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This work analyses the performance of Hadoop, an implementation of the MapReduce programming model for distributed
parallel computing, executing on a virtualisation environment comprised of 1+16 nodes running the VMWare workstation
software. A set of experiments using the standard Hadoop benchmarks has been designed in order to determine whether or
not significant reductions in the execution time of computations are experienced when using Hadoop on this virtualisation
platform on a departmental cloud. Our findings indicate that a significant decrease in computing times is observed under
these conditions. They also highlight how overheads and virtualisation in a distributed environment hinder the possibility
of achieving the maximum (peak) performance.
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1. Introduction

Widely considered a logical successor of the Internet,
cloud computing entails the exchange of computer and
data resources across global networks. It constitutes a
new value-added paradigm for network computing, where
higher efficiency, massive scalability, and speed rely on
effective software development (Armbrust et al., 2010).
Major Internet powerhouses such as Amazon, Google,
Microsoft, IBM, and Yahoo have embarked upon substan-
tial business endeavours centred on this new paradigm.

A cloud typically comprises inter-connected, virtu-
alised computers coupled with security and a program-
ming model. From an application developer’s perspective,
the programming model and its performance are undoubt-
edly the main criteria to select a cloud environment.

Widely considered one of the most popular cloud
programming models (Buyya et al., 2009), MapReduce
has been introduced by Google for efficient deployment
of computationally intensive parallel algorithms. It is a
distributed programming model and framework used to
compute problems that can be parallelised by mapping a
function over a given dataset and then combining the re-

sults (Dean and Ghemawat, 2004; 2008). As a framework,
it is used to implement MapReduce jobs which encapsu-
late the features of the model while hiding the complexi-
ties inherent in cloud computing.

Virtualisation is a software technology that allows a
machine to run different operating systems on the same
physical computer. Because virtualisation involves run-
ning an increased number of processes on the host ma-
chine, there is always some degree of performance trade-
off when using this technique. Today, pure software-based
virtualisation is achieved by using one of two methods:

• full virtualisation, or

• paravirtualisation.

In full virtualisation, a guest operating system runs
as a process on a host system. It simulates a complete
hardware environment and the guest operating system re-
quires no changes. The virtual machine created runs in
isolation, unaware of the underlying layer of system soft-
ware. Full virtualisation relies on binary translation by
the host machine in order to catch and execute operations
initiated by the guest operating system. Although binary
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276 H. González-Vélez and M. Kontagora

translation can incur a large performance overhead, mak-
ing the operations of the virtual machine slower (Buzen
and Gagliardi, 1973; Whitaker et al., 2002), full virtuali-
sation does bring practical advantages in terms of software
availability in the guest operating system.

In paravirtualisation, a virtual machine runs a mod-
ified version of an operating system. It requires changes
to the original operating system to create a special API
through which it can run processes directly on the physi-
cal hardware of the host machine. The logic behind using
a modified API is to reduce performance overheads, as the
virtual machine can initiate the execution of tasks that will
run on the physical hardware without any need for transla-
tion. For this reason, paravirtualised machines incur lower
performance overheads than fully virtualised machines.

1.1. Contribution. The contribution of this article
lies in the methodological approach to run benchmarks
on an off-the-shelf hardware configuration with generic,
widely used host and guest operating systems (Windows
and Linux, respectively) employing a commercial full vir-
tualisation environment in a departmental cloud.

For the purpose of this paper, a set of experiments
based on Hadoop’s RandomWriter and Sort algorithms
has been designed to determine whether or not significant
reductions in the execution time of computations have
been observed.

Our evaluation has employed Hadoop’s MapReduce
implementation on Virtual Machines (VMs) running the
VMWare Workstation software and Linux sitting on top
of a common off-the-shelf Intel hardware and the Win-
dows system software platform. The use of VMs is par-
ticularly relevant to clouds as several can be started and
stopped on-demand on a single physical machine to flexi-
bly satisfy distinct service requests. By providing isolated
environments, every VM can feature a distinct environ-
ment isolated from the rest but within a single physical
machine. To this end, our experimental setup can then be
considered a fully virtualised departmental cloud.

