Performance Evaluation of Main
Memory Database Systems*

Dina Bitton
Carolyn Turbyfill
TR 86-731
January 1986

Department of Computer Science
Cornell University
Ithaca, NY 14853

* This research was partially supported by the National Science Foundation under grant DCR-8410889.

PERFORMANCE EVALUATION OF
MAIN MEMORY DATABASE SYSTEMS

Dina Bitton Carolyn Turbyfill
Department of Computer Science, Cornell University

Ithaca, NY 14853

In this paper we present the results of a comprehensive benchmark of the
relational Main Memory Database System (MMDBS), that is the foundation
of the interactive office system, Office-By-Example (OBE). Based on this
case study, we identify issues that must be considered in the design and
implementation of MMDBS’s. We determine relevant performance metrics
and describe techniques for benchmarking MMDBS’s.

TABLE OF CONTENTS

1. Introduction

2. Description of the System

2.1. Hardware and Operating System
2.2. The Database System in OBE

3. Benchmarking Methodology

3.1. Relevant Metrics
.3.2. Measurement Techniques
3.3 The Test Database and Queries

4. Timing Measures

4.1. MIPS Rate

4.2. Selections

4.3. Projections

4.4. Deletions, Insertions, and Updates
4.5, Aggregates

4.6. Joins

5.Space/Time Measures

5.1. Memory Requirements
5.2. Effect of Paging

6.Summary; A Case Study for MMDBS’s
6.1 The Performance of OBE

6.2. Design and Implementation of MMDBS’s

7.Conclusions and Future Research

42

41
42

43

1. INTRODUCTION

The demand for fast response time and the availability of larger and inexpensive
memories are motivating designers of database systems to reconsider the assumption that
databases reside on disk during transaction processing. The OBE, Office-By-Example, sys-
tem, developed at IBM Watson Research Center, follows that trend [Z182, AHK85, WABS6].
The core of OBE is a Main Memory Database System, MMDBS, that exploits the memory
residence assumption in its approach to database physical design, query processing algo-
rithms and query optimization. In this paper, we describe and analyze a benchmark of the
OBE MMDBS. Based on this case study, we determine appropriate performance metrics
and systematic benchmarking techniques for main memory database systems.

The memory residence assumption can be viewed as a logical extension of the use of
large buffers to enhance the performance of conventional disk database management sys-
tems (DDBS). In the design of conventional database systems, it is assumed that databases
are orders of magnitude larger than the available memory capacity. Databases are stored
on a mass-storage device, and this results in long access delays during query execution.
Thus in DDBSs, file organization, access methods and buffer management are designed to
limit these [/O delays. Performance is enhanced by providing a large buffer pool, where
data records may be prefetched or frequently accessed data, such as indices, can be kept.
The acquisition of large memories for this buffer pool can be evaluated in terms of perfor-
mance gain per dollar-cost. In a recent study, Gray proposes a rule for determining a cost-
effective size for a main memory buffer pool. Based on customers requirements and current
prices of hardware, he establishes the "Five-Minute Rule": every database page that is
referenced every five minutes should be memory resident [Gr85].

As the price of memory decreases, it is becoming feasible to keep the entire database,
or the part of it referenced by a query, in main memory. Database systems that require
fast response times and systems on workstations are good candidates for implementation as
MMDBS’s. The cost of acquiring large memories for a MMDBS can be justified when disk
accesses, averaging 30 msec per block I/O, impose unacceptable delays on response time.
For instance, meeting tight bounds on response time in real time systems and certain infor-
mation systems may require a MMDBS. Office workstations involve a lower range of cost
and performance where MMDBS’s may become a viable alternative to DDBS’s. The ratio of
main memory to disk capacity is typically 1:10 in workstations, in contrast to at least 1:100
in mainframes. As the ratio of main memory to disk capacity decreases, the advantage of
storing the database on disk diminishes. Furthermore, frequent accesses to slow disk
storage incur delays unacceptable to the interactive user, who expects a database system to
respond as quickly as an editor [AHKS5].

A number of recent studies investigate the implication of the memory residency
assumption on the design of databases and database management systems [KM84, DKO84,
AHKB85, Sh85, LC85]. In particular, analytical models and simulation are used in [DKO84,
Sh85, LC85] to evaluate access methods and join algorithms under this assumption. How-
ever, experience with implementing MMDBS’s is still lacking.

In benchmarking MMDBS’s, many of the techniques previously used in benchmarking
DDBS’s [BDT83, BT84, BT85, BCH84, BD84] are inadequate because certain performance
parameters are specifically related to the main memory residence assumption. In particu-
lar, space requirements, in the form of virtual and real memory, and memory management,
by the operating system and the database system, are critical parameters in the design of a
MMDBS benchmark. MMDBS’s must pay careful attention to keeping both the code and
the data storage structures compact. Thus, in the design and analysis of a MMDBS bench-
mark, we contend that performance must be evaluated in terms of the space-time product
{Bu76.De80], rather than by time complexity alone.

The remainder of this paper is organized as follows. In Section 2, we present an over-
view of OBE and describe the hardware and software configurations of the two IBM systems
on which we benchmarked OBE (an IBM 3081 and an IBM 4341 machine). In Section 3, we
explain our benchmarking methodology. This methodology comprises the definition of
appropriate performance metrics, timing techniques, and the design parameters for our test
queries. In Section 4, we evaluate the performance of OBE on the test queries and describe
our techniques for isolating the implementation features that affect the system’s perfor-
mance. In Section 5, we consider the space requirements of these test queries. In Section 6,
we summarize our results and examine their implications for the design of future
MMDBS’s. Finally, we present our conclusions in Section 7.

2. DESCRIPTION OF THE SYSTEM

The OBE prototype was designed for an IBM 370 machine running VM/CMS operating
system. In this section, we describe our test environment and give an overview of physical
database design and query processing in OBE.

2.1. Hardware and Operating System

We performed our measurements on two machines. The first was an IBM 3081 run-
ning under VM Operating System Release HPO 3.2 at IBM T.J. Watson Research Center.
The second was an IBM 4341, which led to slower execution of OBE queries, but might be
more realistic for an office environment. In both cases, our test database was initially
created and stored on an IBM 3380 disk. Comparing the performance of OBE on these two
machines was interesting by itself, since we did not know how much adding CPU power
would enhance the performance of the main memory database system. Of course, we
expected added CPU power to provide more of an advantage to a CPU bound MMDBS than
to an /O bound DDBS. In addition, the 4341 times could be compared to times obtained in
previous benchmarks of other database systems running on machines with comparable
CPU’s [BDT83, BT84, BD84, BT85].

Under VM, each user is given a virtual machine configured with a certain amount of
virtual storage and virtual /O devices. Typically, OBE runs in a virtual machine with 4 to
16 megabytes of virtual storage, depending on the size of the database. Pages are 4K bytes,
paging is on demand and only referenced pages are kept in real storage [[BM83].

The VM INDICATE command [IBM83,Po85] allows the user to display the utilization
of and contention for major system resources. The command provides information on pro-
cessor and storage usage, the number of start I/O (SIO) instructions, and number of pages
read and written. A variant of the INDICATE command, INDICATE USER, can be used
before and after a program’s execution to get summary information about resource usage of
a single virtual machine.

VM also provides a MONITOR command [IBM83,Po85] for use by system analysts
and operators. The Monitor collects data in two ways:

(1) Event driven: CP, the operating system that controls the real hardware and manages
virtual machines, can be instructed to issue a MONITOR CALL instruction. This
causes an interrupt when certain events occur, such as the addition of a user to the
CPU scheduler’s eligible queue.

(2) Timer driven: Some data can be collected at fixed intervals. The interval is a parame-
ter that can be specified in the MONITOR command. On the 3081 we used. during
regular working hours, a timer interrupt once every 60 seconds caused the collection
of data from system counters concerning device usage.

FIGURE 1. The Two-Dimensional Interface

FIGURE 1.a Skeleton Table

{ 1aitPAY

' |P_ PAY i i E i
{] ! | {
| | t | 1
]]] t H
FIGURE 1.b Invoking a Relation Template
|
i i PAY INAME IAGE _ IBATE |
= 1 | 1 !
. ! ! ! !
|
|
1
I
|
{
1
{
1}
| I
!]
3 !
FIGURE 1l.c A Relation Tempiate
i PAY INAME _IAGE |
i L4 | | X ;
RS, SR
1 1
| CONDITIONS]
: X>3 :
i i
] i

2.2. The Database System in OBE

Detailed descriptions of the design and implementation of OBE can be found in [Z182,
AHKS84, Wh85, WAB86, SK84, KMZ84, KH84]. In this section, we present an overview of
the components that are relevant to this performance study: the target environment, the
user interface, the physical database design and the access methods.

2.2.1. The target environment

A pivotal assumption in the design of the OBE prototype was that it would be target-
ted towards an environment where an unsophisticated user would create new database
tables and formulate ad-hoc queries with ease. It was assumed that the user would expect
response times similar to those of other interactive programs such as editors. The emphasis
in the design was on ease of use and simple database design. Performance would be
achieved by

(1) Keeping the data in main memory during query processing.

(2) Automatically inverting every relation on every attribute!

Although both approaches are unrealistic for a large, update intensive transaction
management system, they are more feasible for a database in an office environment for four
reasons. First, it is assumed that the database consists of a large number of relatively
small tables and that most queries are retrieval queries involving multiple table joins.
Second, it is assumed that the relations involved in any particular query will fit in memory.
Third, if the relations queried are memory resident, then the inverted indices are instru-
mental in efficiently processing multiple table joins. Finally, if updates are infrequent, the
overhead of maintaining the indices may be acceptable as long as the indices are memory
resident.

2.2.2. The interface

OBE has kept the QBE [Z175, ZI82, KMZ83] two-dimensional interface, which is an
attractive implementation of the relational domain calculus. The underlying query
language is relationally complete [Z175, Z182, KMZ83] and the syntax is very simple. It is
based on making entries in skeleton tables instead of writing lengthy declarations and
queries. Using a screen editor and pre-programmed function keys, the user may display
skeleton tables (Figure 1.a), relation templates containing a relation name and attribute
names (Figure 1.c), and condition boxes (where selection conditions are specified). The user
does not have to remember the names of attributes to specify a query: these are automati-
cally displayed. By positioning the cursor and using a function key, attributes that are not
relevant to the current query can be erased. Table entries may consist of commands, exam-
ple elements, literals or simple qualifiers: "P." for Print, "_X" for example element "X",
"10" for the literal value 10, and "< 10" for a qualifier. The main steps in writing a select-
project query are shown in Figure 1.

2.2.3. Database organization and data structures

In OBE, physical database design is automatically done by the system. All relations
have the same inverted structure. The user only specifies the logical design including the
option of declaring a key. This feature complies with the general design philosophy of the
system: the database designer does not have to know about complex storage organizations,
and does not have to decide whether an index should exist, much less choose between
ISAM, hashed, or clustered/nonclustered B-Tree indices.

! Inverting the relations on every attribute is not hard-wired into the implementation. The optimizer does
not assume that there is an index on every attribute and can handle other physical organizations of the relations

[Wh85].

-

There are three basic data structures that we found to have significant impact on the
performance of the system: relation area. TD area, and pointer area. These data struc-
tures have two features in common. First, when any one of these areas is created, they are
created by a call to CMS that takes the size of the area as a parameter, and will only
succeed if enough contiguous virtual memory is available to fill the request. Second, all
pointers to an offset in an area requires 4 bytes.

(1) Relation area: All relations are stored in the same format, and all attributes are
indexed. The storage scheme is intended to minimize the space required for a relation and
its indices, while making both an index lookup and a sequential scan efficient. A relation is

stored as an individual area’ that constitutes a contiguous, relocatable unit of memory. A
given value from a domain is stored only once, and a tuple descriptor, TD, is a sequence of
pointers to domain values. Thus, within a single relation, the equality of two attribute
values can be reduced to comparing pointers. Tuple descriptors form a double linked list, to

facilitate sequential scans. An index is a linear array of pointers to tuple descriptors.3 The
implementors of OBE refer to a pointer to a tuple descriptor as a TID, short for tuple
identifier. In Figure 2, the symbol 1 TID stands for a 4 byte pointer to a tuple descriptor.
An relation area is shown in Figure 2.b that corresponds to the example relation "PAY" in
Figure 2.a.

(2) TD area: A TD area has tuple descriptors and data exactly like a relation are, except
that duplicate attribute values for the same domain are duplicated in the data. This means
that comparisons of the same attribute in different tuples in the same TD area cannot be
performed by comparing pointers in the TD’s to the data. In addition, a TD area does not
have any indices. Instead, a hash table used for duplicate elimination is at the bottom of a
TD area. A hash table slot holds a pointer to the tuple descriptor, TD, of the tuple that
hashed to that slot. A TD area cannot be queried like a relation. An example of a TD
area containing all the tuples in the example relation "PAY" (Figure 2.a) is in Figure 2.c.

(3) Pointer area: A pointer area contains no tuple descriptors or data. It is always
defined as corresponding to a single relation area. At the top of the segment is an array of
pointers to TD’s in a relation area. The pointer is the offset of a TD from the top of the
relation area corresponding to the pointer area. At the bottom of the pointer area is a
hash table used for duplicate elimination. A hash table slot contains pointers to the TD of
the tuple in the relation area that hashed to that slot. A pointer area cannot be queried
like a relation. An example of a pointer area defined relative to the relation area in Fig-
ure 2.b is in Figure 2.d.

In Section 4, we isolate the effects of these three data structures on performance by
varying the output mode of queries. There are three options for the output mode of a query.
An example of each output mode is in Figure 6, Section 4.2.3. Result tuples can be
displayed by using the "P.", print, command in the desired attribute columns of the relation
being queried. When this option is chosen, the result of the query is stored in a pointer
area. The other two options are retrieval into user-created output or into a relation. User-
created output, abbreviated UCO, is a table that is constructed interactively by entering
literals and example elements in a skeleton table. UCO is used to format the result of a
query. User-created output is not declared as, and cannot be queried like, a relation. When

% The designers of OBE refer to relations being stored in relation segments which should not be confused
with segments in the underlying virtual memory system. A relation segment has the same layout as a relation
area.

 Clearly any hierarchical index organization would have provided faster access and restructuring times, but
this would have been at the expense of space. Also it should be noted that inserting an index entry can be per-
formed with one long move instruction (Section 4.4), since the index is memory resident. Thus the benefit of main-

FIGURE 2. Data Structures

AN

AN

~

| TUPLE # ATTRIBUTES | - - -
; ‘ v v v ‘
NAME [AGE | RATE HOUR | Smith 25 1.2
’ i » .
| Smith o5 | $4.25 : ; -
! ! mit < ; 4.2 | < Hughs 50 25.00 !
2 - Hughs 50 ! $25.00 i | 1 ! ! |
3 Michaels 3 $1.75 < Michaels 3 L75 |
4 Jones 24 $53.47 ‘ t E v | ;
5 Millman % $53.47 (Jones 24 33.47 ‘
4 ‘] 13 [|
; A4 v v
Millman 76 53.47

Figure 2.a The Relation “PAY”

N

Hash Table
| * * .
/‘ v v v) ‘\
! Smith 25 4.25
\\ﬁ ! . ’ . i
(' l v v v |
Hughs 50 25.00
; | ! I % Figure 2.c TID Area Layout
(Michaels 31 1.75 >
4 | . . |
< 2 v v ! '\
Jones 24 53.47)
S R R B A R ¢
Millman 8 1TID2 | 1TID4 | 1TID3 | 11ID5 t TID1
E
{
! Hash Table
| ttms | tTm1 | :TID2 | tTIDs | {TIDa
1 TID4 {TIDL | {TID3 | !TID2 | ITID5 |
t TID2 "TID4 . {TID3 | ‘Ts | 1TIDL | '

Figure 2.b Relation Area Layout Figure 2.d Pointer Area Layout

.8-

the result of a query is retrieved into UCO, internally it is stored as a TD area. To retrieve
the result of a query into the relation, the relation being retrieved into must be predeclared
by filling in a relation definition table. Internally, the relation being retrieved into will be
a relation area.

2.2.4. Access methods

Four basic access methods are implemented. The query optimizer [Wh85] uses a
branch and bound algorithm to select a query processing plan that utilizes one or more of
these access methods. The optimization phase precedes and is separate from the query pro-
cessing phase.

(1) Index-Lookup: At the bottom of a relation area is an index for each attribute in the
relation. Each index is a linear array of 4 byte pointers to tuple descriptors. The
index is sorted on attribute value. It is a dense, nonclustered index. This index is
compact. A 10,000 tuple relation would require 40,000 bytes for an index on one attri-
bute and 640,000 bytes for an index on 16 attributes. Tuples can be accessed accord-
ing to the value of 1 attribute through a very efficient binary search of the index. We
call this search an equality lookup. Updating these indices is made more efficient
through a long move instruction.

(2) Simple-Scan: Selections that involve a single relation can be performed by a very
fast scan of the relation. A scan is accomplished by traversing the doubly linked list
of TD’s in the relation area. Pointers to the TD’s that are selected are stored in an
array which, if necessary for a join, can be sorted to become an Temporary-Index.

(3) Temporary-Index: A temporary index can be built on one or more attributes on the
fly. First, the relation on which the index is being built is scanned using the Simple-
Scan in order to apply all selection predicates to it. Pointers to all selected TD’s
(tuple descriptors) are collected in an array. The array is sorted on the join
attribute(s) and is used as an index to perform joins.

