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Abstract— Benchmarks have long been used to verify
and compare the readiness level of different technologies in
many application domains. In the field of wearable robots,
the lack of a recognized benchmarking methodology is
one important impediment that may hamper the efficient
translation of research prototypes into actual products.
At the same time, an exponentially growing number of
research studies are addressing the problem of quantifying
the performance of robotic exoskeletons, resulting in a rich
and highly heterogeneouspicture of methods, variables and
protocols. This review aims to organize this information,
and identify the most promising performance indicators that
can be converted into practical benchmarks. We focus our
analysis on lower limb functions, including a wide spectrum
of motor skills and performance indicators. We found that,
in general, the evaluation of lower limb exoskeletons is still
largely focused on straight walking, with poor coverage of
most of the basic motor skills that make up the activities
of daily life. Our analysis also reveals a clear bias towards
generic kinematics and kinetic indicators, in spite of the
metrics of human-robot interaction. Based on these results,
we identify and discuss a number of promising research
directions that may help the community to attain a com-
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prehensive benchmarking methodology for robot-assisted
locomotion more efficiently.

Index Terms— Benchmarking, locomotion, walking, pos-
ture, assessment, wearable robots, orthoses.

I. INTRODUCTION

WEARABLE robots are experiencing an unprecedented
era. Many research prototypes have been successfully

turned into commercial products and are now facing a rapidly
evolving market, characterized by diverse applications and
needs. While the potential of wearable robotics technology
is indisputable, demonstrating its value on a quantitative basis
is challenging. Previous reviews have highlighted weaknesses
and difficulties in providing reliable evidence of the clinical
usefulness of these devices, possibly due to a lack of clear
and rigorous evaluation methods [1], [2]. At the same time,
the robotics community has demonstrated an increasing inter-
est in benchmarking as a way to scientifically assess and com-
pare the performance of exoskeletons [3]. However, no agreed
methodology, best practices or standards have been made
formally available so far [4]. Currently, the principal approach
to compare exoskeletons has been through competitions, such
as Cybathlon [5]. The major drawback of competitions is
that scores are usually based on very simple metrics, for
example accomplishment of a task and/or time to comple-
tion, which can hardly be used to characterize the multiple
aspects of exoskeleton performance. Fortunately, the scientific
literature has produced hundreds of studies that focused,
directly or indirectly, on the evaluation of exoskeletons, which
has resulted in a multitude of available methods and variables.
However, the great variability in procedures, experimental
settings and metrics, makes these methods difficult to apply to
other devices and environments, which impedes an objective
comparison across systems. A unified and broadly applica-
ble benchmarking methodology for performance evaluation
of wearable robotic systems is therefore eagerly anticipated.
In line with this objective, this review aims to identify and
bring together the most promising methods, metrics and exper-
imental procedures available in the literature to assess robotic-
assisted motor skills. We focused on lower limb exoskeletons
for gait assistance and rehabilitation, following on our previous
efforts in the field of benchmarking bipedal locomotion [6].
We screened more than nine hundred papers which, after a
careful selection process, resulted in a total of 187 relevant
publications. We structured our analysis to address two main
research questions:
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Fig. 1. Taxonomic overview of the reviewed works. The size of each circle (and the number inside it) indicates the number of reviewed works
covering a given motor skill (row) and PI (column). Bars on the right indicate the total number of publications covering the corresponding motor skill.
Bars on the bottom indicate the number of publications that proposed or used the corresponding PI. The colours of the bars represent the three
main categories of motor skills (walking, standing, others). The numbers in the last column indicate the number of PIs covered by each motor skill,
and vice versa for the numbers in the last row.

• Which motor skills are considered when evaluating the
functionality of a lower limb exoskeleton?

• Which variables and metrics are used to characterize
performance?

Section II presents the literature search methodology, which
includes the search query, the exclusion criteria, and the
taxonomy used to classify results by motor skills and perfor-
mance indicators. Section III reports the results of our analysis
and identifies the most relevant trends. In Section IV we
present a critical analysis of the results, addressing the research
questions posed and identifying the main drawbacks and the
most promising future directions. A conclusion is provided
in Section V.