This paper extends our initial work (Kontagora and
González-Vélez, 2010) by incorporating detailed system
information from the nodes in our departmental cloud,
which has important implications for task scheduling in
clouds. Our findings indicate a steep decrease in the
scalability, ergo an impact on execution times, and we
also highlight how overheads and virtualisation in a dis-
tributed environment may hinder the possibility of gain-
ing the maximum achievable speedup. In particular, our
results are consistent with overheads related to Linux-on-
Windows virtualisation and input/output operations.

2. Related work

The MapReduce programming model provides scalable
support to a distributed functional mapping and its associ-

ated reduction, which is continually employed in numer-
ous applications with large sets of data on hundreds of
nodes. This model is thence composed of two higher-
order functions (map and reduce) and, arguably, can be
considered a skeletal programming model.

Initially introduced by Cole (1989), algorithmic
skeletons have been construed as specialised higher-order
functions from which one must be selected as the outer-
most purpose in a parallel program. González-Vélez and
Leyton (2010) present a recent survey of the field.

To this end, the map and reduce algorithmic skele-
tons have been defined and used extensively. On the one
hand, map is probably the quintessential data parallelism
skeleton and its origins are closely related to functional
languages. The semantics behind map specify that a func-
tion or a sub-skeleton can be applied simultaneously to all
elements of a list to achieve parallelism. The data paral-
lelism occurs because a single data element can be split
into multiple data, then the sub-skeleton is executed on
each data element, and finally the results are united again
into a single result. The map skeleton can be conceived as
single instruction, multiple data parallelism. On the other
hand, reduce is employed to compute prefix operations in
a list by traversing the list from left to right and then ap-
plying a function to each pair of elements, typically sum-
mation. As opposed to map, reduce maintains aggregated
partial results.

In addition to copious functional programming im-
plementations, the map and reduce skeletons have been
deployed as application programming interfaces in pro-
cedural languages. By using C procedure calls within a
pre-initialised MPI environment, the Skeleton-based In-
tegrated Environment (SkIE) (Bacci et al., 1999), and
the Edinburgh Skeleton Library (eSkel) (Cole, 2004), de-
liver data- and task-parallel skeletal APIs. Moreover,
the master/worker paradigm has been analysed from the
skeletal perspective (Danelutto, 2004; González-Vélez,
2006; Kuchen and Striegnitz, 2005; González-Vélez and
Cole, 2010b).

Of particular importance is Buono et al.’s (2010) re-
search, where clear correspondence between the skeleton
paradigm and the post-Google MapReduce model is es-
tablished. The authors describe the MareMare environ-
ment, which includes not only the traditional map and re-
duce skeletons but also fault resiliency in worker nodes
and reconfiguration capabilities based on dynamic perfor-
mance requirements.

From the virtualisation perspective, different re-
search groups have explored the application of highly-
tuned para-virtualisation platforms, namely, Xen, for
high-performance computing codes (Nagarajan et al.,
2007; Youseff et al., 2006). In terms of the frameworks
for MapReduce computation frameworks, Zaharia et al.
(2008) analysed the impact of using alternative schedul-
ing policies on major Hadoop configurations, while Sand-
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holm and Lai (2009) experimented with priority-based
scheduling mechanisms for different MapReduce-like ap-
plications.

Particularly relevant is the work by Ibrahim et al.
(2009), which employs Xen with Linux in order to pro-
vide VMs for a Hadoop computing environment. Their
experiments also feature the Sort benchmark for up to 2
GB, but they have failed to ascertain the individual load
on a per node basis, a key contribution in this paper.

Our work is therefore aimed at providing a perfor-
mance evaluation perspective of a simplistic off-the-shelf
departmental cloud configuration, which is arguably more
prevalent in many scientific and commercial organisations
with MapReduce computational requirements.

3. MapReduce model

The MapReduce programming model systematically
combines a series of map and reduce higher-order func-
tions in order to abstract complex parallel computations.

In functional programming, a map functor applies a
given function f element-wise to a list of n elements �x
and returns a list of results,

map f 〈x1, . . . , xn〉 = 〈f(x1), . . . , f(xn)〉 (1)

while a reduce combines the n elements of a list �x using a
certain associative operation ◦,

reduce ◦ 〈x1, . . . , xn〉 = x1 ◦ x2 ◦ · · · ◦ xn. (2)

Figure 1 demonstrates pragmatic implementation of
the map-reduce pairing as a distributed computational
MapReduce model (Dean and Ghemawat, 2004), which
consists of

1. a series of map processes that output key/value pairs
after a number of iterations over the partitioned input
dataset, and

2. a series of reduce processes that merge pairs having
the same key to produce the final output.