(4) Pipeline-Scan: As part of OBE’s pipeline approach to join processing [AHKR85], a
relation may be scanned a tuple at a time. As each tuple is processed, selections may
be applied and the tuple is joined if possible, to qualifying tuples in other relations
involved in the join. A tuple is eliminated from further consideration if it fails to join
with at least 1 tuple from every other relation in the join.

There are two implementation decisions in this version of the prototype that should be
mentioned. First, the Index-Lookup was never used to perform range selection. Second,
single relation queries were treated as special cases of joins.

When analyzing our measurements in Section 4, we will discuss in detail these access
methods and their respective costs and tradeoffs. In addition to the above access methods,
sorting and hashing are employed to process lists of tuples formed during intermediate
stages of query processing. However, the sort-merge join algorithm is never an option con-
sidered by the query optimizer. First, it would require too much space for storing tem-
porary relations. Second, it may not compare favorably with other join algorithms when
relations reside in main memory, as opposed to contiguous disk blocks. On the other hand,
the query processor does utilize sorting as a building block in the processing of complex
queries and for consistency checking in bulk updates. A heap sort [Kn73] is used to sort
pointers in a pointer area for aggregate functions. The Power’s sort [Po80] is an in-place
merge sort that has very small storage overhead [Po80]. The Power’s sort is used to sort
TD’s in relation areas and in TD areas, and to sort pointers for the Temporary-Index.

taining a B-tree like index is not as obvious as in the case of disk resident databases.

* The designers of OBE use a different terminology for their access methods and data structures |WABS6.
Wh85.

9.

Finally, when initially inserting tuples into a TD area, duplicate elimination on the
tuple being stored is accomplished by hashing the entire tuple using the hash table at the
bottom of the TD area. When initially inserting a pointer into a pointer area, duplicate
elimination is accomplished by hashing on the attributes of the corresponding tuple that are
projected by the query for which the pointer area is being created. OBE automatically
performs duplicate elimination on the result of a query. Duplicate elimination is avoided
where information about the key of the source relation allows the query processor to infer
that no duplicates can possibly be introduced into the result.

3. BENCHMARKING METHODOLOGY

In this section, we justify the measures we use in evaluating OBE and describe how
the selected measures were obtained. Section 3.1 delineates the measures of importance for
MMDBS’s. Section 3.2 details our timing techniques. Section 3.3 describes the database
and queries we used to evaluate the performance of OBE.

3.1. Relevant Metrics

MMDBS’s gain performance by using space, in the form of real and virtual memory, to
save time. Thus, the performance of 2 MMDBS’s must be quantified in terms of the space-
time product (Bu76, De80]. The space-time product for a query is defined to be the aver-
age working set size during the execution of the query multiplied by the time required for
the query. Without sophisticated tracing hardware and software, the space-time product
for a query cannot be computed precisely [AEH84, AHK80, HL84]. However, there are
more easily obtained measurements of space requirements that can be used in conjunction
with precise timing of queries to provide a approximation to the space-time product.

The OBE prototype was designed under the assumption that all code and data neces-
sary to carry out a query would fit in a user’s virtual machine. That is, that a user would
have enough virtual memory to accommodate the OBE module, program data space, the
relations being queried and the result of a query. If this assumption was violated, OBE
informed the user that insufficient virtual memory was available and aborted processing.
Therefore, one relevant measure of the system’s performance on any particular query is the
minimum amount of virtual memory that the query can be processed in. For OBE, these
measures are presented in Section 5.1.

Determination of the minimum amount of virtual memory required for any particular
query is straightforward. Below the minimum, OBE aborts processing. However, determi-
nation of real memory requirements is not as straight forward. OBE assumes that enough
real memory is available to allow the implementation to rely on the operating system in
managing virtual memory. No assumptions are made concerning the algorithm used by the
operating system for paging virtual memory. Therefore, once virtual memory requirements
are determined, it is important to quantify the effects of paging on the performance of the
system. This measure provides an indication of the amount of real memory required to pro-
vide acceptable performance. However, unlike virtual memory requirements, acceptable
perfomance is no longer defined as the successful execution of a query. Rather, it is a value
judgement that must be based based on cost and performance criteria [Gr85]. We present a
controlled experiment for quantifying the effect of paging in Section 5.2.

When a MMDBS’s space requirements are adequately met, the speed of the CPU
becomes a dominant factor in the response time of a query. Therefore, measuring the effect
of the CPU on the performance of a MMDBS is important. We present a comparison of the
performance of OBE with two different CPU’s, a 4341 and a 3081, in Section 4.1.

-10-

In addition, different data structures and algorithms used in query processing have
different processing requirements. By systematically varying parameters of queries exe-
cuted, we were able to design a benchmark that evaluated the processing requirements of
the primary data structures and algorithms used in implementing OBE. These results are
presented in Sections 4.2 through 4.6,

Finally, it must be acknowledged that there can be complex interactions between all of
these measures: real and virtual memory requirements, paging, cpu speed, data structures
and algorithms. As a first step, it is important to study these factors in isolation to provide
a baseline for evaluating complex interactions between them. To this end, we conducted as
many experiments as possible in single user, standalone mode. By single user, we mean
that there was only one user of the DBMS active when we obtained our measures. This
was also necessary because concurrency control was not implemented in OBE at the time
we performed our experiments. By standalone, we mean that there were no other users on
the machine when we performed our experiments.

Single user, standalone measures do not provide a realistic estimate of DBMS perfor-
mance because they reflect the behavior of a DBMS in an underutilized resource environ-
ment. However, these baseline experiments are important for four reasons. First, measur-
ing query execution time in single user mode is necessary in order to systematically evalu-
ate schemes for physical database organization, or query optimization and execution algo-
rithms. Second, the single user case constitutes a necessary baseline measure which must
be used in the interpretation of multiuser experiments. Third, it is an indication of the best
possible performance of a system with respect to a specific CPU and operating system.
Finally, standalone measures provide an indication of the viability of an implementation in
a workstation environment.

When it was not possible to obtain measures in single user, standalone experiments,
we developed methods of approximating them. For instance, the standalone elapsed time
for a query when no paging or I/O’s occur during query execution, is well approximated by
the cpu time required to execute a query. When we were unable to arrange standalone time
to complete our experiments, we found that the INDICATE USER command [IBM83] pro-
vides a measure, vtime, which was a very good approximation to standalone elapsed time.
Section 3.2 describes the measures we used.

3.2. Measurement Techniques

To measure the performance of the database functions of OBE, we wrote a benchmark-
ing program that took the names of OBE query windows from an input file and obtained
measures of interest before and after each query was executed. The query windows were
two dimensional images of queries as they would be submitted to OBE from the screen.
They were unparsed. The program executed as many queries as were in the input file by
invoking the OBE query processor. We usually were only interested in measurements on
the last query in the input file. At least two, and sometimes more than two, preparatory
queries were always included in the input file to insure that the relations being queried and
all OBE code were in virtual memory.

3.2.1. Query input

In order to respect the memory residence assumption, we wanted to have the relations
queried memory resident before timing a query. In every experiment, the operand relations
were read into virtual memory before a query was executed. This was easily accomplished
with the implementation of OBE we tested.

In order for an interactive user to enter a query, the user has to press a function key
to get a skeleton query table on the screen. An example of a skeleton query table is in Fig-
ure l.a, (Section 2.2.2). The user then obtains a relation template for the relation to be

.11-

quéried. To display a template for the relation "PAY", a user would enter "P. PAY" in the
skeleton query table, as shown in Figure 1.b (Section 2.2.2), and press <PROCESS>.

When a relation template is invoked in this manner, the entire relation is brought
into virtual memory by OBE. An example of a relation template is shown in Figure 1l.c
(Section 2.2.2). Therefore, before timing a query, we preceded it in the input file with a
query (or queries) that invoked a relation template thereby bringing the relation(s) to be
queried into virtual memory.

In addition, we found that when the first query that actually required database pro-
cessing was submitted, 3 start I/O’s always occurred. These start I/O’s apparently brought
in some code or data that was needed to process queries. Since invoking relation templates
did not evoke these 3 start I/O’s, we created a empty dummy relation with 1 numerical
attribute and created a window, query InitParse shown in Appendix 3, that performed a
range query on the dummy relation. Query InitParse did evoke the 3 start I/O’s.

By preceding the query to be timed with the proper intializing queries, the queries we
timed never invoked start 1/0’s. Thus, we conclude that all data required to execute the
queries was in virtual memory. When run standalone with sufficient real memory, the
queries also never caused paging.

We executed the benchmarking program once per input file. Each input file contained
only one query of interest preceded by the necessary initializing queries. Our decision to
execute only one query of interest per program is in contrast to our approach with DDBS’s
[BDT83] where we usually executed 10 queries at a time and then averaged the total to get
the time for one query. For instance, to perform a selection we would choose 10 selection
predicates using a table of random numbers and then execute the 10 different selections one
after another. We did this to randomize the location of the tuples in the relation that would
be accessed. This would reduce the probability that they would be contiguous on disk, thus
reducing seek times, and to reduce the probablilty that the pages they resided on would
already be in memory as an aftereffect of a previous query. Since, with OBE, the relation
was guaranteed to be in memory, the location of tuples accessed was unimportant. The one
exception to this case occurs in our paging experiment and it is dealt with in Section 5.2.

We also chose to execute only one query of interest per program to control the effects
of fragmentation of virtual memory. In OBE, certain data structures could only be created
if there was enough contiguous virtual memory to allocate to the structure. (See Section
2.2.3) If, due to fragmentation, no contiguous blocks that are large enough exist, OBE
would fail and tell the user to reinitialize, IPL, his virtual machine. While we did not
quantify this effect, we found that the longer we used the system interactively in one con-
tinuous session, the more likely this kind of failure was. Furthermore, as fragmentation
occurs, it is likely that memory allocation will take longer. By executing only 1 query of
interest per program, we measured the performance of each query under similar conditions
with respect to memory management.

3.2.2, System calls

At the beginning and end of the benchmarking program, were calls to the INDICATE
command [IBM83] that provided us with general measures of the system’s load such as
CPU utilization. Just before each query was executed, 2 measures were obtained in the fol-
lowing order:

(1) INDICATE USER - a system call that provided monitor information about our vir-
tual machine such as the amount of CPU time, machine. the number of paging reads
and writes, and the number of start [/O’s charge to our virtual machine.

{2) A call to the TOD clock [IBM83] that we used to obtained elapsed times measured in
microseconds.

-12-

Imfnediately after the execution of a query these two measures were obtained in reverse
order. The difference between these cumulative measures taken just before and just after a
query was executed provided us with a measure of the time and resources required by the

query.

3.2.3. Approximating standalone elapsed time

One of our primary measures of OBE's performance was the elapsed time required for
a query in the absence of paging, [/O, and competition with other users for cpu time. This
differs from our approach in other experiments [BDT83, BT84, BT85] only in that the stan-
dalone elapsed time we use excludes paging and I/O’s unless otherwise stated. We excluded
paging and I/O in order to obtain a baseline measure of the best possible performance of a
query with a particular CPU.

In a preliminary standalone test, we found that the measure vtime, obtained from the
INDICATE USER command, for a query on a moderately loaded system was a very good
approximation for the query’s standalone elapsed time. In fact, over a crossection of 20
queries, the vtime always came within 4 percent of the standalone elapsed time. We
repeated the experiment on the 3081, with one standalone run and one run when the sys-
tem was loaded. During both runs, the VM monitor collected data. We used the monitor
data from the loaded run to give us some quantification of system load for which this
approximation of nonstandalone vtime to standalone elapsed time was reliable. In this
paper, we refer to vtime as CPUtime because vtime is a measure of the CPU time a vir-
tual machine uses minus any privileged instructions performed for that virtual machine by
the operating system, CP. In particular, the CPU time used by CP to perform paging and
I/O for the virtual machine is not included.

The experiment consisted of 20 queries, a mix of selections, projections, aggregates and
aggregate functions, insertions and joins. Only three of these queries were identical to
queries used in our preliminary test. Each different query was run 4 times in the stan-
dalone run and 6 times in the nonstandalone run. For each query we computed:

standalone elapsed time = average elapsed time from the standalone run
and
loaded CPUtime = average CPUtime from the nonstandalone run.

The results are contained in Table 1. The data confirmed our preliminary result. For
each query we computed the absolute value of the difference between the loaded CPUtime
and the standalone elapsed time. [ET - CPUtime| in Table 1. The average difference, over
all queries was .04 seconds. The maximum difference for a single query was .180 seconds
for query MinFn-P, an aggregate function that took 37.157 seconds standalone elapsed
time and 36.977 seconds loaded CPUtime. For this query, the loaded CPUtime was
within .5 percent of the standalone elapsed time.

We also computed the percent error relative to the standalone elapsed time:
% ERROR =|standalone elapsed time - loaded CPUtime / standalone elapsed time| * 100

Averaging over all queries, the loaded CPUtime was within 1.2 percent of the standalone
elapsed time. The greatest discrepancy came with query JoinAB’, a three way join that
had a standalone elapsed time of .479 seconds and a loaded CPUtime of .461 seconds.
Thus, the loaded CPUtime was within 3.9 percent of the standalone elapsed time.

It is probable that the execution of the VM monitor during our standalone run slightly
increased the standalone elapsed time of our queries [Po85]. However, this effect could
not serve to enhance our results as the standalone elapsed time for 17 out of the 20
queries was higher than the loaded CPUtime. Therefore, our claim that loaded CP Utime

-13.-

Table 1: Relationship Between
Standalone Elapsed Time and Nonstandalone CPUtime

Where rounding made numbers seem inconsistent, we added 1 more decimal place.
The original data was recorded to 7 significant digits.

QUERY ELAPSED TIME CPUtime |ET - CPUtime] % ERROR
Selectkey-Eq 0.147 0.145 0.002 1.384
Select1-Eq 0.147 0.145 0.002 1.409
Select10-Eq 0.168 0.167 0.002 0.927
JoinAB’ 0.479 0.461 0.019 3.877
Select10-Rg 0.597 0.592 0.005 0.755
JoinCselAselB 0.6703 0.6701 0.0002 0.038
Select100-Rg + 0.9995 0.9884 0.0111 1.113
Join2 1.285 1.294 0.009 0.686
Join3 1.718 1.734 0.016 0.918
Join4 2.159 2.186 0.027 1.258
Select10-RgC 2.442 2,421 0.021 0.849
JoinAselB 2.854 2.823 0.031 1.091
Select10-Rg2N 2.917 2.878 0.039 1.349
Select10-Rg2D 2.956 2.892 0.064 2.166
Select10-Rg2 2.975 2.920 0.055 1.855
Insertkey 4.236 4.190 0.046 1.092
Insertall 4.241 4.204 0.037 0.861
Project20-P 10.357 10.290 0.067 0.646
MinKey-P 15.804 15.638 0.166 1.048
MinFn-P 37.157 36.977 0.180 0.485
AVG 4.716 4.681 0.040 1.190
MAX 37.157 36.997 0.180 3.887
MIN 0.147 0.145 0.0002 0.038

is within 4 percent of standalone elapsed time is, if anything, conservative.

According to VM monitor data, during the hour in which the data used to compute
loaded CPUtime was collected, 222 users were logged on. However, only 22 users were
ever active during the monitored interval. The average number of users in queue for either
CPUS® was 14. On the average, CPU utilization was 146%. During 53% of the total avail-
able CPU time (200% for 2 CPU’s), one or both of the CPU’s were idle but at least one user
was waiting for [/O.

The amount of real memory available for paging was 56,764K. The average paging
rate was 27 reads/writes per second. 1.7% of all pages chosen to be paged out of memory
were taken from users in queue to use a CPU. The virtual [/O rate was 120 start I/O's per
second. The diagnose I/O rate was 86 start I/O’s per second.

Our experiment confirmed that the average CPUtime for a query on a moderately
loaded system can be used as an approximation to the average standalone elapsed time for
the query, when the query, run standalone, requires no paging or I/O. To be conservative,
we assume that the loaded CPUtime is within 4 percent of the standalone elapsed time.

5 A 3081 is a dual processor.

-14-

Throughout the remainder of this report, the measure labeled as CPUtime can be
assumed to be the average CPUtime for a query on a moderately loaded system unless oth-
erwise stated.

3.3. The Test Database and Queries

We used a test database consisting of relations that had been used in benchmarks of
several DDBS’s [BDT83, BT84, BT85, BD84]. In Section 3.3.1 we describe the database we
used. Initially, we also used queries on these relations that we had benchmarked other sys-
tems with. While these queries were useful in making comparisons with DDBS’s, they were
inappropriate for an interactive system and for OBE’s two-dimensional interface. In Section
3.3.2 we describe both the crossection of interactive queries we developed and some of the
subtleties in query phrasing that became important due to the two-dimensional interface.
(See Appendix 2).

3.3.1. The database

We used a test database consisting of 5 synthetic relations. Each relation has 16 attri-
butes, 13 integer attributes and 3 string attributes. This relation is very wide. When all
16 attributes are printed, they will not fit on 1 line of a standard lineprinter. They also
would not fit in a single screen using the OBE interface. We include 16 attributes in the
synthetic relations to allow us to write a variety of queries on the same relation with the
desired parameters, (e.g. result size, number of tuples that join). With each query, we are
only interested in a subset of the available attributes, much like the view a user may have
of a particular relation.

In OBE, all numerical values are stored as variable length floating point numbers.
All strings are stored as variable length strings. The relations, including statistics on their
instantiation in OBE, are summarized in Table 2.

The largest relation, TenK, had 10,000 tuples, 16 attributes per tuple. It occupied 3.5
megabytes but could be read in from disk in 2.47 seconds. It was stored on disk as a file
with one 3,465,216 byte record. Storing the relation as one record is the optimization that
allowed it to be read into virtual memory so quickly.