II. METHODS

We obtained 923 titles from an initial search of the Scopus
database using the following query string on paper title,

keywords and abstract, on papers published between Janu-
ary 1989 and April 2018:

(locomot* OR gait* OR walk* OR “body transport*”) AND
(test* OR assess* OR measure* OR benchmark* OR evaluat*
OR quantif*) AND (“wearable robot*” OR exoskelet* OR
“powered ortho*”)

After reading titles and abstracts, we excluded duplicated
publications and those that met one or more of the following
criteria: not related to wearable robots; not focused on testing
locomotion performance; not including physical prototypes;
restricted to testing perception abilities of the system; focused
on brain computer interfaces (BCI); focused on clinical assess-
ment. We added a further ten publications resulting from a
further search of those scenarios that produced scarce results
in the previous search, for example standing, balance, soft
ground, irregular terrains, or slippery surfaces. After reading
the full texts, we discarded a further 24 articles, resulting
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Fig. 2. Number of publications, motor tasks and PIs over time.

in a total of 187 papers. We classified the papers using a
twofold taxonomy composed of motor skills and performance
indicators (PIs), as shown in Figure 1. Motor skills have been
grouped into the following three categories:

• Walking skills, which included walking on flat ground,
treadmill, slopes, irregular terrains, soft ground, slippery
surfaces, when pushed, backwards walking, overcoming
obstacles, slalom or turning, ascending or descending
stairs, and walking while bearing additional weight.

• Standing skills, which included standing on moving sur-
faces, on slopes, in the presence of pushes, and during
manipulation.

• Other skills, which included lateral stepping, crouch-
ing or kneeling, sit-to-stand or stand-to-sit, and running.

PIs were clustered into:

• Goal-level variables, which included maximum
speed or minimum time, distance achievable by the
robot, stability, endurance, versatility and dependability.

• Kinematics/kinetics variables, which included spatiotem-
poral parameters, joint or limb kinematics and kinetics,
symmetry, coordination and human likeness.

• Human-robot interaction variables, which included
metabolic cost, ergonomics, comfort, muscle effort, inter-
action forces, cognitive effort and safety.

III. RESULTS

As shown in Figure 2, the number of publications
has increased exponentially over the years. The num-
ber of motor skills and PIs considered also showed an
increase, but with a linear trend. The distribution of the
reviewed works across the different categories is presented in
Figure 1.

A. Motor Skills

1) Flat Ground Walking: This is the most frequent motor
skill in the literature, with 121 publications [7]–[127]. Overall,
these publications cover most of the PIs included in our

taxonomy (see last column of Figure 1), of which the more
relevant are kinetics, kinematics, spatiotemporal parameters
and maximum speed and/or minimum time.

2) Walking on a Treadmill: This is the second most popular
motor skill in the literature, with 53 publications [10], [11],
[13], [24], [58], [86], [103], [105], [109], [128]–[170] and
15 different PIs covered, kinematics, kinetics and spatiotem-
poral parameters being the most used.

3) Walking on Slopes: We found ten publications [58], [67],
[75], [76], [79], [80], [94], [117], [171], [172] covering this
motor skill, spanning eight different PIs, of which max. speed/
min. time, kinematics and metabolic cost had the highest
prevalence.

4) Walking on Irregular Terrains: Only two publications, [76],
[173], covered this motor skill. Kinematics, kinetics, max.
speed/ min. time, distance and metabolic cost were the PIs
considered.

5) Walking on Soft Ground: We found only two publications,
[75], [80], which considered this scenario. The evaluation of
this motor skill was based on goal-level PIs, including max.
speed/ min. time, distance and versatility.

6) Walking During Pushes: Only one publication [50] was
found on this motor skill. Five PIs were assessed for this
evaluation: max. speed/ min. time, versatility, kinematics,
kinetics and ergonomics.

7) Backwards Walking: Only one paper [127] was found
on this skill, focusing on the assessment of human-robot
interaction forces.

8) Obstacle Avoidance: We found only two papers,
[75], [80], that considered this scenario, with three goal-level
PIs proposed: max. speed/ min. time, distance and versatility.

9) Slippery Surface: Only two papers, [174], [175], focused
on this motor skill. Three PIs were proposed for its evaluation;
these were range of motion, angles and torques.

10) Slalom and/or Turning: Four papers, [45], [75], [80],
[117], evaluated locomotion involving turns, with a very
heterogeneous set of PIs (see Figure 1 for details).