It is noted that the n calculations of f over �x are inde-
pendent and can therefore be applied to all elements in the
list concurrently. The ◦ operation is fully associative (and
typically commutative) and maintains aggregated partial
results allowing disjunct out-of-order execution.

Thence, MapReduce is highly suitable for the solu-
tion of embarrassingly parallel problems, and its computa-
tion resembles a divisible load model (Robertazzi, 2003),
where the input datasets are independently split between
several computing nodes (workers) by a master node and
then processed independently of the output and the se-
quence of node execution and completion. The schedul-
ing of such divisible loads in heterogeneous systems re-
mains an active area in computer science (Beaumont et al.,

2005), where different innovative heuristics continue to be
proposed (González-Vélez and Cole, 2010a; Mesghouni
et al., 2004).

In summary, MapReduce is especially suitable for
the implementation of parallel solutions over a wide
area network due to negligible inter-node communica-
tion. MapReduce makes automatic parallelisation of data-
intensive computations possible by allowing computa-
tions to be expressed in terms of their functionality alone
while taking care of the complex features of the parallel
infrastructure within its implementation.

MapReduce implementations. There are currently three
popular implementations of the MapReduce programming
model:

1. Google MapReduce (Dean and Ghemawat, 2008),

2. Apache Hadoop (The Apache Software Foundation,
2008), and

3. Stanford Phoenix (Ranger et al., 2007).

Table 1 shows a comparative analysis of their fea-
tures. Additionally, there are a few emerging open-source
implementations such as Skynet, a Ruby-based (Pisoni,
2007) version, and Disco, developed in Erlang by
Nokia (Nokia Research Center, 2009).

As our evaluation intends to be as inclusive as possi-
ble and geared towards clusters, we have focused on two
implementations: Google and Hadoop. Phoenix is not a
viable option in this precise instance as it is intended to
work on symmetric multiprocessing systems, where ac-
cess to memory is shared.

We have selected Hadoop as we believe there are
three advantages of Hadoop over Google, namely,

1. Failure resiliency: The ability to withstand failures
in the master node is of particular importance in
highly-demanding cloud computing environments,
where changing conditions require the different sys-
tem components to dynamically adapt to allow the
calculation to continue in spite of various intercon-
nection conditions.

2. Open-source licensing: Access to source code under
an open-source licensing is appealing as this work
has been produced in an academic environment and
results are expected to be freely available to other in-
dividuals to advance knowledge.

3. Java: Hadoop and its file system are written in Java
and our programming background includes proven
expertise in the Java platform.

Hadoop. A scalable distributed computing platform,
Hadoop includes a file system called the Hadoop Dis-
tributed File System (HDFS) to store large datasets as well
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Fig. 1. Computing stages of the MapReduce model.

Table 1. Comparison of three MapReduce implementations: Google, Phoenix and Hadoop.
Google Phoenix Hadoop

Hardware
platform

Tailored towards cluster-based
environments

Multi-core and multiprocessor
systems

Tailored towards cluster-based
environments

Worker
failure
handling

Proactive monitoring of compu-
tation time of nodes. Tasks are
re-executed if there are delays or
timeouts

Tasks are re-executed if there are
delays or timeouts

Proactive monitoring of compu-
tation time of nodes. Tasks are
re-executed if there are delays or
timeouts

Master
failure
handling

Not implemented. Restart the job Not implemented. Restart the job Checkpointing of the master
node

File system Google file system None. Uses pointers to shared
memory locations

Hadoop distributed file system

Available
APIs

Python and Java C and C++. Can be extended to
similar languages like Java and
C#

Java, Python, Streaming API,
C++ API—via sockets. Also ex-
tensible

Combinator
functions

Yes No Yes

Licensing Proprietary Open source Open source

as a Java MapReduce implementation to process the data.
Hadoop executes map/reduce jobs by distributing the jobs
across computing nodes in a cluster. The processing of
jobs across a cluster of regular personal computers creates
a high-performance computer that provides increased per-
formance, while the HDFS stores large files across nodes
in a cluster. Hadoop employs block-based file replication
to underpin its fault tolerance mechanisms.