The relation TenK is the relation that we used for the majority of our queries. Of the
3.5 megabytes it occupied, the indices alone required 18 % of this space:

(10,000 tuples) * (16 attributes/tuple) * (4 bytes/attribute) = 640,000 bytes

Table 2: A Description of the Synthetic Relations
Used in Benchmarking OBE
Relation is stored as a Relation Area (including indices on every attribute)
Elapsed Time is Standalone Time Required to Read in Relation
From IBM 3380 Disk Using IBM 3880 Channel
(Elapsed Time is in Seconds, Blocks are 4096 Bytes)

RELATION NUMBER NUMBER NUMBER ELAPSED TIME
NAME of TUPLES of BYTES of BLOCKS to READ from DISK

OneK 1,000 360,448 89 0.30
TwoK 2,000 712,704 175 0.58
FiveK 5,000 1,757,184 430 1.29

TenK 10,000 3,465,216 347 2.47 :

-15-

The integer attributes in the synthetic relations were all uniformly distributed within
specified ranges so that controlling the size of the result of a query would be possible. The
range of the integer attribute is implied by its name. For instance, the attribute two has
two distinct values, 0 and 1. The attribute thousand has one thousand distinet values
between 0 and 999 inclusive. The attributes in relation TenK are described in Table 3.

The nonunique values, whether strings or integers, can be used for partitioning in
aggregate functions, varying the number of duplicate tuples in a projection and for model-
ling 1:N or M:N joins. Either unique or nonunique values can be used for controlling the
selectivity of selections. Unique values can be used for modelling 1:1 joins. A unique value
that is declared to be the key can be used to test selections, projections and updates on key
attributes.

Each of the 3 string attributes is 52 characters long with 3 significant characters. The
significant characters occur in positions 1,26 and 52 in the string. The remainder of the
positions contain the same padding character. The attributes stringul and stringu? are
candidate keys that had values ranging from:

Axxx ... xxxAxxx ...xxxA to Vxxx...xxxVxxx . ..xxxT
With our unique string attributes, the leftmost significant character was varied most fre-
quently, followed by the middle significant character. We did this to provide a mechanism

for evaluating any short-circuit comparison algorithms or hardware.

The attribute string4 assumes only 4 distinct values:

AXX XXX XXX XXX XXX XX XXX XXX XXX AXXXXXXXXXXXXXXXXXXXXXXXKA
HxxxxxxxxxxxXxxxxxxxxxxxxx Hxxxxxxxxxxxxxxxxxxxxxxxx H
OxXX XXX XXXXXXXXXXXXXXXXXXXXOXX XXX XXX XXXXXXXXXXXXXXxxxO
VXX XXXXXXXXIXXXXXXXXXXXXXK VEXXXXXXXXXXXX XXX XXX XXXXXV

Table 3: Description of the Attributes in Relation TenK
10,000 Tuples in Relation
All Integer Attributes Uniformly Distributed
All Strings 52 Characters Long with 3 Significant Characters

NAME TYPE CARDINALITY RANGE ORDER COMMENT
uniquel INT 10,000 0 - 99,999 random candidate key
unique2 INT 10,000 0 - 99,999 random declared key
two INT 2 0-1 alternating 0,1,0,1,...
four INT 4 0-3 alternating 0,1.2,3,0,1...
ten INT 10 0-9 alternating 0,1,...9,0,...
twenty INT 20 0-19 alternating 0,1..,19,0,...
hundred INT 100 0-99 alternating 0,1,...,999,0,...
thousand INT 1000 0-999 random
twothous INT 2000 0-1999 random
fivethous INT 5000 0-4999 random
tenthous INT 10,000 0-9999 random candidate key
0dd100 INT 50 1-99 alternating 1.3,5,..,99.1,..
evenl00 INT 50 2-100 alternating 24.6...100.2....
stringul CHAR 10,000 ALAAV.V.T random candidate key |
stringu?2 CHAR 10,000 ALAAV.V.T alternating candidate key
string4 CHAR 4 ALALAV.V.V alternating

-16-

The smaller relations had the same attributes with identical ranges and cardinalities.
When the number of tuples in a relation precluded an attribute from having all of the
integer values within a the specified range, the attribute was given consecutive values
starting at either the beginning or the end of the attribute’s range. For instance, the rela-
tion OneK could not have 10,000 different values for the attribute tenthous. In this case,
the attribute was given one thousand unique values in the range 0 to 999.

In creating a test database, we sometimes create more that one copy of the same rela-
tion. In the OBE test database, we had two copies of the relation TenK which we called
TenKe and TenKf. We also had two copies of the relation TwoK which we called TwoKb
and TwoKc. The attribute names in each relation are each appended with a letter to make
all of the attribute names in the database unique. The letter appended to distinguish two
copies of the same relation corresponds to the letter appended to distinguish their attribute
names. For instance, the keys of relations TenKe and TenKf are unique2e and unique?2f,
respectively. In one-dimensional languages, this naming protocol prevents conflicts in attri-
bute names when corresponding attributes from different relations are retrieved in a join.
The OBE interface made this protocol unnecessary. For figures in this paper, we retained
the protocol in examples of joins to allow easy translation of OBE queries to one-
dimensional languages.

3.3.2. The test queries

The structure of our test database enables us to generate a comprehensive set of rela-
tional queries, with systematic control of the size of the result. In the evaluation of a
DBMS, our first goal is to establish baseline measures for a relational instruction set. We
achieve this by holding the size of the operand relation and the size of the result constant,
and executing each of the 8 query types: Selection, Projection, Deletion, Insertion, Update,
Simple Aggregate, Aggregate Function, Join. This is a nontrivial task as options in physi-
cal design, logical design, and query phrasing can multiplicatively expand the number of
queries required to establish a relational instruction set. Reducing this number to less than
a product of all of the possibilities is an art to which we address ourselves in this paper.

In benchmarking traditional DBMS’s, we have always had a variety of physical
designs to consider. In [BDT83], each type of query was performed on key and nonkey
attributes with variations on the physical design: clustered index on the key, nonclustered
indices on nonkey attributes, relations stored as heaps. For each type of query on each sys-
tem, certain physical designs were optimal and others resulted in extremely poor perfor-
mance.

In OBE, there is only one physical organization. All attributes have a nonclustered,
dense index on them. The only choice the designer has is in the design of the relational
schema. The designer may also specify a key attribute(s), although it is assumed that most
users of the system will neither know, nor care, what a key is. Thus, the performance of
the system on any particular query is both its best and its worst case performance.

We initially benchmarked OBE using queries which we had used in benchmarking
other relational DDBS’s. While these queries were useful in initially making comparisons
between systems, we quickly came to the conclusion that they were inappropriate for an
interactive system with a two-dimensional interface. (See Appendix 2.) We settled on a set
of parameters for a standard interactive query, and varied them systematically to isolate
parameters that affected the response time of queries. We consider the following to be rea-
sonable parameters for a standard interactive query:

(1) Number of Tuples in the Result - 10. OBE actually only formats and presents the first
8 tuples in the result to the user, along with a message saying how many tuples are in
the result. Using a function key, the user may expand the result table to view more of
the result tuples.

FIGURE 3. A Standard Interactive Join

JdoinAselB
TEMKE UNIQUELE UNIQUEZ2E CONDITIONS
A Y X = _Y
X < 10
TENKF UNIQUE2F TENF THOUSANDF STRING4F
X _B -C D
uco UNIQUEL UNIQUEZ2 TEN THOUSAND STRING4
P. A = _8 -C D

FIGURE 3.a JoinAselB: A Standard I[nteractive Join

[(NW) UNIQUE] UNIQUE2 TEN THOUSAND STRINGS
7098 o [267 O35 XXRXAXXXXXXXNXNXXXXORAXXNRNRRNRNRRNRNKNK N K
4470 1 6 790 AN M3 X 3% 23X IE 00X 90 93¢ 3¢ 30 A DCOE I I I X0 NN RXARNNXXNX
4008 2 g 816 A8 00X IE 0000 030036 30 A DI D0 MMM NRXNNAX X NN
9033 3 7 545 HX XXX XAXRAXARRARHRRARAXAAAAXNRXXRRRR KN
2873 4 9 61 V3000500303303 20X 003030000030 363030030 3030V 90 30 30D 0300 X 332X XM KN MK RN X
5674 S [} 338 O 2 23 X X 3 333K CHR NN NI KKK ANNNK RN
9388 6 0 701 AN 33332030303 33060 X 33330333 3 38 30 A 38 3 3338 9 E 33300 XN NN NNNX
422 7 1 667 VRt re XXX AR XXV AR XRRAARAXXNXKXRRNX KR
425 8 0 684 Ok RARARXXXARXXXAA XXX A RTHAAARKAAR XXX RRXXXRARAR
4363 9 2 81¢ O30 %5030 MMXRANANNXAKNNXNXXO XA NARLKRKHHRNKN KK X

FIGURE 3.b Result from JoinAselB in User-Created Output Table
(A Standard [nteractive Result)

.17-

(2) Number of Attributes in the Result - 5. Four integers, including the key, and one
string. The default attributes were: uniquel, unique2, ten, thousand and string4.

(3) Method of Outputting the Result - "P." on a Query Table. This is the most convenient
way of printing the desired tuples or attributes. In the case of joins, the default was
retrieving into user-created output because there is no way to juxtapose tuples that
joined from different relations using a "P.". Figure 3.a is an example of a two-way
join that shows the use of user-created output to juxtapose attributes from different
relations. Figure 3.b shows the result of the join which has the same attributes and
same number of tuples as the default for a standard interactive query.

(4) Number of Relations in a Query - 1, when possible. We made this choice in order to
isolate the effects of different data structures and algorithms on queries other than
joins.

(5) The Size of the Relation Queried - 10,000 tuples, 3.5 megabytes. We used the relation
TenK in all queries. Actually, TenK is larger than the typical relation for which the
OBE prototype was designed. The designers expected most users to be able to use
OBE with only 4 megabytes of virtual memory available to their virtual machine.
However, our emphasis was on the evaluation of a prototype, not in providing example
response times for a typical user. Large relations helped us isolate the factors that
influenced performance and tested the robustness of the implementation.

(6) The Size of the Virtual Machine - 16 Megabytes of Virtual Memory. This was the
maximum allowed to an ordinary user. We did this in order to run all queries in a
similar virtual memory environment, thereby eliminating a possible confounding vari-
able in comparisons between queries.

In Section 4, as we analyze the query processing algorithms used by OBE, we will
explain how we varied query parameters to isolate the effects of the data structures and
algorithms used by OBE.

3.3.3. Query phrasing

In the analysis of our initial experiments, we found that we could not understand the
effects of some queries without analyzing the influence of the two dimensional interface. As
with all other query languages, there are many alternate ways to phrase the same query.
Where possible, we chose a presentation that did not confound the cost of processing the
query with its method of input. There were two striking cases where the cost of query
phrasing could not be ignored. One occurred in our analysis of updates where parsing time
became important, the other occurred with our comparison of simple and complex selection
predicates, where the condition box became important.

3.3.3.1. Parsing time

When preparing a query in OBE, the first action the user takes is to invoke a relation
template as shown in Figure 4.a. The screen then displays a relation template that is used
to input the query. The template for the relation TenK is shown in Figure 4.b. Depending
on the query, some of the attributes in the template may be irrelevant. For example, query
Updatel-key+ in Figure 4.c. has fifteen irrelevant attributes in the query template that
must be parsed. Updatel-key+ updates the key of 1 tuple from the value 75 to the value
10075. Updatel-key, in Figure 4.d, is the same query with the irrelevant attributes
deleted from the screen. This is easily done with one of the function keys defined by OBE.
Times for these two queries are summarized in Table 4.

The average CPUtime for executing Updatel-key + was 4.19 seconds. The average
CPUtime for executing Updatel-key was 3.67 seconds. Once parsed, there would be no
difference in the execution of the query, thus we concluded that the system took .51 seconds
to parse the additional 15 attribute templates in the screen. Consequently, when comparing

+ +

oe:_no_ m:n.:..u-_ SAOHLIANY

+ +

:cz_zbm_ CNONIYLS ~ LAONIYLS

+

00LN3A3 n:o:...o:h,— °z<m:°=—m aucnza_.— ALNIAL _ L kI3 — LT TeR

— cro—
—— ——
—— e———

...... §------=| -—-1-]
_ SL001 N Gl _

)udy, uoijeray oy sjejdway, ¢y FUNDII

S S S e Yt A A N N Y N
+ + + + + 4 + + + + ' + m - _
HOMIYLS _ 2noN 1818 _--w..oz::n _ 001N3A3 _ 001000 _ SNOHLNIL _ SAOHLIALS _ _Snanious ﬂ aNVSNOHL ﬂ a3uaNait _ “AINIML | WAL M unog w onL w 2InDINN m £3nDINA m war |
(peaowdy sAyNquUy snonpyradng)
£ay-1e1epdn P'Y TUNDLA Wua, uone[ey Jog ajejdway, Sunjoau] ey FYNDIA
R et oo gmmm————- gmmm————— !
_ $2001 0 5t _
P - (N Y EE e S SR, O brommmmm—————— .
_ 2In0DINN _ __¥NaL b m “ L “ _ ___3NGL .._“
]) P - Ty

aun], Suisieqg :Buiseayq £1ondP p JUNDIA

.18-

Table 4: Impact of Parsing
Average CPU Time in Seconds on Loaded System

QUERY CPUtime COMMENT
Updatel-key + 4.19 15 superfluous attributes in query table
Updatel-key 3.68 only 1 attribute in query table

queries, we have to be aware that queries containing more or larger objects on the screen
will take significantly longer to parse.

3.3.3.2. The condition box

In phrasing range selection queries, it was possible to express one condition, (i.e.
unique2 < 10), without using a condition box. The same query can be expressed using the
condition box. Query Select10-Rg, which selects 10 tuples, has one condition on the key,
unique2. When phrased without using the condition box, as shown in Figure 5.a,
Select10-Rg required an average of .59 seconds of cpu time. Phrased with the condition
box, as shown in Figure 5.b, the same query required 2.42 seconds of cpu time. The
difference of 1.83 seconds for the same query must be due to additional processing done both
in the parsing and query processing stages of query execution.

When a conjunction of two conditions on one attribute is expressed, the conditions
must be expressed in the condition box. Query Selectl0-Rg2, shown in Figure 5.c, selects
10 tuples using the two conditions:

(unique2 > 5838) and (unique2 < 5849)

Select10-Rg2 required an average of 2.92 seconds of cpu time. The results are summar-
ized in Table 5.

The difference in CPUtime required for queries Select10-Rg and Select10-Rg2
should give us the difference between having to make one comparison to evaluate a tuple in
a range query and having to make two comparisons. However, this difference is 2.33
seconds if Selectl0-Rg is phrased without the condition box and 0.40 seconds if Selectl0-
Rg is phrased with the condition box. Consequently, when testing effects of parameters
other than the condition box, we only compare queries that either both have or do not have
the condition box.

Table 5: Impact of Condition Box
Average CPU Time in Seconds on Loaded System

QUERY CPUtime COMMENT
Select10-Rg .59 one condition, no condition box
Select10-Rg 2.42 one condition, with condition box
Select10-Rg2 2.92 two conditions, with condition box

FIGURE 5. Query Phrasing: The Condition Box

Select 10-Ry
TENK UNIQUEL UNIQUE?2 TEN THOUSAND' STRINGG
P. < 1i0

FIGURE 5.a Select 10 Tuples on Key, 1 Condition, No Condition Box

Select10-Rg
TENK UNIQUEL UNIQUE?Z2 TEN THOUSAND STRINGG
P. _X

CONDITIONS

X <10

FIGURE 5.b Select 10 Tuples on Key, 1 Condition, With Condition Box

Select10-Ry2
TENK UNIQUEL TENTHOUS TEN THOUSAND STRINGS
P. x

CONDITIONS

_X > 5838
X < 5849

-19-

4. TIMING MEASURES

In this section, we analyze the time requirements of OBE, under the assumption that
the space, virtual and physical main memory, requirements are met. In order to establish a
preliminary measure of CPU utilization, we started with a small set of cross-section queries
for which we had timing measurements on other DBMS’s, and timed these queries in stan-
dalone mode on both the 3081 and the 4341. We then designed a comprehensive set of
benchmark queries, and measured their CPUtime on a moderately loaded 3081 system:.
We divide this section into six subsections. In the first subsection, we describe and analyze
our standalone measurements of the cross section queries on the two machines. Then, we
devote one subsection to each of the relational operations (selection, projection, join), one for
aggregates (simple aggregates and aggregate functions), and one for updates. For each type
of query, we first describe the parameters that may have an impact on the performance of
the query. These include parameters that define a relational query profile, such as com-
plexity of the predicate for selection queries or the proportion of duplicate tuples created by
a projection, and parameters that are derived from options provided by the OBE interface,
such as the use of a condition box or the format of the output. Modelling these parameters
required us to design a number of different test queries for each relational operation. In
each of the five subsections, we describe these test queries, present our timings, and quan-
tify the impact of each performance factor.

4.1. MIPS Rate

On a 3081 and a 4341, we measured and compared the standalone execution times for
a cross section of queries including selections, projections, updates, joins. and aggregates.
The same queries were previously benchmarked on a number of disk database systems
((BDT83, BT84, BD84, BT85]), which included both software systems running on a VAX
host and database machines. See Appendix 2.