11) Ascending and/or Descending Stairs: With 13 publica-
tions, [20], [31], [32], [58], [67], [79], [97], [101], [117], [147],
[176]–[178], this is the fifth most considered motor skill in this
review. Seven PIs were proposed for its evaluation, the most
frequent being kinematics, kinetics, spatiotemporal variables
and versatility.

12) Weight Bearing: Weight bearing is the fourth most
covered motor skill, with 19 publications, [9], [20], [34], [51],
[53], [73], [128], [130], [146], [149], [153], [160], [164],
[172], [179]–[184]. The most frequent PIs were kinetics, kine-
matics, maximum speed, spatiotemporal parameters, muscle
effort and metabolic cost.

13) Standing on Moving Ground: We found three papers
[175], [185], [186] covering this motor skill. The five PIs
proposed belonged mainly to the kinematics/kinetics category.

14) Standing During Manipulation: Three papers, [59], [75],
[187], covered this motor skill, with six different PIs, the most
relevant being max. speed/ min. time, and spatiotemporal PIs.

15) Standing During Pushes: Only two papers, [186], [188],
covered this motor skill, with four different PIs: kinematics,
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kinetics, stability to external disturbances and muscle
activation.

16) Standing on Slopes: We only found one paper [75] that
studied exoskeleton performance while standing on a slope.
Two different goal-level PIs were presented: max. speed/min.
time and distance.

17) Lateral Stepping: We only found one paper [127] assess-
ing this skill, which focused primarily on interaction forces.

18) Crouching and/or Kneeling: Only one paper [73]
assessed this skill, with two different PIs: versatility and
comfort.

19) Sit-to-Stand/Stand-to-Sit: Chair sitting and standing is
the third most covered motor skill in this review, with 22 pub-
lications, [8], [21]–[23], [32], [35], [42], [44], [51], [58], [59],
[73], [75], [80], [84], [96], [98], [99], [117], [123], [189],
[190]. This skill was evaluated with a high variety of PIs
(13), the most frequent being max. speed/ min. time, distance,
comfort, versatility, spatiotemporal parameters and kinematics.

20) Running: We found four publications [104], [191]–[193]
that assessed running while wearing an exoskeleton. Seven PIs
were presented for this evaluation and the most relevant was
kinetics.

B. Performance Indicators

1) Maximum Speed/Minimum Time: This category refers to
the minimum time the robot needed, or the maximum speed it
achieved, to correctly perform a certain motor skill. It is one of
the preferred metrics for performance evaluation in this review,
with 72 appearances in papers, spanning 14 different motor
skills. The most common specific PIs used in this category
(see Figure 3) are patient’s preferred speed, maximum walking
speed and execution time, most of them calculated during
clinical tests, such as the 10 Meter Walking Test (10MWT),
the 6 Minute Walking Test (6MWT) and the Timed Up and
Go (TUG) test.

2) Distance: The distance covered by the exoskeleton is
frequently used when evaluating exoskeleton performance,
with 32 occurrences in papers that covered ten different motor
skills. We found that the 6MWT is the preferred PI in this
category.

3) Stability to External Disturbances: This category includes
indicators such as deviations of the centre of gravity (COG),
forefoot and rearfoot loading, length of motion path or con-
fidence ellipse area. Stability was evaluated in six papers
that considered the following scenarios: flat walking, weight
bearing, standing on moving ground and during pushes, and
sit-to-stand.

4) Endurance: This evaluation is generally requested to
test the robot’s ability to perform long periods of function-
ing or multiple cycles of work. We found seven publications
evaluating these aspects, which covered eight motor skills. The
most frequent PIs considered here were power development
per joint, joint stiffness and battery usage.

5) Versatility: Versatility is used to describe the exoskele-
ton’s ability to cope with different motor skills in the same
run. This aspect were considered in 14 publications that
spanned 12 motor skills. The specific PIs used were step width

Fig. 3. Overview of the performance indicators found on the reviewed
works engaged in the three main categories. The number of works
covering each PI is presented in brackets. CoG: Center of Gravity CoM:
Center of Mass; 5MWT: Five Meter Walking Test; 6MWT: Six Minute
Walking Test; 10MWT: Ten Meter Walking Test; TUG: Timed Up and Go.

adaptability and number of successful transitions between
tasks.