Based on master/worker architecture, the nodes in
Hadoop are classified as

• namenodes, and

• datanodes.

A complete MapReduce job is divided into indepen-
dent tasks that the namenode allocates to the datanodes,
understood as block data requests from the master to the
workers. By using the HDFS, Hadoop creates multiple
copies of the data for each task, placing them on nodes
in the cluster where they are processed. The namenode
schedules and monitors jobs through the JobTracker pro-
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Table 2. System configuration for the 17 nodes of our depart-
mental cloud.

Processor Intel(R) Core (TM) 2 Duo CPU
E6750 2.66GHz

Memory 3.48GB
Host operating system Microsoft Windows XP Profes-

sional Version 2002 SP3
Virtualisation soft-
ware

VMWare Workstation 6.0

Guest operating sys-
tem

Ubuntu Release 8.10 (Intrepid)
Kernel Linux 2.6.2.27-7-generic

Number of virtual
machines per node

1

MapReduce environ-
ment

Hadoop 0.20.0

cess, and the namenodes execute and track tasks through
Tasktracker. To avoid a single point of failure, a namen-
ode can be replicated.

Since many modelling tools require the manipula-
tion of complex combinations of computation and data,
Hadoop’s forte is its scalability. According to the project
site, Hadoop has been demonstrated on clusters with over
2000 nodes and can reliably process and store petabytes of
data (The Apache Software Foundation, 2008). As com-
plex computations are typically data intensive and hard to
solve on a single computer, using the MapReduce com-
putation model can speed up the computation because
MapReduce computes large datasets by using all available
resources concurrently.

Under ideal conditions, it is expected that MapRe-
duce scales linearly, i.e., the completion time should de-
crease linearly with the increase of resources (nodes) used
for computation. Gains in performance can permit the
computation of more complex models and, consequently,
the exploration of bigger solution spaces and the exami-
nation of more data in less time.

Yet, virtualisation promotes efficient utilisation of
idle computing resources, providing the flexibility re-
quired to run different software setups on existing re-
sources, but the conundrum is the adequate balance be-
tween the practicality of full virtualisation and the perfor-
mance gains of para-virtualisation (VMware, 2007).

Nonetheless, scant research has been conducted on
systematic evaluation of the MapReduce model under
fully virtualised environments, whereby the impact of the
staged application of idle resources and associated over-
heads is measured.

4. Implementation

Our departmental cloud has been deployed using 17 iden-
tical computers (nodes) running the VMWare Workstation

with one virtual machine per node, executing Ubuntu and
Windows XP as guest and host operating systems, respec-
tively. One node was used as master while the remaining
16 as workers and, subsequently, arranged as five distinct
configurations: 1 + 1, 1 + 2, 1 + 4, 1 + 8, and 1 + 16.

In the remainder of the discussion we will refer
to these configurations omitting the master node, i.e.,
1, 2, 4, 8, and 16 nodes. Table 2 shows the system con-
figuration for each node.

Table 3. Characteristics of the datasets generated by Ran-
domWriter using 16 nodes.

Dataset Map size Maps Dataset size
no. (MB) per node (GB)

D1 8 8 1
D2 16 8 2
D3 32 8 4

Our evaluation has employed the RandomWriter and
Sort algorithms, freely available as part of the Hadoop dis-
tribution.

RandomWriter writes random data to the HDFS us-
ing maps, where each map operation writes random byte
keys and values to the HDFS sequence file.

Sort reads data in maps, and then combines sorts and
stores them through reduces. It is modelled after the Ter-
abyte sort (Anon, 1998), a disc sort of 1-million records
where the input is 1-million 100-byte records stored in
a sequential disc file. While the source and target files
are sequential, the partitioning function for this bench-
mark has built-in knowledge of the distribution of keys,
adding intrinsic MapReduce parallelism (Dean and Ghe-
mawat, 2008).

Since RandomWriter has only maps, we have used
it as the dataset generator and Sort as our primary bench-
mark.

Table 3 gives details of how three datasets of the al-
gorithm generated data for three sizes, 1, 2 and 4 Giga-
bytes, using 16 nodes. The replication factor—how many
copies of a data block must be available in the cluster at a
time—was set at 2 (its default value is 1) to facilitate the
decommissioning of nodes. The overall empirical evalua-
tion testbed is shown in Fig. 2.