Table 6: Query Execution Time in Seconds on IBM 3081 and IBM 4341
Default Result Consists of All Attributes From Operand Relation(s)
Default Qutput Mode: "P." on Query Table

Query Name Time on Time on Ratio Query

3081 4341 4341/3081 Description
Selectl-Eq+ 0.5 31 6.2 Select 1 tuple
Select100-Rg + 1.3 7.6 5.8 Select 1% of the tuples
Select1000-Rg + 1.6 10.3 6.4 Select 10% of the tuples
Select1000-Rg + 4.7 347 74 Select 10%, with condition box
Project100 14.3 106.8 7.5 Project 100 tuples, 6 attrs.
ProjectAll 1.0 6.9 6.9 Project all of OneK
JoinAB’ + 2.6 184 7.1 2-way join
JoinAselB + 5.6 37.8 6.8 1 selection, 2-way join
JoinCselAselB + 4.8 30.2 6.3 2 selections, 3-way join
Updatel + 47 26.2 5.6 Update one tuple
Insertl 24 241 10.0 Insert one tuple
Delete-Eq + 0.4 2.5 6.3 Delete one tuple
MINIMUM 0.5 3.1 5.8
MAXIMUM 14.3 106.8 10.0
AVERAGE 3.6 25.7 6.9

-20-

For this experiment, we made available to OBE the amount of physical main memory
required to keep both the database system’s code and the operand relations in core. A sub-
set of our measurements is presented in Table 6. A brief description of the queries appears
to the right of the table. The 10,000 tuple relation, TenK, was included in every query
except ProjectAll, which was a projection of the relation OneK performed without dupli-
cate elimination.

Our goal was to verify whether the ratio between the elapsed time of the same queries
on the 4341 and the 3081 would be different from the known ratio between the MIPS rates
of the two machines. For the numbers in Table 6, the average ratio was 6.9. The ratio that
is usually quoted between MIPS rates for the 4341 and 3081 is 7. This result is an indica-
tion that a general CPU performance metric is a strong basis for predicting the effect of
CPU speed on the performance of OBE. This distinguishes OBE from conventional, disk
database management systems.

4.2, Selections

A number of factors determine the speed at which a selection query can be processed
by a database system. In a conventional DBMS, the storage structure of the operand rela-
tion is one of them, and performance will widely vary depending on the structure chosen by
the database designer. Since in OBE all relations have the same storage structure, the per-
formance of selections only depends on the query profile. We examined the impact of three
parameters that model this profile:

(1) Query Input Format: with or without condition box

(2) Selection Predicate:
(a) Selectivity: number of tuples selected
(b) Range versus equality selection
(c) Simple (attr <op> const) versus composite predicate (boolean combination of sim-
ple predicates)
(d) Key versus Nonkey Attributes specified in selection predicate, or in result

(3) Query Output Mode: "P." on query table, retrieving into user-created output, or
retrieving into a predeclared relation

4.2.1. Query input format

With a simple selection predicate, the OBE interface provides two options to express
the selection: within the table skeleton, or separately, in a condition box. In order to estab-
lish a baseline measurement with these two options, we started with timing a standard
interactive query for which the output fits well on the screen, query Selectl0-Rg. Query
Select10-Rg, phrased with and without the condition box, is shown in Figure 5, Section
3.3.3.2. This test query has a standard interactive result: 10 tuples, 5 attributes per
tuple. (See Figure 3.b, Section 3.3.2.) Timings for this query expressed with and without a
condition box are presented in Table 7. Without a condition box, the selection required 0.59

Table 7: Times for the Baseline Selection

Average CPU time in Seconds on Loaded System
(10 tuples in result, Output Mode: "P." on query table)

QUERY TYPE CPUtime PREDICATE

Select10-Rg Range Selection 59 Key < 10. no condition box |
Select10-Rg Range Selection 2.42 Key < 10, with condition box |

-21-

seconds, which is very fast. By comparison, a disk database system using a secondary B-
tree index can perform this query in between 1 to 2 seconds {[BDT83]. On the other hand,
the selection phrased with a condition box took 2.42 seconds, almost 5 times longer. The
difference of 1.81 seconds is accounted for by two factors. First, the time to parse the query
was slightly increased by the presence of the condition box. Second. when the query was
expressed with a condition box, the optimizer chose a different access method, which was
not efficient for this simple range selection. We investigated this anomaly further, by
checking precisely how both queries were executed.

In both cases, the optimizer chooses to scan the entire relation. rather than using the
index, because the query is a range selection. However the first case, when the query was
phrased without the condition box, the Simple-Scan access method was used. In the second
case, the Pipeline-Scan was chosen. The second choice was made because the query optim-
izer treats a single relation query as a special case of a join. Clearly, the Pipeline-Scan
code incurred an unecessary overhead in this particular case.

4.2.2. Selection predicate

In order to test the impact of selectivity on selections, we timed equality selections
that retrieved 1 and 10 tuples, and range selections that retrieved 10 and 100 tuples (out of
10,000 tuples in the operand relation). Where possible, we also varied whether the selec-
tion was on a key attribute. Clearly, we could not have an equality selection on the key
that retrieved more than one tuple. The key, unique2, was included in the result, and
therefore, duplicate elimination was not done on the result. Selections that did not use the
condition box are presented in Table 8.

The first three queries in Table 5 were equality selections that retrieved one, one and
ten tuples respectively. Only Selectl-key was a selection on the key. Comparing Selectl-
key and Selectl, both required an average of 0.15 seconds of CPU time, indicating that the
selecting on the key had no effect. The next query, Selectl0-Eq, which retrieved 9 more
tuples, required an average of 0.16 seconds of CPU time, 0.01 seconds more than Selectl-
Eq. This difference is not remarkable. Query Select10-Eq can be found in Appendix 3.
Queries Select10-Rg and Select100-Rg were range selections that retrieved 10 and 100
tuples respectively. Comparing Select10-Eq, an equality selection that retrieved 10 tuples,
and Select10-Rg, a range query that retrieved 10 tuples, we get the cost of scanning the
relation to be approximately about .4 seconds. Comparing the range queries Select10-Rg
and Select100-Rg, we get the cost of increasing the selectivity of the query from 10 to 100
tuples is only .03 seconds.

The lack of effect of selectivity on the times for these queries is due to their method of
output. When the result is output through a "P." on the query table, the qualifying tuples

Table 8: Times for Range and Equality Selections
with Selectivity Varied

No Condition Box, Output Mode: "P." on Query Table

QUERY TYPE CPUtime RESULT SIZE PREDICATE
Selectl-key Equality 0.15 1 Key=838
Selectl-Eq Equality 0.15 1 candidate key =838
Select10-Eq Equality 0.16 10 thousand =838
Select10-Rg Range 0.59 10 Key < 10
Select100-Rg Range 0.62 100 Key < 100

.29.

are not materialized in a result relation. Rather, the result is stored in a pointer area,
which means that the result consists of an array of pointers to qualifying tuples in the
operand relation. In addition, because the key attribute was included in the result tuple, no
duplicate elimination was done. Finally, regardless of the method of output, only 8 tuples
at a time are formatted for display to the interactive user. At the bottom of the result table
that displays the first 8 result tuples, is a message informing the user of the total number of
tuples in the result. The user may view additional result tuples by using a function key to
expand the result table. Thus, as the selectivity of a query increases, the time to format the
result tuples does not - unless the user explicitely asks to see more output. It is interesting
to note that the trick of formatting only a few tuples at a time not only decreases the
interactive response time, it also saves an interactive user from being bombarded with
screens full of unwanted information when the result is much larger than expected.

Using range selections that included the condition box, we tested the impact of the
predicate complexity, by adding an inequality to define the range. We tested the effect of
selecting on the attribute explicitely declared as a key versus selecting on a candidate key.
We also tested the effect of duplicate elimination when the result had ten tuples. These
experiments are summarized in Table 9.

In Table 9, the most striking result is the difference between Select10-Rg, a range
query on the key requiring 1 comparison and Select10-Rg2, a range query on the key
requiring 2 comparisons per tuple. Range queries are executed by scanning the 10,000
tuples in the operand relation. The additional comparison required .5 additional seconds, or
0005 additional seconds per tuple. While the cost of scanning the relation and doing two
comparisons on the key is not prohibitive on a 3081, on a 4341, the cost of an additional
comparison would work out to be about 3.5 seconds. Thus with a slower CPU, it would be
worthwhile have the optimizer take more time and space, in the amount of code in the
optimizer, to decide whether or not to use the index in performing a range query. If the size
of the result is expected to be small, the index should be used.

Furthermore, it is clear that on all range queries using the condition box, the
Pipeline-Scan as opposed to the Simple-Scan is being used. While this accounts for an
increase of 1.83 seconds in query execution time on a 3081, it could cost 12.81 seconds on a
4341. Again, with a slower CPU, it would be desirable to have the optimizer take more
time and space to figure out when the Simple-Scan can be used. It also brings into ques-
tion the strategy of treating single relation queries as special cases of joins.

As with equality selections, we tested whether range selection on the key was any
different from selection on a nonkey attribute. There was no remarkable difference. Query
Select10-Rg2 on key is in Figure 5.c, Section 3.3.3.2. Query Select10-Rg2 on candidate key
is in Appendix 3. Finally, we forced duplicate elimination by repeating the same selection
and replacing the key with another candidate key, in the result. In this case, (there were no

Table 9: Times for Range Selections with Condition Box

Average CPU Time in Seconds on Loaded System
"P." on Query Table, 10 tuples in Result, uniquel is a Candidate Key

QUERY CPUtime COMPARISONS DUP. ELIM.
Select10-Rg 2.42 Key<10 No
Select10-Rg2 2.92 5838 <Key <5849 No
Select10-Rg2 2.87 5838 <uniquel < 5849 No
Select10-Rg2 2.89 5838 < uniquel < 5849 Yes

FIGURE 6. Query Output Mode

——————————
0
e
i
0 t
!
lllll e —— — —t———— —
! S ! 2
o o)
) e 3 T . o
1 Z > R4 [| =
=] >] (| | -
| b 1 11 [| o o o =
1 1B = 1 Vi Im 1 o a
I o 1 to | [[B o
b S R R el b 2
- s e o= — — c— — —— —
AN S IS U °
112 | 8 110 R R T
1=z y 11z [' o "
< 1=, g [(I o wi™
1 oA, R [[)
-] 1 I 11D [[~ v e
i 10 [110 e 1inl (&) "
] 1 o - N-] et 1 Lzt : 1
[11 b | 1 1 t1Q1O 5 S
o £ i ——t——— 1O 1 2 12
| ememfeumanas 0 cememea—— b0 | v - —— 1] I) e} \ t 5 =R I R S B
b) 1 i \ =] 1 1 | | bl) | § 1Ele
(| v | = 1)) [BE-RR2 ° v g)
1 1z "t 1 (] -1 | [1z | S oL e
(] 1 [T = (I~ I S T [1101 =} 7 LU LA
1 B [! [1 n"T _“ “C“C_ ““C“ _“ y—t ‘o
“ a_|.lLv — e - “ " n ! -m | e o - 1 1 | oo - e e < “M
[1 1 | [! —— o 19
) 1 1 1 > [1 'R] > 1 113 @
1ored ! (R ! @ 1l ! [[Q@ 1 1i1Zi0 Z !
1@ 1 [1 [111w | [| ! L o Sig !
I 131 | Tl 1 b e I 1D | | | o o et TR EiS
L HIFE - . & T bt R
1= 1 - EE-T 1510 @
i3 | Tt e= | = (= ' t X et g%
1 | Pt (o | [————— =] LI UL N R L
- - . IQ1v 1] = o ——]] I !
1 124 [Q 1 1 i 1] e !
1 101 | [’ 1 } 1 “ o e ‘e !
1 3 e | @ ' 1 | 13 mi o
13 e s 1 oiigl 1 el - {gi= | 7717
“m © “ -"m < “] + t © .ﬂl#'ll
— - — — —y— an—
' 5 _ =~ SRR - X R T i~ b
i ' ') i 1 1w
- o — =) 1 [S, 1 1 jan] ! 2
' 1 & ' | [&) i = <
1 = o0t 1 = 121« <1
oo 1 Vo P! ! 1] Fe, Ve ! —————
- } 1.9 1O 113
g O 1 18 1@ | ¥ Y
1 1 1 Q) e 11 . w! ! 14 !
1 O1E A 141 g |
-~ [254 . -
g1 1=10 0 “w.:T —_— ummm 1> !
&“ .|||P “ _n.w_.lll 21K '
" ' 192 R !

-23.-

dup]icates in the 10 tuple result, but the query processor could not predict it), the cost of
duplicate elimination was negligible.

4.2.3. Query output mode

In Table 10, we consider two range queries, Selectl0-Rg and Select100-Rg, that
retrieve 10 and 100 tuples, respectively. With each query, we tried all three methods of
outputting the result: "P.” on query table; into user-created output; into a predeclared,
empty relation. Figure 6 shows query Select100-Rg, phrased with each output mode.

When retrieving into an existing relation, an intermediate TD Area is used to ini-
tially form the tuples to be inserted. In our test, the result relation was initially empty.
The major difference between retrieving into user-created output and retrieving into a
predeclared, but empty, relation is the cost of actually creating the inversion when the
result tuples are inserted into the predeclared relation.

It is interesting to note that whether the size of the result was 10 or 100 tuples, the
difference between a "P." and retrieving into user-created output was greater than the
difference between retrieving into user-created output and retrieving into a relation.
Switching from storing the result as a list of tuple addresses (in a pointer area for a "P.")
to creating a relation without inversion (in a TD area for user-created output) cost approxi-
mately .5 seconds whether the size of the result was 10 or 100 tuples. Compared to the
time for retrieving into user-created output, retrieving into a predeclared, but empty rela-
tion required .1 second more when the size of the result was 10 tuples, and .3 seconds more
when the size of the result was 100 tuples.

While selecting 100 tuples always cost more than retrieving 10 tuples, the difference
is most noticeable when retrieving into a relation. When retrieving into a relation, it cost
almost .3 seconds more to select 100 tuples than it did to select 10. Here, we note that for
appropriate interactive queries, the cost of retrieving into a relation, even with the cost of
creating complete inversion, was not particularly high. However, it was very inconvenient
to have to predeclare a result relation if we wanted to be able to treat the result as a rela-
tion, (i.e. execute a query on a result relation).

4.2.4. Summary

In benchmarking selection queries, we found that the OBE prototype was very sensi-
tive to a number of parameters. A summary of the factors that affected the performance of
selections at low selectivities follows:

(1) The use of the condition box increased the cost of a range query by a factor of 5 due to
the unnecessary use of the Pipeline-Scan.

(2) Equality selections were 4 times faster than range selections at low, comparable selec-
tivities.
Table 10: Effect of Output Mode

"P." on Query Table, User Created Output, Into Predeclared Relation
Average CPU Time in Seconds on Loaded System
Range Selection on Key, With Condition Box

QUERY Result Size . UCO Relation

p
Select10-Rg 10 tuples 242 298 3.08
Select100-Rg 100 tuples 255 3.04 3.35

-24-

(3) Range selections with one a simple qualifier, (1 inequality), were 15 to 20 percent
faster than those with a composite qualifier, (2 inequalities).

(4) Retrieving tuples by a "P." on the query table was 15 to 25 percent faster than retriev-
ing into user-created output which, in turn, was 3 to 10 percent faster than retrieving
into a relation.

(5) Selectivity had a definite impact when retrieving into user-created output or into a
predeclared relation.

Certain factors had a negligible impact on the performance of selections:
(1) Selecting on the key attribute, was no different from selecting on a candidate key.

(2) When there were no duplicates in the result, and the result was output through a "P."
on the query table, the cost of duplicate elimination was negligible .

(3) The size of the result relation only slightly increased the cost of the query when the
result was output through a "P." on the query table.

4.3. Projections

When projecting a relation on non-key attributes, duplicate tuples must be eliminated.
Duplicate elimination is a costly operation that is usually performed by sorting or hashing.
In OBE, although hashing is always used for a first phase in duplicate elimination, the
actual method used for eliminating duplicates and storing result tuples depends on the out-
put mode chosen for the query. Thus we tested the effect of query output mode on the per-
formance of projections. With one query output mode, "P." on a query table, we found per-
formance problems that seemed to be related to the number of duplicates in the result.
Thus, we performed a special experiment to test the effect of the number of duplicate with
this query output mode. All projections used in Section 4.3 are shown in Appendix 3.

4.3.1. Query output mode

Our baseline projection query, Project20, is a projection of a 10,000 tuple relation on
4 attributes: 3 integers and one 52 character string. The query produces 20 distinct tuples:
thus 99.8% projected tuples are duplicates. In Table 11, timings of this query with the
three possible output modes are presented: "P." on the columns of the projected attributes,
user-created output (UCO), and into a relation. There are two differences between these
queries. Retrieving into a result relation requires that the result, once formed in an inter-
mediate segment, be inserted into the target relation, with the indices being built. When
the relation being inserted into is empty to start with, this does not appear to be expensive.
On the other hand, when retrieving into user-created output, there is the cost of formatting
8 result tuples for display to the screen. Apparently, these two costs offset each other. We
observe that retrieving the tuples through a "P." command took 3.84 seconds (37%) more

Table 11: Effect of Method of Qutput
Projections on 10,000 Tuple Relation, 20 result tuples

TD = "P." on Query Table, UCO = User-created Output, Relation = Into Relation
Average CPU Time in Seconds on Loaded System

Query Output CPUtime
Project20-P P. 10.29
Project20-U Uuco 6.46
Project20-R Relation 6.46

-25-

time than retrieving into user-created output, but there was no difference between retriev-
ing into a relation or into user-created output. This result is in striking contrast to our
results with selections in Section 4.2, where for comparable queries, retrieving through a
"P." command on a query table was 21% faster than retrieving into an empty relation and
retrieving into user-created output was 30% faster. The explanation for this apparent con-
tradiction is that the cost of duplicate elimination, incurred in the projection but not in a
selection on a key attribute, outweighs the benefit of using a faster, space-conserving
method of storing the result tuples.