6) Dependability: Dependability, defined here as the robot’s
ability to operate without failures or decreased performance
was mentioned in only one paper, focused on treadmill walk-
ing. We could not find any specific PI to measure this ability.

7) Spatiotemporal Parameters: This category is the fifth
most considered in literature, used in almost all walking skills,
except for walking on uneven terrains and during pushes.
We found 19 different PIs, the most frequent being cadence,
walking speed, number of steps, step length, stride length and
phase time.

8) Kinematics: Kinematic variables are used in almost half
of the publications reviewed. These cover almost all motor
skills, except for soft and slippery grounds, obstacle avoidance,
standing during manipulation and crouching/kneeling. Among
the PIs found, the most popular were joint angular trajectories,
range of motion (ROM), speed and COM position.

9) Kinetics: The same considerations given for kinemat-
ics apply here. Fifteen different PIs have been proposed in
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this category. The most frequent were global torques, global
forces, global power and ground reaction forces (GRF).

10) Symmetry: Symmetry has been evaluated in ten pub-
lications, most of them focusing on flat walking, and to a
minor extent on standing. The main relevant PIs were GRF
propulsion impulse and joint trajectory deviation.

11) Coordination: We found five publications on this aspect,
four of them on flat walking and one on standing during
manipulation. No specific PIs were proposed.

12) Human Likeness: No paper explicitly mentioned this
aspect.

13) Metabolic Cost: This kind of measurement was found
in 37 publications, most of them focusing on flat or treadmill
walking, and to a minor extent on weight bearing or slope
walking. Heart rate, blood lactate concentration, oxygen con-
sumption, carbon dioxide production, metabolic power, biolog-
ical power, work and calorimetry are the most frequent PIs.

14) Ergonomics: Ergonomics was considered in eight pub-
lications, most of them covering flat or treadmill walking,
with sporadic applications to other motor skills (see Figure 1
for details). The main PIs used were human-robot relative
position, interface displacements, anthropometric database per-
centiles, and adaptability to different height ranges.

15) Comfort: Comfort, defined here as the user’s perception
of the human-robot interaction, was covered by 20 publica-
tions, and mostly applied on flat ground walking and sit-to-
stand/stand-to-sit skills. Among the ten PIs found, the most
relevant were pain scales, clinical questionnaires, and user
sense of comfort.

16) Muscle Effort: This is the most common aspect
employed for the assessment of human-robot interaction.
It was covered by 47 publications, half of them applied to flat
walking, followed by treadmill walking, weight bearing, sit-to-
stand and standing during pushes. Muscle effort is generally
assessed by measuring electromyographic (EMG) activity,
which is generally processed for posterior onset detection and
muscle activity recognition. Also muscle alteration rates and
the visual analogue scale of fatigue (VAS-F) have been found
as indicators of muscle effort.

17) Interaction Forces: We found ten publications covering
this aspect. Seven of them covered flat ground walking,
another two covered treadmill walking and sit-to-stand/
stand-to-sit, and another one covered backwards and lateral
stepping. Power delivered to the robot, interface transmitted
forces and interaction forces were the only three PIs found in
this category.

18) Cognitive Effort: We found only one publication men-
tioning cognitive effort as a performance metric. It was applied
to flat walking but no specific metric was found.

19) Safety: The evaluation of safety was proposed by eight
publications. Seven different PIs were identified: number of
falls, skin, spine and joint status after using the robot, blood
pressure, heart rate and clinical questionnaires.

IV. DISCUSSION

We observed an increasing relevance of performance eval-
uation in the field of lower limb exoskeletons. This trend,
visible in the exponential growth in the numbers of papers

(see Figure 2) is, however, only in part accompanied by an
increase in the range of motor skills and PIs that are studied,
which show a more moderate increment. This, together with
our taxonomic analysis summarized in Figure 1, demonstrates
that the current evaluation methods for exoskeletons are still
restricted to a small portion of the applicable motor skills and
PIs. In the following sub-sections, we will consider in more
detail the possible causes of this situation and point towards
relevant future research directions.