Our performance evaluation has employed five dif-
ferent configurations corresponding to 1, 2, 4, 8, and 16
nodes. In all, 75 experiment runs have been carried out,
i.e., 25 for each dataset size (1 GB, 2 GB and 4 GB). For
each data size, the Sort map/reduce task has been executed
five times for each of the five different cluster sizes.

Two identical master node virtual images were used
to perform the experiments alternately. We have also alter-
nated between machines to ensure that cached processes
were not reducing memory access time and, thereby,
speeding up the execution of tasks in consecutive runs.
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Fig. 2. Departmental cloud testbed employed in our empirical evaluation. This cloud is composed of 17 identical virtualised nodes.

Note that we have repeated each experiment five
times and fixed the testbed conditions in order to ensure
the low variability and reproducibility of our results.

After every five successful runs of the Sort algorithm
for each data size and a number of nodes (starting at 16),
half of those nodes decommissioned—by editing a config-
uration file in Hadoop that lists hosts to be excluded from
the cluster, while preserving the data in the HDFS for use
with the remaining nodes. This was done progressively
until the tasks involving only one node were completed;
then the data size was changed and the process repeated.
After the completion of each task, the total execution time
was logged by Hadoop and retrieved via its JobTracker
web interface.

During each run of the primary benchmark, the
CPU activity of each node was concurrently captured in
6-second intervals for each node, using the 1-minute read-
ings from the Linux top command. This top load figure
is particularly useful as it provides a consistent dynamic
view, which is normalised through an exponential func-
tion in order to diminish the impact of transient, short-
lived load peaks.

In order to increase the statistical significance of our
results, we have randomly rotated the namenodes and
datanodes between execution to avoid any cache memory
effects. Additionally, we have calculated the coefficient

of variation CV for the execution times t, based on the
standard deviation σ and the mean μ,

CV =
σ

μ
, (3)

σ =

√
√
√
√ 1

N

N∑

ı=1

(tı − μ)2, (4)

μ =
1
N

N∑

ı=1

tı. (5)

5. Results

Table 4 reports the execution times in seconds and their
associated CV expressed as a percentage. A close exam-
ination of the results in the table yields the following two
key observations:

• the time to complete each experimental run de-
creased for a given data size when the number of
nodes increased;

• the load distribution across nodes for each experi-
mental set is largely unfair, despite the fact that the
independent tasks are of similar complexity.

Moreover, the overall efficiency also decreased with
the node increments. We have discovered that datanodes
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Table 4. Results of the primary benchmark (Hadoop’s Sort) execution for 1, 2, 4, and 16 nodes with datasets of 1 GB, 2 GB, and 4
GB.

Dataset 1 2 4 8 16
size Time CV Time CV Time CV Time CV Time CV

1GB 434.6s 2.1% 287.4s 3.1% 167.4s 3.0% 95.6s 4.2% 58.6s 6.8%
2GB 680.0s 0.8% 415.6s 4.4% 254.0s 5.1% 137.4s 3.1% 83.6s 4.8%
4GB 1232.0s 2.2% 752.4s 1.2% 412.0s 3.1% 314.8s 5.4% 181.6s 2.6%

were doing substantially more processing than the namen-
ode, typically a difference of an order of magnitude. The
comparison of the actual scale-up and the ideal scale-up is
depicted in Fig. 3.

While the empirical observations above indicate that
the system scalability has consistently increased (this is
evidenced by the faster times recorded when nodes were
added), the low efficiency figures indicate that there were
three factors existent in the system that impeded the at-
tainment of a linear scale-up of computation times.

Firstly, despite the fact that the (worker) nodes had
been identically configured and placed, the master node
seemed more likely to schedule tasks to certain nodes, es-
pecially in scenarios where tasks needed to be reassigned.
This indicates that some nodes were more available or eas-
ier to reach by the master node. This explanation is also
supported by the average number of tasks killed during
experimentation, which depicts the number of tasks reas-
signed to other nodes as a result of delayed responses from
the nodes to which they were assigned. One of the reasons
why such a scenario would occur is due to slow network
communication or failures. Copying and sending of data
blocks from one node to another is also done via the net-
work, so network issues could also have hampered this
process and slowed down the whole system. As depicted
in Fig. 4, it is also relevant to note that the master node is
mostly idle, with a system load well beyond the average
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Fig. 3. Speedup curves for 1 GB, 2 GB, and 4 GB dataset sizes.

even for the 16 node configuration. This reinforces the
need for improved scheduling algorithms in Hadoop.

