by applying the discrete time Fourier transform (DTFT) as

shown in detail in [7]. As it can be seen in the following

sections, the inclusion of the reconstruction filter and the

convolution with the DT sinc have major influence of the

characteristics of the incremental ADC.

C. Prediction of the SQNR based on the NTF

The overall NTF of an I-SD ADC allows to directly estimate

the SQNR of I-SD ADCs in combination with the white

noise model in a general way, comparable to its free-running

counterpart. The estimated SQNR is determined by

SQNRest = 10 · log10

(

Pin

IBNest

)

(8)

with integrated inband noise

IBNest =
∆2

12
·

∫ 0.5

−0.5

|NTFincr(f)|
2 df, (9)

the signal power Pin and the quantizer step size ∆ [1]. Due

to the accuracy of the lifted CT models, also the influence of

non-idealities such as finite GBW, finite DC gain and ELD

are covered precisely for CT ADCs. This allows an analytic

prediction of the ADC’s performance without simulation.

Table I shows exemplarily the accuracy of the calculated

SQNR as in (8) for a CT ADC in cascade-of-integrators

feedforward (CIFF) architecture with different GBW and DC

gain combinations. A single-bit and a multi-bit (4-bit) quan-

tizer are used at an OSR of 100 based on 212 samples. The

simulation and calculation match closely in the range of the

applicability of the white noise model and numeric variations.

Consequently, the following analysis is based on the overall

NTF and (8).
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Fig. 3. Calculated overall NTFs of an I-SD ADC utilizing integrators with
finite GBW or finite DC gain in comparison to the ideal case with annotated
Matlab simulation results.

10
−3

10
−2

10
−1

−140

−120

−100

−80

f/fs

N
T

F
[d

B
]

Resonator

No Resonator

(a)

10
−3

10
−2

10
−1

−140

−120

f/fs

A
cc

.
IB

N
[d

B
]

Resonator

No Resonator

(b)

Fig. 4. Calculated overall NTF with annotated Matlab simulation results (a)
and accumulated IBN up to a certain frequency (b) of an I-SD ADC with
optimized zeros in comparison to a corresponding ADC without them.

IV. PERFORMANCE ANALYSIS OF I-SD ADCS

BASED ON THE OVERALL NTF

Based on the applicability of the frequency-domain descrip-

tion and using the NTF derived for I-SD ADCs, in this section,

their performance is discussed on system level in comparison

to their free-running counterparts. In contrast to the state of

the art, in this work, this is done – to the authors knowledge

for the first time – in the frequency domain. As reference,

the corresponding free-running SD ADCs are utilized, as,

except for very low OSRs, the performance of I-SD ADCs

is comparatively lower [4]. Consequently, it must be the goal

to reduce this difference.

For free-running SD ADCs, usually only the modulator part

is analyzed and for the decimation filter, an ideal brick-wall

filter is assumed. The SDM predominantly determines the

ADC’s performance and is therefore at the center of attention.

In the following, the influence mechanisms onto I-SD ADCs

are analyzed separately for the I-SDM and the digital filter. For

the analysis, coefficients for a third-order DT modulator are

obtained by the Delta-Sigma Toolbox with an out-of-band gain

(OBG) of 1.5 and internal states scaled to 0.9 full-scale. For its

CT counterpart, an impulse invariant transform is performed.

If not stated otherwise, an OSR of 100 is used and for the

incremental case, a digital filter of the same order is utilized.

A. Influence of the I-SD Modulator

1) Modulator with Finite DC Gain and GBW: Major non-

idealities in CT SDMs are the finite GBW and the finite DC

gain of the integrators. Both alter the shape of the overall

NTF of an I-SD ADC and – as presented in Section III-C
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– the individual influence on the SQNR can by precisely

predicted and analyzed in comparison to the free-running case.

An example is illustrated in Fig. 3: alongside the ideal overall

NTF, the NTFs with either applied finite GBW or DC gain

are presented. Simulation results are annotated to underline the

accuracy of the overall NTFs comprising non-idealities. It can

be seen, that for finite GBW, the overall NTF shape is altered

mainly in the higher frequency region, which is attenuated

by the digital reconstruction filter. In the free-running case,

these changes are completely suppressed due to the brick-

wall filter, but are known to yield stability problems to some

extent. In the lower frequency region, the shape is only slightly

elevated resulting in a relatively small drop of SQNR of 0.5 dB

in the incremental case and 1.0 dB in the free-running case

for fgbw = 0.5 fs. In contrast, finite DC gain influences the

frequency components closer to DC. In the case of the free-

running NTF, the inband close to DC is known to flatten by

finite DC gain, resulting in an increased IBN of 3.0 dB for

Adc = 20. For the I-SD ADC, however, the IBN increases by

even 6.0 dB. The overall NTF gives the reason: it exposes the

characteristic of a sinc function with notches in proximity to

multiples of 1/M and an amplified main lobe caused by the

circular convolution with Xrect,M (f).
2) Modulator with Optimized Zeros: The incremental op-

eration also influences techniques, which are commonly used

to improve the SQNR for free-running ADCs, however, have

negative influence on incremental ADCs. For free-running SD

ADCs, the optimization of the NTF zeros is usually employed

[1]. By analyzing the overall NTF, it can be explained why this

method is not beneficial in the incremental case. In Fig. 4a,

the exemplary overall NTFs with and without optimized zeros

are depicted alongside with annotated simulation results.