A. Motor Skills

The number of papers focusing on flat ground and treadmill
walking prevail by one order of magnitude over any other
motor skill considered in our taxonomy. This fact is not
surprising considering that straight walking is the primary
functional requirement for lower limb exoskeletons, and that
gait analysis has a long scientific history. However, in our
opinion, the dominance of flat walking does not imply that
the other motor skills are less relevant. The activities of daily
living are composed of a rich repertoire of functions, which
should be taken into account to demonstrate the feasibility
of exoskeletons to operate in real environments. For instance,
irregular terrains such as grass, stones, sand, carpets, gravel
and holes, have been largely overlooked in the literature. The
same has happened to many other motor skills, such as lateral
stepping, crouching/kneeling, turning or standing. All these
motor skills showed a prevalence lower than five publications
each (less than 2% of the total). In particular, we found the
shortage of tests on balance skills particularly alarming, since
balance is a crucial aspect of bipedal locomotion [194]. This
may be explained by the fact that most exoskeletons still do
not have active balance control. However, assuming that this
ability will be implemented in future prototypes, we strongly
believe that rigorous methodologies to evaluate standing and
balance skills will be particularly beneficial.

A group of four motor skills received particular atten-
tion, after flat and treadmill walking. These are walking on
slopes, stair ascending and descending, weight bearing and
sit-to-stand/stand-to-sit. The interest in these motor skills
can be explained by their prevalence in many application
scenarios (e.g. clinical, domestic, industrial), which makes
them essential for both rehabilitation and assistance purposes.
Nevertheless, the proposed scenarios still fail to consider the
entire spectrum of conditions, for example slope inclination,
step height and chair typology. We believe that, in general, for
the entire set of motor skills represented in Figure 1, the scien-
tific community will significantly benefit from comprehensive
testbeds that reproduce and synthesize the variability of real
ecological conditions. These testbeds should preferably be sen-
sorized to allow direct measurement of the relevant variables,
and be fully replicable, to allow direct comparison between
labs and robotic solutions.

B. Performance Indicators

In the goal-level category, global time and distance are two
very popular indicators. They are generally used as global
descriptors of system performance, and are particularly useful
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during competition approaches for their simplicity and imme-
diacy of use. In spite of these practical advantages, we consider
them insufficient to validate or quantify the performance
of an exoskeleton system. A PI that has been particularly
disregarded in the literature is the stability against external dis-
turbances. We consider that this aspect is very relevant, since
external disturbances are often present in real life scenarios.
We strongly encourage its evaluation and characterization in
the future. Versatility and dependability are a further two
aspects that have not yet been sufficiently addressed by the
community. This may be explained by the fact that they are
highly related to high readiness levels, still not achieved by
most current prototypes. Another interpretation is that these
concepts are still not formally defined in the field of wearable
robots. This draws attention to the important problem of
terminology, which should be addressed by the community
in order to find common understanding on these aspects.

The kinematics/kinetics category is extremely popular in
the assessment of exoskeletons. This is probably due to the
fact that these variables can be extracted from the sensors of
the robot or estimated by standard motion capture systems.
These PIs have the potential to grasp the entire complexity
of limb dynamics but, on the other hand, the obtained results
are often difficult to contrast and replicate due to the lack of
common standard setups, data labelling or experimental pro-
tocols. In addition, we believe that appropriate benchmarking
routines able to convert the temporal profiles from each joint
into more discrete indicators will be tremendously useful for
easy comparison across systems. Spatiotemporal parameters,
by contrast, are a good example of standard metrics. They
are able to grasp the main features of kinematic performance
in basic locomotion tasks. Indeed, they would benefit from
an appropriate combination with more complex kinematic and
kinetic variables to fully characterize locomotion, in particular
over complex terrains or in the presence of perturbations.
Symmetry and coordination are two crucial aspects that are
still poorly considered in the evaluation of exoskeleton perfor-
mance. These aspects are highly relevant in the clinical field
to evaluate the correctness of a patient’s motion, and should
therefore receive more attention in the future. The concept
of human likeness, very relevant in other fields, for example
humanoids or artificial intelligence, has not been considered by
any of the reviewed works. We consider that this aspect would
be beneficial for wearable robotics to quantify the similarity
between machine and human motion, an important requisite
of symbiotic behaviour.