Since OBE employs hashing to eliminate duplicate tuples, the effect of method of out-
put when the number of duplicates is high, as was the case for the query in Table 11, can
be explained by the way collisions are handled. When the result is in user-created output,
hashing collisions are resolved by comparing tuples that are in the same TD area as the
hash table. When the result is output through a "P." on a query table, pointers to result
tuples are stored in a pointer area which also contains the hash table used for duplicate
elimination. Hash table collisions must be resolved by comparing tuples in the operand rela-
tion area. Through the mechanisms provided by the high level language in which OBE
was written, the cost of referencing the operand relation turns out to be quite high. It is
possible that the code to resolve collisions when switching between the pointer area and
the relation segment could be optimized.

4.3.2. Number of duplicates

The increased cost of a projection when the output mode is a "P." on the query table
appears to be a function of the number of duplicates in the result. To quantify the cost of
resolving collisions in the hash table in a pointer area we tested two more projections,
with the "P." output mode, and fewer duplicates to be eliminated. The results in Table 12
demonstrate that as the number of duplicates is decreased, from 9980 to 2007, the time to
do the projection decreased, from 10.29 seconds to 7.93 seconds, a factor of 23%. Surpris-
ingly, the query that took the least time retrieved 7,973 more tuples. Thus, the pointer
area is both space and time efficient when the result is large and there are few duplicates,
but performance is impaired, regardless of the size of the result, when there are many
duplicates.

4.3.3. Summary

Overall, projections in OBE are fast. By way of comparison with DDBS’s, we will con-
sider the cost of scanning our test relation of 10,000 tuples on a DDBS. To execute a projec-
tion, exclusive of the cost of duplicate elimination, the relation must be scanned. As stored
in OBE, it requires 3.5 megabytes of storage. Assuming 30 milliseconds to read 1 4K block,
scanning the entire relation would require 27 seconds, almost 3 times longer than OBE

Table 12: Effect of Number of Duplicates
Projections on 10,000 Tuple Relation

Output is by a "P." on Query Table Output
Average CPU Time in Seconds on Loaded System

Query Result # of Duplicates CPUtime
Project20-P 20 tuples 9980 10.29
Project100 100 tuples 9900 9.95
Project8K 7993 tuples 2007 7.93

-26-

takes regardless of the method of output or the number of duplicates eliminated.®

We tested the combined effect of two factors on projections: the method of outputting
the result and the effect of the number of duplicates eliminated. We found that the cost of
retrieving the result through a "P." on the query table required up to 60 percent more time
than retrieving either into a relation or into user-created output. Finally, we observed that
the cost of a projection when the output mode was through a "P." could vary by 20%
depending on the number of duplicates, and that the effect of a large number of duplicates
far outweighed the effect of a large result with this output mode.

4.4. Deletions, Insertions, and Updates

OBE does not optimize its data structures or algorithms for updates. Clearly, main-
taining complete inversion of every relation increases the cost of tuple insertion, deletion
and modification. In a DDBS, this overhead would not be acceptable. However, because of
the memory residency, OBE can exploit features such as a long move machine instruction
in order to substantially reduce the cost of restructuring the indices (each index being a
linear. array). Unlike in airline reservation or banking system transactions, in OBE, the
designers assumed that other than an occasional update, updates are executed in bulk when
the relations involved are not being used by multiple interactive users. Every deletion,
insertion or update would be treated as a bulk operation, that is, one in which many more
than one tuple may be involved. Thus, maintaining consistency of the database with each
update was a major concern in the design of the update algorithms. For instance, deletions
are done in two phases. First the tuples to be deleted are located and counted, then the
user is prompted to verify whether the deletion should be carried through. With insertions,
the entire relation is searched to make sure that the new tuples will not duplicate existing
tuples.

We modelled test queries for updates so that these special features would be accounted
for. In our measurements, we isolated the cost of the different phases in processing an
update. With deletions, we isolated the cost of locating the tuples to be deleted from the
cost of updating indices. Comparing insertions with deletions, we estimated the cost of the
Power’s sort [Po80] that is used to prevent the insertion of duplicates into a relation. With
updates, which are actually deletions followed by insertions, we measured the efficiency
with which overhead common to insertions and deletions is combined.

4.4.1. Deletions

In the first phase of a deletion. the candidate tuples are located by whatever method
the optimizer deems appropriate, as if the query was a retrieval query. In our test queries,
the tuples to be deleted are identified by an equality selection on one attribute, thus an
Index-Lookup is used. The actual deletion is performed in the second phase which begins
after the user has been informed of how many tuples were selected for deletion, and has
validated the operation by pressing a function key. Thus we were able to isolate the cost of
the consistency checking (i.e. locating and counting the target tuples) by aborting the test
queries before the actual deletion. Times for deletion queries are presented in Table 13.
We varied the number of tuples deleted between 1 and 1000. We accomplished this by pick-
ing one value of an attribute with a particular uniform distribution and deleting all tuples
with that value. For instance, to delete 10 tuples in one query on relation tenktupe, we
deleted all tuples where the attribute thousand was equal to 500. This attribute has a uni-
form distribution of the integers between and including 0 to 999. To delete 1000 tuples, we
deleted all tuples where the attribute twenty=0. Queries Deletel and Deletel0 are

% However, if we consider OBE running on a 4341. we would find that the fastest projection, Project20-U.
which required 6.46 seconds on a 3081, would require about 45 seconds on a 4341, Thus. for this implementation
to perform well on a 4341, smaller relations would be required.

217.

shown in Appendix 3.

For each query in Table 13, we have decomposed the total CPUtime into the time for
locating the tuples to be deleted, labeled "Checking", and the time for the actual deletion.
The latter approximately represents the time for updating the indices. The cost of check-
ing gives us a very good estimation of the cost of doing equality lookups on an index. For
deleting 1 and 10 tuples, it is almost certainly dominated by the time parse the query. To
locate 1000 tuples requires only .19 seconds more than locating 1 or 10, or .00019 seconds
per tuple. On a ten MIP machine, this is approximately 190 machine instructions per tuple
located.

Since our test relation has 16 attributes, 16 indices are updated in the second phase of
the deletions (last column in Table 13). The "Restructuring Cost” entry for the query
Deletel, .14 seconds, includes the time for 16 long move instructions that must be exe-
cuted to recompact the indices. We observe that the cost of updating the index is linear in
the number of tuples deleted:

Cost to Update Index = 0.14 * (number of tuples deleted)

Because the cost of locating the tuples to be deleted is so low relative to the cost of
updating the indices, the total time to delete tuples is also close to linear in the number of
tuples deleted. When 1000 tuples are deleted, the cost goes slightly under

0.14 * (number of tuples deleted).
In this case, with each deletion from the relation, the indices get smaller and searching
them for the appropriate tuple to delete takes less time.

Although the time for deletions includes restructuring of the indices, and removing the
tuple addresses from the doubly linked list of TD’s, it does not account for restructuring the
relation completely. Unlike the space for the indices, the space for TD’s and data is not
reclaimed. It can be reclaimed by running a compacting program when the relation is not
being used.

4.4.2. Insertions

Insertions are executed by first forming the tuples to be inserted in an intermediate
TD area. The segment is identical to one used for user-created output, including a hash
table at the bottom of the segment that checks for duplicate tuples. Extensive checking is
done to insure that the user does not make mistakes with keys, such as trying to insert two
tuples with identical keys but different values for nonkey attributes. Enough information,

Table 13: Deletions on 10,000 Tuple Relation

Average CPU Time in Seconds on Loaded System
Tuples Selected for Deletion through Simple Equality Selection on Integer Attribute.

Number With Actual Consistency Restructuring
Query Deleted Deletion Checking Cost*
Deletel 1 tuple 23 .09 .14
Deletel0 10 tuples 1.55 .09 1.46
Delete100 100 tuples 1497 A1 14.86
Delete500 500 tuples 72.55 18 72.37
Delete1000 1000 tuples 139.56 28 138.98

* Restructuring Cost = (Time With Actual Deletion) - (Time With Only Checking)

.28.

such as the inconsistent tuples, is saved in a different segment to provide meaningful error
messages to the user. The number of tuples that will actually be inserted is determined and
the user is asked, as in deletions, to validate the insertion before any changes are made in
the relation. The tuples are inserted one at a time, in the first free space below the tuples
already in the relation. As each tuple is inserted, the indices for each attribute are
updated. As with deletions, if 10 tuples in a 16 attribute relation are inserted. at least 160
move long instructions must be executed.

In contrast to deletions, updating an index for insertions takes considerably less time
but the consistency checking required for an insertion took considerably more time. To iso-
late these costs, we designed two insertions, Insertkey and Insertall, that both insert one
tuple. However, Insertkey inserts a tuple where only the key inserts a new value in its
attribute domain, while Insertall inserts a tuple that contains a new value in all attribute
domains. Thus for the first query, only one new value was actually inserted in the data-
base. To store the other 15 attributes, an equality lookup was performed on the index for
each attribute, and a pointer to the attribute value already stored was copied into the TD
for the tuple being inserted. For the second query, 16 new attribute values had to be stored
in the database. Queries Insertkey and Insertall are shown in Appendix 3. Times for
these two queries are presented in Table 14. As with deletions, we have isolated the time
for consistency checking from the time for restructuring the relation. The difference
between the costs of the two queries was small (0.02 sec), indicating that storing attribute
values does not account for much of the insertion time. On the other hand, for both queries,
the contrast between the time to check an insert and the time to restructure the relation is
quite remarkable. The time to parse the query and check the insertion was 4.16 seconds in
both queries. Of this time, at least 0.51 seconds was parse time, (Section 3.3.3.1). This
leaves 3.65 seconds for consistency checking when only 1 tuple is inserted. Although
apparently high, this time is actually very fast considering that it includes the time to sort
a 3.5 megabyte relation on its key, the integer attribute unique2 using Power’s sort [Po80].

While for deletions, we could assume that the time to actually delete a tuple was
insignificant in comparison to the time to delete the pointer to the tuple from all the
indices, with insertions, this is clearly not the case. When all the attributes being stored
are unique, it appears that is took more time to actually store the tuple than it did to
update the indices. This accounts for the restructuring cost to store 16 unique attributes
being twice the restructuring cost of storing only 1 unique attribute and 15 nonunique attri-
butes, 0.04 seconds as opposed to 0.02 seconds. If we take 0.02 seconds as an upper bound
for the time to update 16 indices, this means each index update required about 1.25 mil-
liseconds. This includes the time for performing the binary search of the index, the long
move instruction and the insertion of the new tuple address in the space created by the long
move instruction.

Table 14: One-tuple Insertions in 10,000 Tuple Relation

Average CPU Time in Seconds on Loaded System
Number Unique Attribute Values = Number of Attributes Values Inserted

Unique With Actual Consistency Restructuring
Query Attribute Values Deletion Checking Cost*
Insertkey 1 4.18 4.16 .02
Insertall 16 4.20 4.16 04

* Restructuring Cost = (Time with Insertion’ - (Consistency Checking)

44.3. Updates

Updates consist of a deletion followed by an insertion. Before the update is actualily
performed, the tuples to be updated are copied into an intermediate segment. If the key is
updated, checking is performed to insure that no duplicates or inconsistencies in the key
will be caused by the updates and to detect various subtle anomalies that can occur when
more than one tuple is updated at the same time. In the process of this checking, both the
intermediate and target relation are sorted using Power’s sort {Po80]. If the key is not
updated, no checking is done. As with deletions and insertions, after all checking has been
done and the number "X" of tuples that will be updated has been determined, the user is
asked to "Press <Process> to Update X Tuples”. If the user presses the function key, then
X tuples are deleted, with all indices being updated after each deletion, and then the X new
tuples are inserted, with all indices being updated after each updated tuple is inserted.
Updates are summarized in Table 15.

The test queries tried to update 1, 5, 10, 100, 500 and 1000 tuples. However, for 100,
500 and 1000 tuples, we could only complete the consistency checking phase. These updates
failed because we ran out of memory. This highlights a potential problem for MMDBS
designers who rely on a host operating system for memory management. OBE required
that all of the code and program data space, all operand relations, all intermediate seg-
ments, and all result segments fit in the virtual memory allocated to a user’s virtual
machine. The OBE benchmarking program, code and data space took about 4 megabytes of
virtual memory. The TenK relation required 3.5 megabytes of memory. This put a lower
limit on the amount of virtual memory required to execute a query at 8 megabytes. The
maximum amount of virtual memory allowed a user was 16 megabytes. When we tried to
update 100 tuples, the source relation segment was not large enough to fit 100 new tuples.
Therefore, OBE, using a call to CMS, requested a new segment of virtual memory of over
3.5 megabytes so that it could copy the relation into a larger segment and then insert the
100 updated tuples. Although there was enough unallocated virtual memory remaining to
fill this request, the largest unallocated block of virtual memory was too small to fill the
request due to fragmentation of virtual memory, so the update failed.

The first three queries in Table 15 all update one tuple. Only the first two queries,
Updatel-key and Updatel-key +, update a key attribute. Updatel-key + actually per-
forms the same update as Updatel-key but contain 15 superfluous attributes in the query

Table 15: Updates on 10,000 Tuple Relation

Average CPU Time in Seconds on Loaded System
Tuples to be Updated Selected through Simple Equality Selection

Attribute Number of Complete Consistency Restructuring

Query Updated Tuples Updated Update Checking Cost*
Updatel-key Key 1 3.68 3.51 17
Updatel-key + Key 1 4.19 4.03 .16
Updatel Nonkey 1 28 A1 17
Update5 Nonkey 5 .94 - -
Updatel0 Nonkey 10 1.79 12 1.67
Updatel0 Nonkey 10 1.79 12 1.67
Update100 Nonkey 100 - .25 -
Update500 Nonkey 500 - 1.02 -
Updatel000 Nonkey 1000 - 2.48 -

“Restructuring Cost = (Time With Actual Update) - (Consistency Checking)

-30-

window. Queries Updatel-key and Updatel-key + are shown in Figure 4, Section 3.3.3.1.
The difference in time between these to queries, 0.51 seconds, is accounted for by the addi-
tional parse time required for query Updatel-key +. Updating the key incurs a very high
cost for consistency checking, a minimum of 3.51 seconds for the Power's sort [Po80] for the
target relation (Section 4.4.2), while restructuring the relation is very fast, .16 to .17 sec.
When updating a key attribute, as with insertions, the target relation is sorted on its key to
facilitate duplicate elimination.

Updatel and all of the remaining queries shown in Table 15 update one non-key
attribute. Updatel requires only .28 seconds total, which is 92 percent faster than the
same update on a key attribute. We also note that this is only while an update does consist
of both an insertion and a deletion, a great deal of unnecessary overhead is eliminated
where possible. In the case of updating a nonkey attribute, the overhead that is eliminated
includes the Power's sort of the target relation.

This is even more clearly seen in the checking cost for Updatel000, which is an
update of 1000 nonkey attributes. Because the target relation was not sorted, the time to
check, for duplicates is limited to the tuples in the intermediate segment that the tuples to
be updated have been copied to. Thus, the cost of checking for updating a nonkey attribute
in 1000 tuples is even less than the cost of checking when a key attribute in 1 tuple is
updated. We should also point out that if the update of the key was a bulk update, the tar-
get relation would still only be sorted once and the cost of the sort would be amortized over
the number of tuples updated.

44.4. Summary

In spite of having completely inverted relations and doing a great deal of consistency
checking for the user, OBE handles insertions, deletions and updates well. Updating non-
key attributes is fast: .28 seconds for one attribute in one tuple. Updating the key attri-
bute, and inserting are much slower due to extensive consistency checking. Bulk deletions
performed well, with a cost increasing linearly with the number of tuples deleted. But we
were unable to thoroughly test bulk updates, because in preparing for the insertion of
updated tuples, OBE required more contiguous virtual memory than could be allocated.
This problem is partially due to our benchmarking technique. We used a relation much
larger than this prototype was designed to handle.

The long move instruction is the feature that makes complete inversion at all feasible
in a MMDBS. By way of contrast, for a DDBS, if there were 16 indices on a relation, the
disk resident indices could not be updated in under 16 disk accesses. Assuming 30 mil-
liseconds to read one index page from disk, updating the indices alone would require .48
seconds. In fact, OBE updates 16 indices in under 20 milliseconds, less time than the cost
of reading 1 index page from disk.

4.5. Aggregates

The strategy for perfoming simple aggregates and aggregate functions is similar in
OBE. Two different execution strategies are employed, depending on whether the result is
retrieved: 1) through a "P.", 2) into user-created output or into a relation. We tested the
effect of query output mode on the performance of aggregates.

4.5.1. Query output mode

If the result output mode is through a "P." on the query table, all selections and joins
are performed and pointers to tuples in the result are written into an intermediate pointer
area. Then, if necessary for an aggregate or aggregate function, the pointers in the inter-
mediate segment are sorted using a heap sort [Kn73]. Finally, the aggregate or aggregate
function is computed on the tuples in the intermediate segment and the result is written to

a TD area.

If the result output mode is into user-created output or into a relation, all selections
and joins are performed and the tuples in the result are written into an intermediate TD
area. Then, if necessary for an aggregate or aggregate function, the TD’s intermediate TD
area are sorted using Power's sort [Po80]. Finally, the aggregate or aggregate function is
computed on the tuples in the intermediate segment and the result is written to a result TD
area. If the result is retrieved into a relation, the tuples in the result TD area are inserted
into the relation.