Secondly, during job executions, the data had to be
migrated between nodes prior to the execution of a map or
a reduce. This was almost always the case for higher con-
figuration clusters used in these experiments as the repli-
cation factor was set at 2. The reading and writing of
data to and from the HDFS and to and from memory most
likely created overheads. This is evidenced by the fact that
the node with the smallest CPU load is the master node,
which does not run any data nodes.

Finally, in terms of virtualisation, the experiments
were set up such that Hadoop was running on Ubuntu
virtual machines hosted on machines with Windows XP
installed with the VMWare Workstation software. Opera-
tions of full virtualisation software, such as VMWare, af-
fect the performance of the system because they run as
processes on the host machine. All the processes initi-
ated in the Ubuntu environment by Hadoop needed to be
translated onto the physical machine and executed before
feedback could be sent back to the virtual machine. This
included processes that control network communication,
input/output, memory and disk space allocation. On a
non-virtual system, these already constitute overheads so
the overall effect in our testbed was two-fold when using
a virtual machine.

6. Conclusions

Hadoop has been deployed and tested with positive re-
sults that indicate that speedup of computations is pos-
sible under full virtualisation conditions. Even with the
reduced efficiency recorded, there are increases in com-
putation speed and this bodes well for the Hadoop imple-
mentation employed.

Nevertheless, an investigation into performance bot-
tlenecks in Hadoop’s implementation has been carried out
and the results of the experiments provide a valuable in-
sight into how Hadoop runs in a truly heterogeneous en-
vironment. Because Hadoop is written in Java, it can run
on any machine that has the Java runtime environment in-
stalled, ergo Hadoop does not interact directly with ma-
chine hardware as this is handled by the Java interpreter.
In essence, this means that if two machines are perform-
ing identically, then to Hadoop they will seem to be of the
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(a) (b)

(c)

(d)

Fig. 4. System load, as measured by the Linux uptime command, for 2(a), 4(b), 8(c), and 16(d) nodes. Note that the master node load,
indicated by the penultimate solid bar, in each configuration is well below the average, illustrated by the last hatched bar.
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same configuration. This also means that factors exter-
nal to the physical machine, e.g., network communication
rates, affect how Hadoop perceives the performance of a
machine.

The aforementioned observations suggest that when
Hadoop is scheduling tasks, the nodes with the better per-
formance—those that return results faster for whatever
reason—seem to have better processing power and are
therefore assigned new tasks earlier than others, regard-
less of their actual capabilities or configuration. This sce-
nario also highlights the scalability and fault tolerance of
Hadoop. A demonstration of a possible use of idle pro-
cessing resources via virtualisation in order to run another
completely different and separate application on the same
physical machine has been one of the fringe benefits of our
implementation. It also opens up the possibility of further
experimentation with alternative schedulers.

We believe that the data sizes used for the experi-
ments are somehow too small to completely mitigate the
effect of overheads. From the results, we can conclude
that the computational sections of the benchmarks have
not been large enough to take care of the overhead (i.e., the
communication to computation ratio is high) and there-
fore the evaluation runs cannot produce the linear speedup
we had hoped to achieve. Future work may well include
a comprehensive set of benchmarks deployed on a very
large configuration (hundreds of nodes) using paravirtual-
isation and full virtualisation platforms, e.g., Xen versus
VMWare.

Finally, it is also important to emphasise the impact
of our results in terms of the Terabyte sort benchmark,
which is widely considered in fact a standard for data sort-
ing. A common scenario in the Internet, data sorting en-
ables advertisements on social networks, custom recom-
mendations on online shopping sites and manipulation of
search engine results.

In conclusion, the majority of the aims of this work
were achieved. An implementation of MapReduce was
used to evidence increases in speedup and the possibility
of heterogeneous configurations was put forward without
any ad hoc hardware and software configuration or invest-
ment.
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