In the human-robot interaction category, metabolic cost
is often referred to as the main descriptor of interaction
performance. However, in our opinion, this PI should not
be considered alone. There are many other complementary
aspects that should be taken into account when evaluating
human-robot interaction. For instance, EMG analysis is fre-
quently used to quantify the effects of a robot on muscle
fatigue. There are other approaches that consider muscle activ-
ity analysis to characterize interaction, for example the use of
musculoskeletal models to estimate biological joint torques.
These research directions are particularly promising, in our
opinion. Comfort is another important and popular indicator

of human-robot interaction. If acceptable levels of comfort
are not achieved, the chances of the robot surviving in the
market are low, irrespective of the level of technical readiness.
Interaction forces, despite their great potential to quantify
the physical interaction between human and robot, have been
poorly considered when evaluating lower limb exoskeletons.
In our opinion, studying the correlation between interaction
forces and subjective variables of comfort, for example pain,
will be particularly beneficial to the field. The aspect of
cognitive effort, very relevant in the clinical field, has been
particularly overlooked by the literature. The same applies
to ergonomics. These aspects, together with comfort, are key
human factors behind user acceptance of the technology and
should be given the highest priority by the community.

Lastly, safety should be considered. This is a primary crite-
rion for any wearable robot, due to the unavoidable physical
contact between the human and the robot. If safety cannot
be proved, any other levels of functional performance become
irrelevant, at least from the market perspective. This aspect is
significantly under-represented in the literature, and should be
seriously addressed.

C. Limitations

This review includes papers from a wide variety of use
cases, which may considerably differ in their interpretation of
“good” performance. For instance, the clinical effect is likely
to be the main concern in gait rehabilitation scenarios. In the
military or industrial contexts, the metabolic cost or other
usability factors may prevail. Stability and robustness could
be dominant in the case of assistance to paralysed individuals.
This review did not focus on this domain-specific perspective,
which is nonetheless an important aspect that should be
addressed in future analyses and research.

As a further limitation, we did not distinguish whether a
given metric describes exoskeleton and/or human abilities.
We limited ourselves to enumerating the objective means to
quantify the bipedal performance of the “human plus exoskele-
ton” system, considered as one integrated entity. Future works
focusing on unveiling the contributions of the machine and its
pilot to a given behavioural performance are encouraged.

Two publications, [41], [45], covered some usability aspects
that were not included in our list of PIs, such as donning
and doffing time, and time to change the battery. We consider
that these aspects are relevant, and should be included in the
human-robot interaction category.

V. CONCLUSIONS

This review revealed an exponential increase in the num-
ber of papers focused on the evaluation of robot-assisted
locomotion, which demonstrates a growing interest from the
scientific community in the benchmarking of exoskeleton
performance. We found a great variability in the variables
and experimental setups proposed. If on one side this lack
of uniformity impedes the performance of direct comparisons
across robots, on the other side, the rich pool of methods
and tools here collected represents a solid scientific basis on
which a benchmarking methodology can stand. Almost half of
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the papers reviewed focused on walking on flat ground or a
treadmill, which highlights how the exoskeleton community is
still very focused on basic locomotion skills. Other motor skills
are receiving increasing attention but still cannot be considered
to have reached the same level of maturity. Standing and
balance skills have been greatly overlooked in the literature,
together with other essential motor skills such as walking on
irregular terrain or in the presence pushes, turning, and lateral
stepping. We consider that it is extremely important to test
all these functions to demonstrate high levels of readiness in
out-of-the-lab environments. Among the performance indica-
tors (PIs) considered, kinematic/kinetic metrics, together with
simple indicators based on distance and time, were extremely
popular. We observed a general trend towards human-robot
interaction indicators when evaluating straight walking, but
these indicators were poorly considered when assessing other
motor skills. A more comprehensive application of these
metrics would be beneficial in order to permit an appropriate
comparison of exoskeletons across the different motor skills.
In particular, the aspects related to symmetry, coordination,
versatility, ergonomics, comfort and stability to external dis-
turbances need to be explored more intensively to demonstrate
the ability of a wearable robot to act symbiotically with
the human. Lastly, safety, as a primary requirement of any
assistive, rehabilitation or augmentation device, should also
be taken into consideration more rigorously when evaluating
exoskeleton prototypes.

The results of this review can be taken as a starting point for
the development of a unified and standardized benchmarking
scheme and drive the wearable robotic community to demon-
strate that our robots can meet real market needs.
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