We tested several aggregates and aggregate functions and we found that two were
representative of the performance of these queries. Query MinKey was a simple aggregate
that asked for the minimum value of a key attribute. The result of MinKey was one tuple
with one attribute. Query MinFn was an aggregate function that asked for the minimum
key value grouped by the attribute tene. Here the result was 10 tuples, with two attributes
in each tuple. Both queries, and their results, are shown in Appendix 3.

Initially, we tested aggregates with a "P." on the query table as the method of output-
ting the result. After analyzing projections, we realized that storing the intermediate result
in a pointer area might be profoundly degrading the performance of aggregates. Then, we
ran both queries retrieving the result into user-created output. The times for these four
queries are in Table 16.

When the result output mode was through a "P." on the query table, the simple
minimum aggregate, query MinKey, required 15.64 seconds. The aggregate function,
query MinFn-P, required 36.98 seconds. When we retrieved the result into user-created
output, the time for both queries was reduced over 70 percent. This difference is clearly a
result of the Power’s sort [Po85] being used in queries MinFn-U and MinKey-U. In the
Power’s sort on a TD area, all comparisons are made within the intermediate TD area.
However, for queries MinFn-P and MinKey, when the heap sort (Kn73] is performed on a
pointer area, the relation corresponding to the pointer area must be referenced to actu-
ally perform comparisons between attributes.

4.5.2. Summary

The poor performance of aggregate functions when the query output mode is through a
"P." reinforces our opinion that the pointer area is a source of performance problems.
However, the pointer area handles large results very well when comparisons do not have
to be made between tuples in the result, and it is also very space efficient. Therefore, it
would be worthwhile to attempt optimization of the code for performing comparisons
between tuples referenced in the pointer area.

In contrast, when the pointer area is not used in an aggregate, OBE performs well.
The minimum aggregate function when the query output mode was into user-created output

Table 16: Times for Aggregates and Aggregate Functions

Average CPU Time in Seconds on Loaded System

QUERY CPUtime RESULT COMMENT
MinKey-P 15.64 P. Minimum on Key
MinKey-U 4.53 UCo Minimum on Key
MinFn-P 36.98 p. Min. Function on Key, 10 Partitions
MinFn-U 8.01 Uco Min. Function on Key, 10 Partitions

.392.

required 8.01 seconds. Previously, we computed that just scanning relation TenK in a
DDBS would require approximately 27 seconds if TenK required 3.5 megabytes of storage.
Using fixed sizes for attributes, TenK can be stored compactly in 1.8 megabytes. Scanning
1.8 megabytes from disk at 30 milliseconds to read one 4K page would require 13 seconds.
OBE can perform the aggregate function in 8.01 seconds.

4.6. Joins

A pivotal assumption in the implementation of the OBE prototype, was that its DBMS
functions would frequently be used for ad hoe complex queries involving multiple relations.
Our test join queries were designed to measure the effect of the following factors:

(1) Query Complexity. We varied this factor by considering 3 test queries: a simple 2-way
Join, a join combined with a selection, and 2 joins combined with 2 selections.

(2) Number of Operand Relations. We varied this number from 2 to 4 (thus considering 2
to 4-way joins).

(3) Query Output Mode, combined with the above.

All join queries referred to in this section are shown in Appendix 3.

4.6.1. Join algorithm

Since the relational join is a basis for most complex queries, special attention was paid
to optimizing join queries. OBE uses a pipelined strategy [AHKB85] that avoids the creation
of temporary, intermediate relations in the process of query execution. This element is cru-
cial with regards to the main memory residence assumption, since temporary relations
incur a large storage overhead. For instance, a sort-merge join would not be a viable
option, mainly because it requires temporary storage as large as the operand relations to
store the sorted relations before they are merged and joined.

Essentially, the pipelined strategy is a nested-loops join, processed in main memory
and optimized by a depth-first search. When joining a number of relations, the query
optimizer determines an optimal ordering to nest the loops. One optimization is to choose
the relations predicted to have the smallest number of qualifying tuples as the outer rela-
tions. However, the ordering is part of a global query optimization process (Wh85]. For
each tuple of the outer relation, the second relation is scanned for matching tuples. For
each matching tuple of the second relation, the third relation is scanned, etc. Within each
loop, all relevant selection qualifications are checked before proceeding with the join. The
pipelined join algorithm is summarized in Figure 7.

4.6.2. Query complexity

For this experiment, we used two 10,000 tuple test relations, A and B, and a tem-
porary relation B’ containing 10 tuples selected from B. Relation A i1s actually relation
TenKe and relation B is actually relation TenKf. Three test queries were designed to
measure the efficiency of the query optimizer, when a number of relational operations are
combined. In order to isolate the effect of query complexity from other confounding factors,
in the three queries, we used the same building block: a 2-way join between a 10,000 tuple
relation and a 10 tuple relation, on an integer attribute. We also retrieved the result into
user-created output, from the same columns. Unlike in our other test queries, retrieving by
using the "P." command did not seem appropriate, does not juxtapose tuples that are joined.
The three queries were;

1) JoinAselB: a selection on B producing a 10 tuple relation B’, followed by a join with
A

(2) JoinAB’: join of a 10,000 tuple relation A with the 10 tuple relation B’

Figure 7: A Summary of the Pipelined Join Algorithm [AHKS85]

{ Join R1, R2, .., Rk. Join-Selection Predicate is Qual }
for each tuple t1 in R1
if (t1,**..) satisfies Qual then
for each tuple t2 in R2
if (t1,t2 **) satisfies Qual then

if (t1,...tk) satisfies Qual then
form join tuple

(3) JoinCselAselB: query JoinAselB, followed by a selection, followed by a join with C.
Relation C is identical to relation B'. This query 1s the same as a join between B’,
which contains 10 tuples, and relations A and B, combined with selections on A and B
that produce 10 tuples.

We used queries very similar to these in previous benchmarks [BDT83]. See Appendix 2.
Timings for these three queries are presented in Table 17.

Our basic join was query JoinAselB, shown in Figure 3, Section 3.3.2. It was a join
of two 10,000 tuple relations tuple relations with a selection on one of the relations. The
selection was used to limit the size of the result to 10 tuples. The result consisted of 5 attri-
butes, (4 integers and 1 string), exactly the same result attributes used in testing selections.
Whether we joined two or three relations, we always retrieved the result from 2 relations so
that our results would not be confounded by an additional variable - the number of relations
that the result was assembled from.

Our first obervation is that the joins JoinAB’ and JoinCselAselB are very fast com-
pared to selection queries from Section 4.2. On the other hand, the join JoinAselB, which
was less complex than JoinCselAselB, took 2.82 seconds. Selectl0 has the same selection
predicate on Tenktupe that is used in JoinAselB and required 2.98 seconds when the result
output mode was into user-created output. (See Table 10 in Section 4.2.3). A simple selec-
tion took 5 percent longer than the equivalent selection performed in conjunction with a
join! If performed optimally, however, we think JoinAselB could have taken even less

Table 17: Join Complexity for Interactive Joins
Average CPU Time in Seconds on Loaded System

Result Tuple: 4 integers and 1 string, Assembled from 2 Relations
Equijoins on key, UCO output mode, with condition box, 10 tuples in result

Operand Size of Each
Query CPUtime Relations Relation
JoinAselB 2.82 2 10K,10K tuples
JoinAB’ 0.46 2 10K,10 tuples
JoinCselAselB 0.67 3 10,10K,10K tuples

-34-

time. Using the Simple-Scan to perform the selection on relation B should take no more
than .59 seconds, the time required for query Select10-Rg, (Table 8, Section 4.1.3). After
the selection is performed, the join should take no longer than query JoinAB’. JoinAB’ is
the join of relation A with the relation B’. The relation B’ contains the result the same
selection used in JoinAselB, 10 tuples, sixteen attributes per tuple. JoinAB’ required .46
seconds CPUtime. Adding the cost of query Select10-Rg and the cost of query JoinAB’ we
get: .59 + 46 = 1.45 seconds. JoinAselB required 2.82 seconds however, implying that
this query was not executed optimally.

JoinCselAselB is a join between relation B’, which contains 10 tuples. and relations
A and B, both of which contain 10,000 tuples. The selections on relations A and B are
identical to the selection used to create B’: unique2 < 10. JoinCselAselB required .67
seconds, only .21 seconds more than query JoinAB’.

OBE correctly optimized JoinAB’ and JoinCselAselB. That is, it put relations that
would limit the size of the result relation at the head of the pipeline and avoided scans of
relations through proper use of indices. However, with both queries JoinAB’ and
JoinCselAselB, the choice for the optimizer was not very difficult as there was one 10
tuple relation in both joins.

4.6.3. Number and size of operand relations

Our second experiment measured the impact of increasing the number of relations in a
join. We joined 2, 3 and 4 relations, varying the size of the operand relations so that the
total number of tuples in all of the relations was between 9K and 13K. We did not want to
limit the selectivity of the join through a selection, so we always included the relation
OneK, which had a thousand tuples, and executed an equijoin on the key of each relation.
This resulted in the size of the result always being 1000 tuples. In addition, we were not
testing the optimizer, so we chose queries that appeared to be correctly optimized. The
optimizer should have put the smallest relations at the head of the pipeline, and judging by
the performance of these queries, did so.

We were also not particularly interested in measuring the effect of having a very large
result, so we offset the cost of a large result relation by retrieving only tuples from relation
OneK through a "P.". This resulted in the result relation being stored in a pointer area
which we found to be insensitive to the size of the result with selections and projections.
Furthermore, retrieving join results through a "P." on one relation, allows the pipeline
evaluation to be short-circuited. Once it is determined that a tuple in OneK will success-
fully join with at least one tuple from every other relation, the pointer to that tuple can be
written to the result pointer area and the next tuple in the scan of OneK can be con-
sidered. Finally, for these joins, we did not use the condition box. Times for these joins are
in Table 18.

The times for executing a join was clearly more sensitive to the number of relations in
the join that to the total size of the relations involved in the Join. This can be seen in Table
18 where the query execution time is strictly increasing with the number of relations
involved in the join, in spite of the fact that the 4 way join, which required the most time,
2.18 seconds, had the fewest total number of tuples in its operand relations, 10,000 tuples.

By way of comparison with DDBS’s, we will consider the cost of one common com-
ponent of these three joins on a DDBS. To form the result relation on a DDBS, the relation
OneK from which all 1000 tuples are placed in the result, must be scanned. We consider
two cases:

(1) Assume OneK is very compact. That is, each of its 13 integer attributes require 2
bytes of storage and each of its string attributes require 52 bytes of storage. Then,
one tuple of OneK would be 182 bytes wide and the entire relation could be stored in
182,000 bytes. To read OneK from disk, assuming 30 milliseconds to read one 4K

Table 18: Effectof Number of Operand Relations on Joins

Average CPU Time in Seconds on Loaded System
1000, 16-attribute Tuples in Result
Result Retrieved by "P." on Query Table for Relation OneK
Equijoins on Key Attributes, No Condition Box, No Duplicate Elimination

Operand Size of Each Operands
Query CPUtime Relations Relation Total Size
Join2 1.29 2 1K.10K tuples 11K tuples
Join3 1.73 3 1K.2K,10K tuples 13K tuples
Join4 2.18 4 1K.2K 2K 5K tuples 10K tuples

block, would require 1.35 seconds.

(2) As it is stored in OBE, OneK requires 360.000 bytes of storage. Assuming 30 mil-
liseconds to read one 4K block, scanning OneK would require 2.64 seconds.

Thus, each of these joins requires under 1 second more than part of the cost of forming the
result on a DDBS, (2.18 - 1.35 = 0.83).

The difference between the two way join, Join2, and the three way join, Join3, was
44 seconds. The difference between the Join3 and the Joind was .45 seconds. Dividing
the time for the join by the number of relations involved in the join we get .65 seconds per
relation for the two way join, .58 seconds per relation for the three way join and .55 seconds
per relation for the four way join. Thus, the increase in time as the number of relations
joined was increased was less than linear. This effect also holds when queries JoinAB’ and
JoinCselAselB are added to the picture as is illustrated in Table 19.

Again, dividing the time for the join by the number of relations involved we get .23
seconds for JoinAB’ and .22 seconds for JoinCselAselB. What all of these queries have
in common, is that the size of the result is limited by the smallest relation involved in the
join, and all of the joins are 1 to 1, (equijoins on key attributes). Query JoinAselB, has the
size of the result limited by a range selection on relation B, which adds at least the cost of a
comparable range selection on B, was not executed optimally.

Table 19: Summary of Joins
Average CPU Time in Seconds on Loaded System

Operand and Result Size in Tuples
Result Composition = # Attributes / # Relations Composed from

Join Result Result Output # Relations Total Operand

Query Size Composition Mode Joined Size CPUtime
AB’ 10 5/2 Uco 2 10K + 10 .46
CselAselB 10 5/2 UCoO 3 20K + 10 67
Join2 1000 16/1 P. 2 11K 1.29
Join3 1000 16/1 P. 3 13K 1.73
Join4 1000 16/1 P. 4 10K 2.18
AselB 10 5/2 UCoO 2 20K 2.82

46.4. Summary

We joined two to four relations with either 10 or 1000 tuples in the result. The total
number of tuples in all relations ranged from 10,010 to 20.010. The total size of all rela-
tions involved in a single query ranged from 4 megabytes to 8 megabytes. With our partic-
ular subset of 6 joins we found that:

(1) All 6 joins executed in under 3 seconds.

(2) For 1 to 1 joins with the size of the result held constant, the time for the joins
increased linearly with the number of relations in the join,

(3) A two way join that included a range selection executed 5 percent faster than the
comparable simple range selection.

5. SPACE/TIME MEASURES

Memory management is a complex aspect in OBE. A design assumption was that all
code and data would have to fit in the virtual memory allocated to the user. Then, for the
system to achieve good performance, the physical memory available should be almost as
large as the virtual memory. In this section, we analyze the memory requirements of OBE
and investigate the Space/Time tradeoffs in query optimization. In particular, we quantify
the degradation caused by paging when the physical memory requirements are not met.

5.1. Memory Requirements

OBE requires a certain amount of virtual memory, for the code and data segments of
the database management system. In addition, for each query, it requires another alloca-
tion of virtual memory for storing the operand relation segments.

5.1.1. Size of the code

In the design of a main memory database system, it is critical to keep the size of the
code small in order to leave as much memory as possible for database relations. Further-
more, a system with a large amount of code is vulnerable to performance degradation due to
code being paged out.

The OBE module occupies 509 CMS blocks, that is 2,084,864 bytes. When it is struc-
tured with a shared segment, it requires slightly more memory. In this case, the reentrant,
shared portion requires two megabytes. The unshared portion of the code then requires
278,776 bytes of the user’s virtual memory. In addition, CMS occupies 131,072 bytes of a
user’s virtual memory. Finally, the program stack and heap occupy over 1 megabyte of
memory. Thus, with shared segment, the code, operating system, program stack and heap
occupy under 2 megabytes of memory. Without shared segment, the code, operating system,
program stack and heap occupy slightly under 4 megabytes.

We created a special benchmarking module in order to include measurement probes in
the code and simulate user response where it was required to complete a query. This spe-
cial module occupied 2,162,655 bytes. In addition, the benchmark module was built with a
larger heap and certain data structures were enlarged to handle a few of our queries that
did not fit in one screen. Including the program stack and heap and space for the operating
system, the benchmarking version of the OBE module required approximately 4 megabytes
of virtual memory.

5.1.2. Virtual memory requirements

We determined the virtual memory requirements for a cross section of the queries
described in Section 4, by submitting the special benchmarking program with one query of
interest plus the necessary initializing queries to the virtual batch machine, on the 3081.

-317-

When a program is submitted in batch, the user specifies the amount of virtual memory to
be given to the batch machine. If the batch machine runs out of virtual memory, the OBE
program aborted. By submitting only one query of interest per program. we were able to
measure all queries in an similar, favorable environment with respect to the state of the
virtual machine’s memory. Each batch job is given its own virtual machine just as an
interactive user is when the user logs on.

We tested a cross section of our interactive queries with 7 to 16 megabytes of virtual
memory allocated to the virtual machine. We found that none of our queries of interest ran
in under 8 megabytes of virtual memory although some of our initializing queries ran in 7
megabytes, or less. Since the size of virtual memory can only be specified in megabytes, if a
query required 8 megabytes of virtual memory, it actually used more than 7 and up to 8
megabytes.

The minimum amount of virtual memory required for the queries tested is in Table
20. As can be seen, most of the interactive queries ran in 8 megabytes of virtual memory.
This is not surprising since the benchmarking program required 4 megabytes of virtual
memory and the relation TenK, which was an operand relation in every query, occupied 3.5
megabytes of memory. However, we must also point out that by reading in a relation when
it is first referenced, we end up with a selection that selects one tuple on the key requiring
8 megabytes of virtual memory, even though the equality lookup used accessed very few
pages of the relation. This results in a reasonable space-time product only if the weight
of space, relative to time, is extremely low.

A problem for the OBE optimizer was estimating the size of the result segment. The
result segment was always allocated before a query was executed. If OBE requested a
result segment that was too large, and CMS did not have a contiguous block of memory
large enough, OBE had to abort processing. On the other hand, if the result segment was
too small, the query would have to be restarted with a larger result segment being allo-
cated. Since the relation TenK could not even be read into memory in under 8 megabytes
of virtual memory, the reasonable response times of the interactive queries that ran in 8
megabytes imply that the optimizer successfully balanced the tradeoffs involved when
appropriate interactive queries were executed.