For the free-running NTF, the optimized zeros not only

introduce a notch but also elevate the frequency components

close to DC [1]. Similar as in the case of finite GBW, this raise

of the free-running NTF close to DC in combination with the

circular convolution exposes a sinc-like shape of the overall

NTF of the I-SD ADC. In Fig. 4b the accumulated IBN up to

a certain frequency is shown for the case with and without

optimized zeros. It can be clearly seen that the increased

IBN originates from the main lobe of the sinc-like function.

Both cases approach each other for higher frequencies as the

subsequent notches attenuate certain noise components – still,

a small loss in performance can be observed in total.

B. Influence of the Reconstruction Filter

As motivated above, the I-SD ADC needs to be analyzed

as a whole. Therefore, in this section the reconstruction filter

is taken into account.

1) Chain-of-Integrators Filter: Due to its simplicity while

still providing a good performance, the CoI reconstruction

filter is often used in I-SD ADC implementations. It consists

of a chain of digital integrators, commonly of the same order

as the analog modulator [1]. In literature also of one order

higher is mentioned [3][11]. However, this is not analyzed in

general and only in time domain for DC measurement.

Consequently, this section analyses both options referenced

to the free-running counterpart. In Fig. 5a the difference of the
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Fig. 5. Calculated ∆SQNR of I-SD ADCs and a free-running ADCs from
first to third order with a CoI filter of the same order (solid) and one order
more (dash-dotted) (a) and exemplary NTFs of a 3rd order ADC (b).
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SQNR predictions of I-SD ADCs to free-running SD ADCs

with respect to the OSRs is shown. Modulators from first to

third order are combined with a reconstruction filter of the

same order (solid) or one order more (dash-dotted). Fig. 5a

shows that for a CoI of the same order as the analog modulator,

the difference to its free-running counterpart increases with the

OSR. With a CoI filter of one order higher than the modulator

order, for a first and second order modulator, the I-SD ADC

can achieve a performance much closer to the one of the free-

running counterpart. For higher order modulators, however,

again an increased SQNR difference can be noticed. Though,

it can be noticed that the difference, in contrast to the CoI at

the same order, is rather constant for higher OSR.

In Fig. 5b the corresponding overall NTFs are shown for

M = 100 and M = 200 for a third-order modulator and

both CoI variants. The I-SD ADC with the CoI reconstruction

filter of one order higher shows the sinc like shape similar

as for modulator with optimized zeros. However, for the case

of M = 200, the NTF shows a higher attenuation in higher

frequency regions. Moreover, as the main lobe width varies

with the OSR, the accumulated IBN reduces proportionally,

leading to the constant performance difference with the free-

running ADC due to its also OSR dependent brick-wall filter.

2) Sinc Filters: Another type of reconstruction filter often

mentioned in literature is the sinc or triangular filter. As

presented in [12], it allows line noise suppression due to the

possibility to add notches to the overall signal transfer function

(STF) of the ADC. For an exemplary decimation factor of

N = 50 and M = 150, this leads to deep notches in the
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STF at multiples of 0.02 fs. However, this property comes

along with the drawback of a decreased SQNR, which can

be explained with the overall NTF as in Fig. 6. Here, the

NTF of a third-order ADC utilizing a sinc filter is illustrated

in comparison with a CoI filter based ADC. The NTF shows

an overall amplification and notches at DC and at the same

frequencies as for the STF. Additionally, these notches are

filled up by the circular convolution due to the reset.

V. MODIFIED COI FILTER

In Section IV, the influence of different reconstruction filters

on the SQNR has been presented. The ADC utilizing a CoI

filter with one order higher than the modulator can outperform

a filter at the same order for higher OSR; however, for e.g. a

third-order modulator, for lower OSRs, the filter at the same

order outperforms it. The conclusion can be drawn that the

filter needs to be adapted to the OSR of the incremental ADC.

Therefore, in this section, in order to increase the SQNR for

medium OSRs, a modified CoI is introduced based on the

previous analysis of the overall NTF.

A. Transfer Function

In Fig. 5b it can be seen that a certain OSR is required

to make the ADC benefit from the increased CoI order. If

a certain threshold is exceeded, the increased power in the

main lobe is compensated by the reduced power for higher

frequencies. In order to modify this behavior, the structure of

the CoI filter can be adapted. In Fig. 7, a modified fourth

order CoI filter is shown that can be utilized for a third-order

modulator. One of the integrators has an adjusted feedback

gain of h = 0.96 that modifies the NTF as in Fig. 8b.

The modified feedback results in reduced power for low

frequencies compared to a conventional CoI filter at the same

order, and a steeper roll off for higher frequencies, while the

notches are vanishing. This compromises the properties of the

third and fourth order CoI filters.

B. Performance Evaluation

Based on the overall NTF, again, the performance with

respect to the OSR can be analyzed. The modified structure

allows a performance gain compared to both the CoI filter

at the same order and one order increased as can be seen

exemplarily in Fig. 8a. It can be seen that the modified

structure is beneficial for an OSR between around 60 and 700.

A performance increase of up to 6.9 dB can be achieved for

M = 700 where the fourth order CoI starts to outperform the

modified CoI filter.

VI. CONCLUSION

In this work an analysis of the overall NTF of I-SD ADCs

and the impact of its properties on the resulting SQNR is

given. The work is based on a general way to calculate the

overall NTF of DT and CT I-SD ADCs. The overall NTF

allows to directly draw conclusions on the ADC’s performance

including non-idealities. Moreover, the behavior of common

reconstruction filters as CoI and sinc filters is discussed. Based

on this analysis, a modified CoI filter that allows to improve

the performance ADCs for medium OSRs is introduced.

Fig. 7. 4th order modified CoI filter comprising one lossy integrator.
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