The aggregate function MinFn, provides an example of the space/time tradeoffs
involved in the use of the pointer area used with the "P." result output mode. When the
result was retrieved through a "P." on the query table, query MinFn-P executed in 36.98
seconds and required a minimum of 8 megabytes of virtual memory. When the result was
retrieved into user-created output, MinFn-U executed in 8.01 seconds but required 9 mega-
bytes of virtual memory.

The maximum amount of memory required by any query was 11 megabytes. Except
for the aggregate function MinFn-U, all of the queriles that required more than 8 mega-
bytes were joins. However, half of the joins we tested did run in 8 megabytes of memory.
Virtual memory requirements for joins are summarized in Table 21,

Looking at the difference between the joins that ran in 8 megabytes of memory and
the join that required 9, we see that operand relations occupying 3.8 megabytes of virtual
memory could be accommodated in 8 megabytes but operand relations occupying 4.5 mega-
bytes could not. The breaking point for queries that can be executed in 8 megabytes of vir-
tual memory is somewhere in between.

The initializing query that read in relation TenKf when relation TenKe was already
in memory could not be executed in under 11 megabytes of virtual memory. Thus, it is logi-
cal that the two joins that involved both 10,000 tuple relations required at least 11 mega-
bytes of virtual memory.

The fact that two copies of the 10,000 tuple relation easily fit into 11 megabytes of vir-
tual memory is in contrast to the failure of bulk updates when 100 or more tuples were

Table 20: Virtual Memory Requirements to the Nearest Megabyte

Average CPU Time in Seconds on Loaded System
Default Query Parameters are as defined for Standard Interactive Query

Query Memory CPUtime Comment

InitB’ 7 .04 read in B’

Init1K 7 .04 read in OneK

nit2Kb 7 .04 read in TwoKb.OneK already in
Init2Kc 7 .04 read in TwoKe;1K.2Kb already in
InitParse 7 07 dummy query to cause start I/O’s
Init5K 8 .05 read in FiveK;1K,2Kb,2K¢ in
Init10Ke 8 .05 read in TenKe

Select100-Rg + 8 99 entire tuple retrieved
Select10-Rg 8 .59 range, no condition box
Select10-Rg 8 2.42 range, with condition box
Select10-Rg?2 8 2.92 2 qualifications

Select10-Rg2 8 2.89 with duplicate elimination
Select10-Eq 8 a7 equality, thousand = 838
Select100-P 8 2.55 select 100 tuples

Select100-U 8 3.04 into UCO

Select100-R 8 3.35 into relation

Selectkey-Eq 8 14 select 1 tuple on key
Project20-U 8 6.46 20/10,000 tuples, into UCO
Project20-R 8 6.46 20/10,000 tuples, into Relation
Project20-P 8 10.29 20/10,000 tuples

Deletel 8 .23 where key =838

Deletel0 8 1.55 where thousand =500
Deletel000 8 139.56 where ten=0

Insertkey 8 4.19 1 new value inserted in relation
Insertall 8 4.20 16 new values inserted in relation
Updatel-key + 8 419 all attributes in query window
Updatel-key 8 3.68 only key in query window
Updatel 8 .29 update candidate key

Update5 8 .95 update 5 tuples

Updatel0 8 1.79 update 10 tuples

MinKey 8 15.64 minimum on key

MinFn-P 8 36.98 minimum on key, ten partitions
JoinAB’ 8 .46 into UCO

Join2 8 1.29 Join 10K and 1K

Joind 8 2.19 Join 1K, 2K, 2K 5K

Join3 9 1.73 Join 1K, 2K, 10K

MinFn-U 9 8.01 min on key,10 partitions,into UCQ
Init10Kf 11 .05 read in TenKf, 10Ke already in
JoinCselAselB 11 .67 into UCQO

JoinAselB 11 2.82 into UCO

-39.

Table 21: Virtual Memory Requirements for Joins

Minimum Memory to the Nearest Megabyte
Average CPU Time in Seconds on Loaded System
Total Size of Operand Relations in Bytes

Query Min. Memory CPUtime # Relations Relations Total Size
JoinAB’ 8 46 2 3,649,280
Join2 8 1.29 2 3,825 664
Joind 8 219 4 3,542,040
Join3 9 1.73 3 4,538,368
JoinCselAselB 11 67 3 7,294,496
JoinAselB 11 2.82 2 6.930,432

updated. These updates failed because there was no contiguous block of virtual memory
available to expand the TenK relation into. This is surprising since a bulk update of 10
tuples only required 8 megabytes of virtual memory. We tested the bulk update of 100
tuples in 16 megabytes of virtual memory. It would seem that an 8 megabyte increase
should accommodate the difference between updating 10 and updating 100 tuples, but it did
not. Qur conclusion is that fragmentation of virtual memory is a serious problem for the
designers of MMDBS’s to consider.

5.2. Effect of paging

When its physical memory requirements are not met, the MMDBS relies on the
operating system for virtual memory management. A ubiquitous criticism of the concept of
MMDBS’s is that no matter how well they perform when their physical memory require-
ments are met, paging will unacceptably degrade their performance. Thus it is important
to measure the effect of paging on the performance of the MMDBS, and establish a ratio of
physical to virtual memory size that will provide acceptable performance. In designing a
paging experiment, our goal was to measure how badly paging affected the performance of
the MMDBS, in absolute terms and as compared to buffered I/O in a conventional database
system. We use a technique that can be used to test locality of reference in algorithms
without tracing memory references. Depending on the resource management and schedul-
ing algorithms of the underlying operating system, this paging experiment can also be
viewed as a way to emulate the operation of the MMDBS in a multi-user environment,
under controlled test conditions.

In order to force paging, a simple approach is to time queries executed by the MMDBS
when the system is loaded. We rejected this approach because it is too difficult to deter-
mine how much of the degradation in elapsed time is caused by waiting in CPU and /O
queues versus how much degradation is caused by waiting for a page to be read or written.
This task is made even more difficult if the system involved uses a cache for paging, as the
cost of a page read or write depends on both the state of the cache and the state of the disk
used for paging. The other approach, which is consistent with our general benchmarking
methodology, is a controlled paging experiment that eliminates confounding variables.

We measured the effect of paging in a single user, standalone experiment on a 4341
that used a 3350 disk for paging. The 4341 did not have a paging cache. It had 16 mega-
bytes of real memory available, consisting of four 4-megabyte memory modules. To force
paging, we could bring the machine up in a configuration that used 1,2 3, or 4 of the 4-
megabyte memory modules. Then. by systematically varying both the size of the query
operand relations, from .82 to 9.32 megabytes, and the amount of physical memory made
available to OBE, from 4 to 16 megabytes. we forced paging in a controlled manner.

-40-

A number of parameters may determine the amount of paging activity: the number
and the size of the operand relations, the size of the result relation and the query type. As
our access to the 4341 was limited, we did not have the time to perform experiments fully
investigating all of these factors. Therefore, we restricted ourselves to one query type and
kept the size of the result relation fixed. We chose to focus on the pipeline join algorithm,
which is the basis of all complex queries in OBE and which had performed most impres-
sively in our single-user, standalone experiments on both the 4341 and the 3081. In order
for the pipeline approach to query processing to be considered viable for MMDBS’s, it must
hold up under paging.

We tested 8 joins, that join between 2 and 5 relations. The total number of tuples in
the relations range from 3,000 to 30,000, and the total size of the relations range from
828,000 bytes to 9.32 megabytes. The minimum amount of virtual memory required to exe-
cute the joins ranged between 8 and 16 megabytes. As with the joins in Section 4.6, all of
the joins were one-to-one joins on the key that retrieved all 1,000 tuples from the 1,000
tuple relation. Thus, we limited the size of the result through the size of the smallest rela-
tion, without using a selection. In addition, all 16 attributes, 13 integers and 3 strings, in
the 1,000 tuple relation were retrieved. In order to compensate for an unrealistically large
result, the result was retrieved through a "P.” that resulted in the result being stored in a
space-efficient pointer area. In addition, retrieving the result through a "P." allowed the
pipeline algorithm to be short-circuited once it was determined that a tuple in the 1,000
tuple relation would join with at least 1 tuple from every other relation in the join. Finally,
from previous experiments, we knew that these joins were correctly optimized (the optim-
izer put the smallest relations at the head of the query processing pipeline),

Table 227 shows the single user, standalone elapsed times of our test join queries on
the 4341 only. Due to limited access to the machine, we ran each query once with each of
the 4 different memory allocations. We logged off and logged back on between each query
in order to insure that each query was run with virtual memory in a similar state.

Looking at the numbers reported in Table 22, we make the following observations:

Table 22: Execution Time of Join Queries under Paging

Time as function of amount of Real Memory available
Memory Required = Virtual memory in megabytes (4 meg granularity)
Time is in Seconds, Operand sizes in thousand tuples

Sizes of Memory Time with Time with Time with Time with

Join Relations Required 16 Meg 12 Meg 8 Meg 4 Meg
1K,2K 8 9.80 9.76 10.00 10.62
1K,5K 8 10.01 10.02 10.30 17.88
1K,10K 12 10.07 10.19 10.82 30.83
1K,2K 5K 8 12.92 1292 13.03 29.46
1K,2K,10K 12 13.03 13.00 16.45 41.42
1K,2K 2K 5K 8 15.83 16.04 16.15 30.34
1K,2K 5K, 10K 12 15.98 16.42 30.53 91.90
1K,2K 5K,10K,10K 16 19.97 3643 75.68 241.08

" Some of the queries in Table 22 are shown in Appendix 3 under the following names: (Join2 = 1K,10K),
(Join3 = 1K,2K,10K), 'Joind = 1K 2K,2K,5K), (Join5 = 1K,2K 5K, 10K, 10K).

41.

(1) When 16 megabytes of real memory was available, no paging occurred with any of the
joins.

(2) With 16 megabytes of real memory available, execution time was strictly increasing
according to the number of relations involved in the join, with the number of tuples in
the relations having a secondary effect. This is most clearly seen contrasting the
1K,10K join with the 1K,2K,5K join. With 16 megabytes of real memory, the 1K,10K
join took almost 3 seconds less than the than the 1K,2K,5K join. However, this effect
is reversed when the amount of real memory available is far less than the virtual
memory required to execute the queries.

(3) When only 4 megabytes of real memory were available, the execution time for the
joins was strictly increasing with the total size of the relations joined, and the number
of relations involved in the join had a secondary effect. In this case, the 1K 10K join
required 1.37 seconds more than the 1K,2K,5K join.

(4) Except when the virtual memory requirement of the join exceeds by far the amount of
main memory available, our measurements show that the performance of the pipeline
joins degrades gracefully as the amount of paging increases.

A number of interesting problems are raised by this initial experiment but are beyond the
scope of this paper. First, a study of locality in database referencing would provide a more
general understanding of the effect of paging on 2 MMDBS., Second, one may investigate
the need for new paging policies, tuned to database management in MMDBS'’s, in analogy
with the need for buffering strategies in operating systems for DDBS’s [St81].

6. SUMMARY: A CASE STUDY FOR MMDBS's

We have presented the results of a comprehensive benchmark of the relational
MMDBS that is the foundation of the interactive office system, Office-By-Example. In Sec-
tion 6.1 we summarize our conclusions about the performance of OBE. In the course of
evaluating OBE, we have identified issues that must be considered in the design and
implementation of MMDBS’s. In Section 6.2, we discuss these issues.

6.1. The Performance of OBE
We evaluated OBE with respect to the 2 goals that directed its design:
(1) The system must be user-friendly and truly interactive [Gr83].

(2) The system must have an interactive response time on simple and complex retrieval
queries comparable to an interactive full screen editor. With relations occupying up to
a total of 2 megabytes of memory, an acceptable response time would be preferably
under 1 second, but up to 5 seconds, depending on the query.

In comparison to other systems we have benchmarked, we found that OBE supported
a very user-friendly DBMS with full relational capabilities. The two dimensional interface
was both easy to learn and to use. Update queries were interactive in that the system pro-
vided extensive consistency checking with constructive intermediate feedback, and the
option to safely abort. The method of displaying the result was also interactive. The first 8
tuples in the result were displayed and the user was given the option of viewing as much of
the remainder as desired. In the prototype that we evaluated, the user and, in particular
the benchmarker, was relieved of all responsibility for physical design. One drawback we
found was that result tables could not be queried as relations unless the result was
specifically retrieved into a predeclared relation.

On a cross section of simple and complex interactive retrieval queries, all queries
except 3 executed in .15 to 8 seconds. This is a good level of performance, considering that

-49.

we used a 10,000 tuple relation that occupied 3.5 megabytes of memory, the same very
large relation we previously used to benchmark commercial disk database systems [BDT83].
Furthermore, no alternative data structures, such as clustered relations or hashed indices,
were explicitly built to achieve acceptable performance for any query. Since there was only
one physical design option, automatically implemented by the system. these numbers
represent both the best and worst case performance of the test queries.

We identified two performance problems. The first accounted for the 3 interactive
queries, a projection, an aggregate and an aggregate function, that had response times
between 10 and 37 seconds. These queries only performed unacceptably with one of 3 result
output modes, a "P." on the query table. This result output mode involved the use of the
space efficient data structure, a pointer area, that resulted in poor performance when com-
parisons between tuples referenced in pointer area were made. It is not clear whether the
high cost of comparisons is inherent to this data structure, or whether its desirable space
conserving properties can be retained through careful optimization of the code.

The second performance problem was identified through the failure of a bulk update of
100 tuples that required a 3.5 megabyte relation to be copied to a larger segment of con-
tiguous virtual memory. While there was enough total virtual memory to accomodate the
enlarged relation, the update failed due to fragmentation of virtual memory.

We also identified the tradeoffs involved in the design alternatives chosen for OBE.
Every desirable feature of the system had a related cost. The user-friendly two-dimensional
interface could result in significant parsing time. It took .51 seconds to parse a relation tem-
plate with 16 attributes. Consistency checking for updates cost time, a minimum of 3.51
seconds for a bulk update involving the key of our 10,000 tuple test relation. Variable
length fields increase the space required to store tuples and increase the cost of comparis-
ons, particularly between numbers. OBE reads a relation into memory when its relation
template is invoked in the process of writing a query. This results in improved query
response time, when the relation is actually queried, at the cost of space in the form of vir-
tual and real memory. To relieve the user of the problem of physical design, all relations
were given the same fully inverted storage structure. This approach costs space and time
in that for every specific query type there is almost certainly a specialized physical design
that would require less space or would result in better response times.

6.2. Design and Implementation of MMDBS's

In the course of benchmarking OBE we have identified issues that must be considered
in the design and implementation of MMDBS's:

(1) Physical memory must be very efficiently used, in order to keep the database memory
resident.

(2) Memory Management is a critical problem that general purpose operating systems
may not adequately address. The problem appears to be even more critical to
MMDBS’s than buffer management is to conventional DDBS’s.

(3) The speed of the CPU on the host machine directly affects the relative weight of space
and time in design tradeoffs.

We have observed four approaches to dealing with limited physical memory. The first
1s to keep the database small. OBE assumes that a typical user will have a virtual machine
with 4 megabytes of virtual memory [AHK85]. Since the operating system and the OBE
program require about 2 megabytes of the user’s virtual memory, most relations are
expected to occupy under 2 megabytes. Because database relations are expected to be small,
OBE reads all operand relations into virtual memory before a query is executed.

The second method is to keep relations compact. The linear index used by OBE is a
compact index that is feasible only because memory residence allows the long move

43-

instruction to be used in restructuring it. In a 10,000 tuple relation, 16 adjacent linear
indices, occupying a total of 640,000 bytes, could be restructured in 0.02 seconds when a
tuple was inserted and 0.14 seconds when a tuple was deleted.

A third approach is to use space efficient algorithms such as the pipeline join algo-
rithm that eliminates intermediate relations. The compact pointer area was part of a space
efficient algorithm for handling the result of a query.

Finally, the database code can be kept compact. The OBE query processing strategy
uses relatively few data structures and algorithms, and avoids adding extra code to optimize
special cases. Furthermore, with the use of a shared segment for most code, OBE could
limit the amount of code that occupied a user’s virtual memory space to 0.3 megabytes.

Memory Management strategies are a critical design parameter for MMDBS’s, For
systems such as OBE that use virtual memory management as supported by the host
machine, memory allocation, paging and fragmentation are important issues. In OBE,
the optimizer was responsible for estimating the amount of virtual memory that had to be
allocated for intermediate results and output of a query. Correct estimation was crucial to
obtaining acceptable performance. Since the amount of virtual memory available almost
always exceeds real memory, the effect of paging must be considered. In particular, the
locality of reference of algorithms must be evaluated. OBE’s algorithms were not optimized
with respect to any page replacement algorithm. While the pipeline join strategy performed
well with paging, OBE’s other query processing algorithms require evaluation. Fragmenta-
tion of virtual memory can degrade performance by increasing the cost of memory alloca-
tion or by causing failure of the system. The latter effect was observed with a bulk update
of a 3.5 megabyte relation in OBE.

We found that MIPS rate was a good predictor of relative performance on different
machines when the real memory requirements of the MMDBS were met. OBE was
developed on a machine that has a fast CPU, the IBM 3081. Certain strategies which
incurred an acceptable overhead on the 3081, such as always scanning a relation to perform
range queries, may not be feasible on a machine with a slower CPU.

7. CONCLUSIONS and FUTURE RESEARCH

In this paper we have presented the results of a comprehensive benchmark of the rela-
tional MMDBS that is the foundation of the interactive office system OBE. In the course of
evaluating OBE, we have identified issues that must be considered in the design and
implementation of MMDBS’s. We have determined the relevant metrics and developed
techniques for benchmarking MMDBS's.

In the performance evaluation of MMDBS’s, it is important to consider the combined
space and time requirements for the execution of queries, as opposed to simply evaluating
response times. Our first step was to determine the memory requirements for different
queries. In OBE, all of our test queries executed in between 8 and 11 megabytes of virtual
memory.

To evaluate query processing algorithms, a necessary baseline measure is the response
time of a query when its memory requirements are met and when all relations involved in a
query are already memory resident. These are the primary measures we obtained with
OBE. In addition, the cost of reading data into virtual memory must be quantified. In
OBE, a 3.5 megabyte relation could be read in from a 3380 disk in 2.47 seconds. When
memory requirements are not met, the effect of paging must be measured. We have
presented a controlled experiment to measure the effect of paging.

Finally, the impact of memory management techniques must be quantified. In addi-
tion to measuring the degradation caused by paging, the cost of memory allocation and the

-44.-

effects of fragmentation must be isolated. We designed our experiments to minimize the
effect of fragmentation when that was not the aspect of the system under consideration.
Determining efficient memory management techniques for MMDBS’s is an important direc-
tion for future research.

45-

APPENDIX 1

One of the hazards of benchmarking a prototype during its development is that
changes in the system can quickly render performance measures obtained obsolete. The
experiments in Sections 4.1 and 5.2 were performed several months before the remaining
experiments in this paper. In the intervening period, some changes were made in OBE that
improved its performance. We wanted to repeat these experiments with the interactive
queries we developed on the most current version of OBE. Unfortunately, both experiments
required access to a 4341 in standalone mode and the machine we had used was no longer
available.

It is very unlikely that our conclusions concerning MIPS rates in Section 4.1 would be
changed by the slightly different version of OBE. However, the performance of OBE in the
paging experiment in Section 5.2 would probably be improved as one of the changes made
the relations more compact. To quantify the change in OBE’s performance, we repeated a
few of the queries that were used in Sections 4.1 and 5.2. The results are in Table 23
below. For these queries, on the average, the response time after the system was changed
was 15.8% faster. The query that improved the most was Select100-Rg + with a 23.3 %
improvement. The query that improved the least was Updatel-Key+ with an 11%
improvement.

Table 23: Change in Performance of OBE
After Measurements for Sections 4.1 and 5.2 were Taken

Average CPU Time in Seconds on Loaded System

QUERY OLD CPUtime NEW CPUtime COMMENT
Updatel-key + 4.71 419 Update 1 tuple on key
Select100-Rg + 1.29 .99 Select 100 on key
Join2 1.58 1.29 Join 1K,10K tuple relations on key
Join3 2.01 1.73 Join 1K,2K,10K tuple relations on key
Join4 249 2.18 Join 1K,2K 2K, 10K tuple relations on key

46

APPENDIX 2

In our initial experiments with OBE, we used queries that we had used in benchmarks
of several DDBS’s {[BDT83,BT84,BT85] in order to get a comparative evaluation of OBE’s
performance. The queries shown in Section 4.1 are the some of the queries we used in
[BDT83]. We soon realized, however, that there were two problems with this particular
cross section of relational queries: 1. We had omitted some query types that were impor-
tant in the environment for which OBE was designed. 2. The size of the result in most of
the queries in [BDT83] was too large for an interactive OBE user who would view the result
on a terminal screen.

In [BDT83], we omitted two important query types:

(1) Complex Joins - The designers of OBE assumed that the typical OBE database would
consist of numerous small relations. They also assumed that a large percentage of a typical
user’s queries would be complex retrieval queries involving a join of 2 or more relations. In
our tests of OBE, we tested joins of 2 to 5 relations.

(2) Bulk Updates - It was also assumed that except for the occasional interactive update,
most updates of the database would be done in bulk when there was only one user of the
relation(s) being updated. Therefore, we tested bulk updates of 1, 5, 10, 100, 500 and 1000
tuples.

The result size of most queries in [BDT83] was inappropriate for an interactive bench-
mark for two reasons:
(1) The number of tuples in the result was too large. For selections, the size of the result
varied between 1, 100 and 1000. Projections retrieved either 100 or 1000 tuples. The
aggregate functions had 100 partitions. The joins all had 1,000 tuples in the result.
(2) The number of attributes in the result was too large. For selections, all 16 attributes
from the relation TenK were retrieved. For joins, all attributes from all relations involved
in the join were retrieved. The two-way joins had 32 attributes in the result, 26 integers
and 6 strings. The three way join had 48 attributes in the result, 39 integers and 9 strings.
Each string contained 52 characters. For the benchmark of OBE, we developed a standard
interactive result consisting of 10 tuples, with 5 attributes in each tuple. (See Section
3.3.2).

Two join queries reflect the difference between the queries in [BDT83] and the ones we
used in the benchmark of OBE. The first, JoinAselB+ is from (BDT83] and corresponds to
the Quel query:

range of t is TenKf

range of w is TenKe

retrieve into tempsellit.all w.all) where

(t.unique2f = w.uniqueZe) and w.uniqueZe < 1000
The second, JoinAselB, is a join more appropriate to an interactive environment. [t
corresponds to the Quel query:

range of t is TenKf

range of w is TenKe

retrieve into tempsell(w.uniquele,w.unique2e,t.tenft.thousandf,t.string4f)

where (t.unique2f = w.unique2e) and w.unique2e < 10
Both queries are shown in Figure 8. Compared with a strict translation into the OBE inter-
face, shown in Figure 8.a, JoinAselB+ is easier to write in Quel. In contrast,
JoinAselB +, as phrased in Figure 8.b, is very easy to write because user-created output is
not used. However, the result is presented in two tables: the tuples from each relation that
joined were not juxtaposed. Compared to its Quel version, JoinAselB, in Figure 8.c, is
clearly easier to write in the OBE interface, as the names of the attributes being joined or
retrieved do not have to be remembered by the user.

a) q A v
499N141S 4GNVSNOHL 4N3L 3Z3aNBINN 3T3INDINN
"9’y u01393g ut uasld £ianb siyy Joj awif,
a” 2 a X~ "Ka4an® aa1)ovaajuf pavpunjs e se paserydar glasyuior g TUNOIY
499NI1¥LS JANYSNOHL 4N3L 4Z3INDINN
ot > x” - —
AT = X7 A \J
SNOILIGNOD 323NDINN 3T3INDINN
"T'$ uondag ul uaald L1anb siyy 10j sw],
‘paseaydal + gjasyuiof q'g AUNDIA
T X = AT
0008 > X
SNO¢ 1 1ONCD
S i _ ;
_ _ _ _ _ — AT — LFY
woNIuis m noNINIS q LRONINLS m 00143A3 | S:Som snomiudL | SNOHLIALY GUVSNOHL | GauaNAM | AtN3ni m un ‘ wios | ot | zanoina ﬂ 120D 1Nn q ..c_zmhm
| |} L L] L
I | O
_ _ _ _ | X | . \
.c..::nm n:o..::am LAONIULS | 0OIN3AD | 0010a0 | SnOHiN3L SRONLIALS | Soowios | wvanows | awound | Atk | wau | unos | ont | zanoima | 13n04Nn | BiNaL |
L} L} . L
+ Qlesyuop
(e8Lad] woyy pajejsuesy £[PINS + glasyuior e'g FPNOIA
"1 e b e . “"w ”" " " a- 1 v | (A L " v w o w wo (. L3 wo 4
1
e s1e- (L "a” “e" “ LR i Lol . .‘, |
BRONIWIS thoniele SRINIAD [tred AGHINIL B804 3A0) SA0HIOAL Seviaoni e Alnani " whoy -t
sy LA 0wy L - L L8 w L3 LA LA L "w
[l S0INIAD 01000 Lepasdeonie] SRONL DAY § Sheniens OvERoNL Slusuny AL L) L e bt M il L3abima | AW

APPENDIX 3

Oeletal Deletete
I TENK UNIQUE2 l TENKTUPE THOUSANDE
0. =8078% D. 580

InitParse
| DUMNHY 0o
L3S < 10
{nmertall
LYENK UNIQUELE UNIQUE2E STRING&E
I. 782%.29% 807%.2% MO X R R XXX XXX AR H X uH
{oserthey
I TENK UNIQUE] YNIQUE2 STRINGS
t. 70828 8075.2% Hapxxxxeanexexanuxexenxxxluuxeexwnwexeenexxnnwnxxnxnt

Join2

l OMEK ! UNIQUETIA l UNIQUERA l THOA 1 FOURA ! TENA 1 THENTYA !-- --l EVEN100A 1 STRINGUIA ! STRINGU2A l STRINGUA

T E T L e

I TENKF ! UNtQuE2F ‘

I ONEX ! UNIQUEIA ! UNIQUE2A ! TWOA 1 FOURA 1 TENA ! TWENTYA !-- --l EVENI100A l STRINGUIA ! STRINGU2A ! STRINGHA

N - [et I A

! TENKF 1 URIQUERF TWOKS ' uNiQuE2s

|_K

Joind

l onen | “onravia | wniaveaa | Twoa | Fouma | Tewa | Twewrva | [Tiventoon | staincura | sthinouza | sTaiwoaa

S ES o [t S U H—

THWOKS 1 uNIQuUE2S

x

' FIVEK JUNIQUEZD | = [eeeeemeses
l x TWOKG uN1auE2C
.......... X

Joins

I ONEX l UNIQUEIA ! UNIQUEA 1 THOA l FOURA l TENA i THWENTYA 1“ EVEN100A ! STRINGUIA 1 STRINGU2A l STRINGAA
[4

1
S oo S R I | |

I TENKF l UNIQUE2F T™vOKD ' uniQuERS
| X “x

---------- FIVEK | UNIQUE2D I---------
I TENKE UNIQUE2E ' X

I TENKE UNIQUELE UNIQUEE CONDITIONS
A Y X s _y¥
l »PRINE untauezz | tewz | tnousamoz | sternsez
x . - 0
} uco UNIQUELE UNTQUEZE | TENZ | THOUsanpz | syringez
’. A K . _c o
JuinCovlAmiB
CONDITIONS
I TENKE uniauete | unioueze I TRHKE uNIQUEZF
Xy
A =Y Y <1e i 4
Zz <10
Tve 2
SPRINE UNIOUE22Z TEN2 THOUSANDZ || STRING&AZ
X 3 .c -0
l weo UNIQUELE untoue2e | Tewz | tnousamoz | stminesz
’. A K} . _c _o
MinKey-P (with raselts
I TENK UNTQUE2
,. IN. _X
I TENK UNTQUE2 MIN
. ,
MiaFa-P (with romultt
l TENK UNTQUE2E | TENE
L MIN._X 9.
TENE
4 L
“ ’
15 s
3 7
° .
13 s
12 4
n 3
2

Preject?-?

STRING&

TEM

FouR

HO

I TENK

Project20-R

REL

Project20-U

b

P.

Project100

Project8K

LI
LI

Select10-Eq

TENKTUPE UNIQUEILE UNIQUERE TENE THOUSANDE STRING4E
P. = 838
Select10-Rg2 (om candidate key)
TENK UNIQUEL UNIQUE2 TEN THOUSAND STRING4
P. X
CONDITIONS
_X > 5838
X < 58649
Select100-Rg + tte

I ONER l UNIQUETIA ' UNIQUERA l THWOA 1 FOURA l TENA l THENTYA !'-

r. I

I“.< 100 I l

..l EVEN100A l STRINGUTA

STAINGU2A

STRINGEA

47

REFERENCES

[AEHS84] Alanko, T.O., Erkio, HH.A., and Haikala, [.J., "Virtual Memory Behavior of Some
Sorting Algorithms”, IEEE Transactions un Software Engineering, Vol. SE-10, No. 4, July
1984.

[AHKS80] Alanko, T.O., Haikala, I.J. and Kutvonen, P.H., "Methodology and Results of Pro-
gram Behavior Measurements”, ACM Sigmetrics. 7th I[FIP W.G.7.3., 1980

[AHK85] Ammann, A., Hanrahan, M., and Krishnamurthy, R., “Design of a Memory Ren-
dent DBMS”, Proceedings of IEEE COMPCON, 1985.

[(BDT83] Bitton, D., DeWitt, D. and Turbyfill, C., “Benchmarking Database Systems - A
Systematic Approach”, Proceedings of VLDB, 1983,

(BT84} Bitton, D. and Turbyfill, C., “"Design and Analysis of Multiuser Benchmarks for
Database Systems”, Technical Report 84-589, Cornell University.

[BT85] Bitton, D. and Turbyfill, C., “Evaluation of a Backend Database Machine’, Proceed-
ings of HICSS, January 1985,

[BCH84] Bogdanowicz R., Crocker M., Hsiao D., Ryder C., Stone V., Strawser P., "Experi-
ments in Benchmarking Relational Database Machines,” Database Machines, Springer Ver-
lag 1983.

[(BD84] Boral, H. and DeWitt, D., “A Methodology for Database System Performance
Evaluation”, Proceedings of Sigmod, 1984.

[Bu76] Buzen, J., “Fundamental Operational Laws of Computer System Performance”’, Acta
Informatica 7, 1976.

[DeB0] Denning, P.J., “"Working Sets Past and Present”, [EEE Transactions on Software
Engineering, Vol. SE-6, No. 1, January, 1980.

[DKO84] DeWitt, D., Katz, R.,, Olken, F., Shapiro, L., Stonebraker, M., and Wood, D.,
“Implementation Techniques for Main Memory Database Systems”, Proceedings of the 1984

SIGMOD Conference on Management of Data, June 1984,

[(Gr83] Gray, J., “Practical Problems in Data Management”, A position paper, Proceedings of
SIGMOD, 1983.

[Gr85] Gray, J., “The 5 Minute Rule”, Technical Note, Tandem Computers, May 1985.

[HL84] Heidelberger, P. and Lavenberg, S.S., "Computer Performance Evaluation Methodol-
ogy”’, IEEE Transactions on Computers, Volume C-33, Number 12, 1984,

(IBM83] IBM, "VM/SP System Programmer’s Guide”, Release 3, 1983.

(KH84] Krishnamurthy, R. and Hochgesang, G.T., "Architecture for an Universal Office
System”, JCIT, 1984.

48
(KM84] Krishnamurthy, R. and Morgan, S.P., “A Pragmatic Approach to Query Process-
ing”, VLDB, 1984.
[Kn73] Knuth, D.E., "The Art of Computer Programming”, Volume 3, pp. 145-147, 1973,

[KMZ84] Krishnamurthy, R., Morgan, S.P. and Zloof, M.M., “"Query-By-Example: Opera-
tionsOn Piecewise Continuous Data”, IBM Research Report, 1983.

[LC85] Lehman, T.J., and Carey, M.J., "A Study of Index Structures for Main Memory
Database Systems”, Technical Report 605, University of Wisconsin, July 1985.

[Po80} Power, L.R., "Internal Sorting Using a Minimal Tree Merge Strategy” ACM Trans.
on Math. Soft., 6:1, March 1980.

[Po85] Potter, D.H., Verbal communications, IBM T.J. Watson Research Center, 1985.

(Sh85] Shapiro, L.D., "Join Processing in Database Systems with Large Memories”, Techni-
cal Report, North Dakota State University, December 1985,

[SK84] Sockut, G. and Krishnamurthy, R., "Concurrency Control in Office-By-Example”,
RC10545, 1984.

[St81] Stonebraker M., “Operating System Support for Database Management”, CACM,
24:7, July 1981.

[Wh85] Whang, K.Y., "Query Optimization in Office-By-Example”, IBM RC 11571,
December 1985.

[WAB86] Whang, K.Y., Ammann, A., Bolmarcich, T., et al, "Office-By-Example, An
Integrated Office System and Database Manager”, IBM Research Report, 1986.

(Z175] Zloof, M.M., “Query-By-Example”, AFIPS Conference Proceedings, National Com-
puter Conference 44, 1975,

(Z182] Zloof, M.M., “Office-By-Example: A Business Language that Unifies Data and Word
Processing and Electronic Mail”, IBM Systems Journal, vol. 21, No. 3, 1982.

49

ACKNOWLEDGEMENTS

We are grateful to the members of the OBE group for making this research possible.
Moshe Zloof and Ravi Krishnamurthy initiated this cooperative venture, and Ravi
enthusiastically described the OBE prototype to us. Art Ammann initiated the main-
memory residency idea for OBE, and gave us valuable insight on the significance of this
design decision. Art Ammann, Tony Bolmarcich, Maria Hanrahan, Richard Hansen, Kevin
Hoffman, Ravi Krishnamurthy, Vance Waddle, and Kyu Young Whang all deserve thanks
for their helpful and competent assistance. Many other staff members at IBM Yorktown
were very helpful: Susan Betz, Flo McGuire, Tom Pecoraro, Linda Rubin, and Olympia Sup-
ple. We thank Patricia Goldberg, and Art Ammann for authorizing publication of this
work.

Special thanks are due to Maria Hanrahan who helped us in every stage of the bench-
marking: refining the benchmarking module and the test queries, running standalone runs
during weekends, explaining query processing, and correcting many very rough drafts.
Dave Potter spent a great deal of time obtaining data from the monitor and interpreting it
with particular reference to both reliability and validity. Kevin Hoffman wrote the original
benchmarking program that we modified to suit our purposes. Tony Bolmarcich wrote the
routines to access the TOD clock and to handle terminal I/O. and was the last word on any
bug we were trying to track down. Kyu Young Whang explained the query optimizer and
gave us detailed feedback on drafts of this paper. At Cornell: George Boyce solved techni-
cal difficulties in the unloading and transfer of the raw data. Jeffrey Millman and Hal Per-
kins carefully edited several drafts of the paper. Jeffrey Millman also constructed the
figures.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif

