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Abstract

Metamodelling or surrogate modelling techniques are frequently used across the engineering disciplines in conjunction with

expensive simulation models or physical experiments. With the proliferation of metamodeling techniques developed to provide

enhanced performance for specific problems, and the wide availability of a diverse choice of tools in engineering software

packages, the engineering task of selecting a robust metamodeling technique for practical problems is still a challenge. This

research introduces a framework for describing the typology of engineering problems, in terms of dimensionality and complexity,

and the modelling conditions, reflecting the noisiness of the signals and the affordability of sample sizes, and on this basis

presents a systematic evaluation of the performance of frequently used metamodeling techniques. A set of metamodeling

techniques, selected based on their reported use for engineering problems (i.e. Polynomial, Radial Basis Function, and

Kriging), were systematically evaluated in terms of accuracy and robustness against a carefully assembled set of 18 test functions

covering different types of problems, sampling conditions and noise conditions. A set of four real-world engineering case studies

covering both computer simulation and physical experiments were also analysed as validation tests for the proposed guidelines.

The main conclusions drawn from the study are that Kriging model with Matérn 5/2 correlation function performs consistently

well across different problem types with smooth (i.e. not noisy) data, while Kriging model with Matérn 3/2 correlation function

provides robust performance under noisy conditions, except for the very high noise conditions, where the Kriging model with

nugget appears to provide better models. These results provide engineering practitioners with a guide for the choice of a

metamodeling technique for problem types and modelling conditions represented in the study, whereas the evaluation framework

and benchmarking problems set will be useful for researchers conducting similar studies.

Keywords Metamodelling . Kriging . Radial basis functions . Polynomials . Correlation function . Kernel functions . Response

surfaces

1 Introduction

1.1 Background

High fidelity simulation modelling of complex engineered

systems, based on tools such as finite element analysis

(FEA) and computational fluid dynamics (CFD), plays an

increasingly important role as they enable detailed analysis

and optimisation of the design at an early stage, enabling

significant cost and time compression in product develop-

ment. However, complex engineering simulations are compu-

tationally expensive, which often precludes an efficient design

exploration through parametric studies and optimisation, or

the integration of multiple simulations in multi-physics

models to study complex multidisciplinary systems.

Metamodelling or surrogate modelling (Box and Draper

1987), underpinned by response surface modelling techniques

originally introduced to develop prediction models for expen-

sive physical experimental responses (Simpson et al. 2001b), is

increasingly and extensively employed to replace complex

simulation-based models across the engineering disciplines,

(e.g. Fang et al. 2005; Zhu et al. 2009). Metamodelling tech-

niques do not only provide relatively cheap and accurate re-

sponse models to replace the expensive analysis tools, but also

provide a filtering method to handle noisy data (Box and

Draper 1987; Forrester et al. 2008).
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Metamodelling techniques are commonly classified into

parametric and non-parametric models (Rango et al. 2013).

Parametric models (such as polynomials (Khan 2011) are ex-

plicitly dependent on the underlying model structure, whereas

non-parametric methods (such as Radial Basis Function

(RBF) (Khan 2011), Neural network (Hagan and Demuth

1999) and Kriging models (Sacks et al. 1989) do not require

explicit model assumptions and use the experimental mea-

surements to define the underlying relationship among the

parameters.

Despite the availability of different software packages that

enable the application of various metamodelling methods, the

engineering task of selecting the most robust modelling tech-

nique, given the practical engineering problem, is still a chal-

lenge for the practitioner, especially when the system behav-

iour is unknown (Didcock et al. 2014). Several studies have

been reported over the years evaluating the performance of

metamodelling techniques; such studies have focussed either

on identifying the most suitable type of model for a particular

engineering application or modelling conditions (e.g. relating

to the affordable sample size or uncertainty in the underpin-

ning experiment) or, more general, the study of performance

in relation to the type or characteristics of the problem (such as

scale and nonlinearity). However, no study has systematically

considered the complete typology of the modelling problems

to drive the evaluation study of metamodelling techniques,

and thus, a generic guideline for the engineering practitioners

is still not available.

The research presented in this paper aims to address this

issue, with a study of a selection of the metamodelling tech-

niques frequently used in practice, systematically evaluated in

a comprehensive experiment designed to replicate the charac-

teristics of the metamodelling problems commonly encoun-

tered in product design and development of engineered sys-

tems in industries such as automotive and aerospace.

Metamodelling problems associated with both physical exper-

iments (such as steady-state engine calibration tests) and

computer-based experiments (e.g. based on FEA, CFD, or

multi-physics simulation experiments) are within the scope

for this study. An analysis of literature relating to the evalua-

tion of metamodelling techniques will be considered first in

order to facilitate the identification of the key characteristics of

engineering metamodelling problems, supporting the devel-

opment of a coherent methodology for the study.

1.2 Review of related work

The review of the studies reported in literature that have eval-

uated the performance of metamodelling techniques for engi-

neering applications is focussed on two aspects:

(i) The metamodelling methods considered in each study

(ii) The characteristics of the engineering problems consid-

ered in the study

The review and associated analysis are organised in

chronological order to provide a view on both the use of

metamodelling techniques in engineering as well as the

expanding nature of problems tackled and issues.

Simpson et al. (1998) have analysed the performance of the

Kriging method against Polynomials for a three-dimensional

multidisciplinary optimisation problem of an aerospike nozzle

design based on FE and CFD, arguing that Kriging based on a

space-filling design can provide competitive modelling per-

formance for the engineering design problem considered.

Giunta et al. (1998) compared Polynomials with Kriging for

three problems with different numbers of parameters (1, 5 and

10 parameters), based on mathematical benchmark problems.

Over the specific set of problems considered, they observed

that a quadratic polynomial consistently delivers highly accu-

rate prediction models. Yang et al. (2000) compared four

metamodelling techniques (i.e. Moving Least Square, Neural

Network (NN), Stepwise Regression, and Multivariate

Adaptive Regression Splines (MARS)) to predict a low-

dimensional safety function in an automotive crash model.

Varadarajan et al. (2000) compared the performance of

Neural Networks and Polynomial methods for an engine

combustion modelling application. The research by Jin et al.

(2001) reports the first systematic comparative approach to

study the performance of four metamodelling methods (i.e.

Radial Basis Function (RBF), Kriging, Polynomial and

Regression Splines), over different sampling sizes (i.e. scarce,

small and large), and for different problem types in terms of

scale and nonlinearity. Thirteen case studies were employed to

develop a standard procedure to compare the metamodelling

methods, including an extra noisy test function to briefly in-

vestigate how the performance of metamodels is affected by

the noisy conditions, concluding that RBF with Gaussian ker-

nel function performs the best across the case studies consid-

ered. However, the test functions considered are unduly biased

towards only two problem dimensionality cases: small (with

less than 4 variables) and large (with 10 and more parameters),

not covering the medium size test functions. In a different

study, Jin et al. (2003) compared the performance of Kriging,

RBF and Polynomials for modelling a structural engineering

problem, considering uncertainty in the values of parameters,

over two sample sizes (small and large). They observed that

the Kriging method with a Gaussian correlation matrix outper-

forms the other techniques and that the accuracy of metamodels

was not affected by the sample size in the range considered (in

particular for the RBFmethod). Also, the second-order polyno-

mial was observed to be incapable of capturing the nonline-

arity of the performance variations for the case study prob-

lem. Seabrook et al. (2003) compared NN, Kriging and RBFs

for engine calibration experiments where the results are
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affected by experimental noise, concluding that Kriging

offers the most robust modelling technique. Forsberg and

Nilsson (2004) compared the performance of Kriging and

Polynomial methods in modelling crashworthiness of a

vehicle structure, for which Kriging was found to be more

accurate. Fang et al. (2005) also compared RBF (using five

different kernel functions) and polynomial techniques for a

crashworthiness application. They reported that both model-

ling methods are accurate for the case study (especially the

RBF with Multiquadric kernel function), while RBF outper-

forms Polynomial for smaller sampling sizes. In the compara-

tive study presented by Mullur and Messac (2005), four

metamodelling techniques were studied (Polynomials, RBF,

Kriging and a RBF-based method named extended RBF) over

8 case studies selected from the ones used in the Jin et al. study.

The study focused on the effects of different problem scales

(small and large) and sample sizes (small, medium and large)

using 2 sampling strategies (Latin Hypercube and random

sampling); the extended RBF was found to outperform the

other methods. Chen et al. (2006) studied the performance of

RBF, Kriging, Polynomial, Neural Network and MARS

methods over three case studies (two 2-dimensional test func-

tions and one 10-dimensional engineering problem). For the

limited number of case studies considered, they also investi-

gated the effects of different sampling strategies. Ben-Ari et al.

(2007) presented a comparative study of the performance of

three metamodelling strategies (Splines, Kriging and projec-

tion pursuit regression) for three simulation-based case studies,

concluding that while Kriging provides the best modelling

technique, it is also the most computationally expensive. Kim

et al. (2009) studied the performance of four metamodelling

techniques (RBF, Kriging, Moving Least Square (MLS) and

Support Vector Regression (SVR)) over six low-dimensional

case studies, using two sample sizes (small and large). They

reported that MLS and Kriging provided superior results com-

pared to the other methods; however, these methods were

found ineffective when the sample size is too small. In the

study reported by Zhu et al. (2009), RBF, Kriging, SVR and

NNmethodswere used tomodel a real-world engineering case

study in the automotive engineering field, for which SVR

outperformed the other techniques. Paiva et al. (2009) com-

pared the performance of Kriging, quadratic polynomial and

Neural Network over three aircraft applications. They ob-

served that both Kriging and Neural Network delivered high

fidelity models for large-scale problems. Zhao and Xue (2010)

applied four metamodelling strategies (RBF, Kriging, linear

polynomials and Bayesian neural network) to model six test

functions (three small-scale and three large-scale problems),

selected from Jin et al. (2001). This research also consid-

ered the effect of different sample sizes and the influence

of different levels of noise conditions. In the study report-

ed by Campean et al. (2010), Polynomial, Kriging and

RBF (with different kernel functions including Thinplate,

Multiquadric and Linear) metamodels were evaluated for en-

gine fuel consumption and gaseous emissions modelling,

based on noisy engine test data measurement (with different

level of noise associated with measurement of different re-

sponses), concluding that Kriging outperforms the other

modelling techniques. Li et al. (2010) have reported an eval-

uation of the performance of SVR against NN, RBF, Kriging

and MARS for a range of benchmark engineering problems

with between 2 and 8 variables, and also considering the effect

homogeneous and heterogeneous stochastic error, induced via

simulation. They have concluded that SVR performs best,

closely matched by Kriging, while RBFs provide computa-

tional advantage for larger samples. They have also validated

the performance of SVR on several simulation-based process

optimisation case studies. Similarly, Wang et al. (2011) have

compared the performance of SVR against polynomial regres-

sion, Kriging, RBF, NN and MARS for several nonlinear

benchmark problems, concluding that SVR provides the

most robust modelling technique. However, both studies

relied on large sample sizes for the model fitting. Van Gelder

et al. (2014) carried out a comparative study of metamodelling

techniques (Polynomial, MARS, Kriging, RBF and NN) for

large-scale building simulation, considering probabilistic in-

put parameters, and the effect of the training sample size on

the reliability of the metamodelling strategy. Their aim was to

derive a guideline for practitioners and have concluded that

NN and Kriging performed best, with Kriging requiring lower

training set. They have however pointed out that Kriging

models are harder to interpret. Liu et al. (2016) considered

the impact of problem dimensionality (nine engineering

benchmark problems with between 4 and 51 variables) and

the space filling sampling strategy and size (between 10× and

40×) on the performance of metamodelling strategies

(Polynomial, Kriging, RBF and RBF-HDMR—i.e. high di-

mensional model representation), concluding that RBF per-

formed best. Kroetz et al. (2017) contrasted performance of

Kriging models against Neural Networks and Polynomial

Chaos Expansion (PCE) metamodelling techniques for a

range of structural reliability problems and concluded that

Kriging and NN models converge efficiently compared to

PCE. Chen et al. (2019) studied the problem of efficiency of

metamodelling in high dimensionality problems considering a

set of nine test functions, the influence of sample size and

presence of random noise, for a selection of metamodelling

techniques including Kriging, RBF, SVR and a range of high

dimensional model representation derivatives of these methods.

They have found that Kriging (with Gaussian kernel) does not

provide satisfactory global modelling results even with large

sample sets. Østergård et al. (2018) evaluated the performance

of six metamodelling techniques (Linear Regression, Random

Forest (RF), SVR, MARS, Kriging, and NN) in relation to

building performance simulation, focussing both on perfor-

mance (accuracy, efficiency and robustness) and user-
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focussed metrics such as ease of use and interpretability. Their

review considered 13 benchmark problems, with varying di-

mensionality and complexity (but not including “noisy” prob-

lems as these were not relevant to the application domain), and

including both discrete and continuous variable problems. They

have attempted to provide some guidance for metamodelling

choice in relation to the level of expertise of the analyst (expert/

non-expert / automatic metamodelling) and the time/cost

afforded for the experiment (large / limited / minimal). They

have concluded that Kriging offers the most accurate

metamodelling approach, although not the most computation-

ally efficient, and providingmodels that are not easy to interpret

by the user in the same way in which Polynomial regression

models can be interpreted.

This review of related literature studies, summarised in

Table 1, shows that the effectiveness of metamodelling

techniques has been intensely studied from both theoretical

(i.e. through synthetic test cases) and practical (i.e. appli-

cation to specific engineering problems) perspectives. The

review reveals the complexity of the research and applica-

tion landscape, illustrated by the complex evolution and

development of metamodelling techniques, interconnected

with the evolution of the types of problems tackled. The

chronological analysis of comparative studies of

metamodeling techniques summarised in Table 1 illustrates

well this trend, showing the evolution from polynomial

based response surface methods introduced by Box and

Draper (1987), to the prevalence of Kriging and RBF,

and more recently the increasing use of techniques like

SVR (Wang et al. 2009; Pan et al. 2010; Wang et al.

2011). Also, the emerging interest in tackling high-

dimensional engineering problems led to increased use of

HDMR techniques (Huang et al. 2015; Dey et al. 2015; Liu

et al. 2016; Chen et al. 2018).

In relation to computer-based experiments, the improve-

ments in computation power and speed have enabled

metamodelling studies for significantly increased dimension-

ality of problems and based on larger samples, which in turn

supported the development and application of an increasingly

diverse range of metamodeling techniques. Several studies

compared the effect of different mathematical options for a

particular modelling technique (such as correlation function

options for Kriging (Toal and Keane 2013; Kleijnen and van

Beers 2005; Ulaganathan et al. 2014, 2015) or kernel function

options for RBF (Campean et al. 2010; Fang et al. 2005) over

different applications. The impact of the hyperparameters as-

sociated with the modelling techniques and model selection

criteria has been also increasingly considered in comparative

studies—see for example Østergård et al. (2018). The contin-

ued research interest for comparative metamodelling studies

over time reflects the fact that this problem is still of signifi-

cant real-world impact. The fact that different practical test

problems and applications areas appear to point to different

optimal metamodelling choice conflicts the practical

engineering interest, which usually revolves around

prescr ipt ive guidel ines for a robust choice of a

metamodelling technique for a specific type of engineering

problem. Efforts to develop such guidelines are well

illustrated by studies such as Van Gelder et al. (2014) and

Østergård et al. (2018) for high dimensional problems of

building performance simulations, or Blondet et al. (2019)

for mechanical engineering simulations, underpinned by a

knowledge-based system. Examples of generic recommenda-

tions for the choice of metamodelling techniques for physical

experiments associated with engine tests are illustrated by the

work of Seabrook et al. (2003) and Berger (2012).

Widely available commercial software, such as Matlab

(e.g. the Model-Based Calibration toolbox), provide easy ac-

cess for engineers to a very large choice of metamodeling

techniques, including model fitting options (hyperparameters

and model selection settings). However, this raises modelling

productivity and effectiveness issues for practical application,

for reasons discussed by Østergård et al. (2018), which jus-

tifies the need for further studies to support practical

metamodeling choices of methods.

1.3 Research objectives and contribution

Similar to Van Gelder (2014), instead of focussing on the

theory of metamodelling and developing new techniques

and algorithms, the aim of this paper is to guide users in

choosing the appropriate metamodelling technique (imple-

mented in readily available algorithms) for their specific

engineering problem. A deeper analysis of the studies in

the literature review (summarised in Table 1) from the

point of view of the characteristics of the metamodeling

problems considered in each study, suggests the following

classification:

1. Characteristics of the problem type:

(a) Dimensionality or scale of the problem—typically

indicated by the number of independent variables

involved

(b) Complexity of the problem defined in relation to the

relationship among factors for approximation and

usually quantified in terms of nonlinearity, interac-

tion between variables and importance of terms

(Shan and Wang 2010)

2. Modelling choices and conditions:

(a) The sample size practically afforded for the

experiment

(b) Uncertainty or noise, relating to the experimental

measurement uncertainty/noisiness
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The objective of the research presented in this paper was

to carry out a systematic and comprehensive study of

metamodelling techniques with the aim of developing a

framework for the robust choice of method and model

based on both the type of the engineering problem (scale

and nonlinearity) and the modelling conditions or con-

straints (uncertainty and size of the metamodelling exper-

iment). The scope of the study was set on three of the most

popular metamodelling techniques in the engineering field,

namely Polynomial, RBF and Kriging. This choice is jus-

tified both by the analysis of previous studies considered

(these three methods are seen as the most popular in the

analysis in Table 1), availability in common engineering

software packages, and also the authors’ extensive experi-

ence and observation of practice in automotive product

development. The key points observed in relation to prac-

tical engineering metamodelling problems, in particular

early in product development, relate to (i) affordability of

larger sample sizes for both computer-based experiments

(including crash simulation, CFD and structural simula-

tions, as well as increasingly used multi-physics simula-

tions) and physical experiments (typified by the expensive

engine calibration experiments) and (ii) uncertainty about

the variables and parameters involved in the modelling

experiments. While Neural Networks are also commonly

used metamodelling techniques, most of the studies con-

sidered in Table 1 point to the fact that limitation with

sample sizes severely affect the performance of NNs for

engineering modelling problems in product development.

For this reason, the NNs were not included in the study.

While most of the recent research, in particular in relation

to large-scale nonlinear metamodeling problems, points

out the limitations of Polynomial regression models, from

a practical point of view, they are still important because

they have the advantage that as models are easier to inter-

pret by the engineering analysts (van Gelder et al. 2014).

They are still widely seen in practice as the first preference

of engineers, and for this reason, they were included in this

study.

The approach taken for this study, aiming to reflect the dual

theoretical—practical nature of the interest for the

metamodelling performance evaluation, includes two parts:

1. An extensive theoretical (i.e. based on known mathe-

matical functions) study of the performance of

metamodelling techniques across a range of problems

of different scale and nonlinearity, and with consider-

ation of the size of experimental training set for model

fitting and sensitivity to noise in the response vari-

ables. In order to ensure the validity of the study, a

set of 18 benchmark problems extracted from previous

studies was assembled to provide a representative and

balanced cover across the problem parameters. Based

on the findings from this study, a guideline for pre-

ferred metamodelling technique based on problem

criteria is proposed.

2. A set of validation studies based on real-world engineer-

ing problems with experimental data from both physical

and computer-based simulation experiments/tests. These

studies are used as empirical validation for the proposed

guideline.

Thus, the paper aims to make a contribution to the research

of metamodelling techniques for engineering problems by:

(i) Presenting a comprehensive and complete evaluation

study of common metamodeling techniques in relation

to the characteristics of engineering problem types (di-

mensionality and complexity) and modelling conditions

(experimental sample size and noisiness);

(ii) Defining a set of benchmarking problems with system-

atic coverage of criteria for metamodelling problems;

and

(iii) Introducing a framework for guiding selection of

metamodelling technique based on the problem classi-

fication criteria, with relevance to the typology of prob-

lems commonly seen in product design and

development.

The impact of the paper to the research community is de-

fined by the first two points, while the latter point should

provide the basis for the impact of the study to practitioners

in the engineering design, modelling and simulation

community.

The organisation of the paper is as follows: first, the

mathematical properties of the three metamodelling tech-

niques considered in this study are outlined, followed by a

detailed description of the research methodology, includ-

ing the benchmark test functions and the procedure to eval-

uate the properties of the constructed models. The results

from different modelling techniques are presented next and

analysed for different problem types and modelling condi-

tions to provide a sound guideline to choose the best

metamodelling technique for different classes of problems.

The proposed guideline is validated on four real-life engi-

neering problems. The paper ends with a discussion of the

results and directions for further work.

2 Metamodelling techniques

Three types of metamodelling techniques are included in this

study: Polynomial, Radial Basis Function and Kriging. The

principal features of these techniques and the corresponding

mathematical representations are described in the following

sections.
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2.1 Polynomial

Polynomials have been frequently used by engineers to pre-

dict the behaviour of complex engineering systems (Lach

et al. 2007; Schlober et al. 2007). The general form of a poly-

nomial model can be expressed as (Morris and Mitchell 1995;

Myers et al. 1989):

y xð Þ ¼ f T :a ¼ ∑P
p¼1ap: f p xð Þ ð1Þ

where y(x) predicts the response value at design parameters x

by linear combination of a set of base functions f. In this

equation, P indicates the number of base functions corre-

sponding to a polynomial order, and a defines the regression

coefficients for each of the base functions. These coefficients

are usually retrieved through a linear regression based on least

squares estimation (Chen et al. 2006). The main reasons for

the popularity of polynomials compared to the non-parametric

metamodelling techniques are:

& Polynomials have a simple structure, which makes them

easy to understand and manipulate (Hartmann et al. 2013).

& Polynomials require low computational effort due to line-

arity in the unknown parameters (Rango et al. 2013).

& Low-order polynomials show less possibility of over-

fitting (i.e. better smoothing capability (Jin et al. 2001)),

which is particularly important for modelling noisy mea-

surements (Khan 2011).

Regardless of these advantages, there are some impor-

tant limitations in using polynomial metamodels for com-

plex responses (i.e. highly nonlinear or large-scale prob-

lems) since the number of model terms increases signif-

icantly, increasing the number of experimental measure-

ments required to calculate the coefficients (Khan, 2011).

In this research, the second- and third-order polynomials

were used, while the maximum order of parameter inter-

actions was limited to 2.

2.2 Radial Basis Function (RBF)

Radial Basis Function is a non-parametric metamodelling

technique which was introduced as a variant of Neural

Network models in the late 1980s (Chen et al. 1996). This

interpolation-based modelling method uses linear combina-

tions of radially symmetric functions (called kernel functions)

(Jin et al. 2001). A general form of a RBF model can be

described by (Khan 2011):

ð2Þ

xi is the i’th measured point in the training data, n is the

number of measured points, Ф() indicates the kernel function

(i.e. the shape of the radially symmetric function), wi is the

weight given to the i’th kernel function, ti is the measured

output at xi and xi − xj is the distance between the measured

points i and j. RBF models can use different kernel functions,

such as Gaussian, Multiquadric, Thinplate, Spline, Cubic and

Linear functions (Khan 2011).

The main advantages of RBF models are as follows:

& RBF can learn the complex and nonlinear relationship

between the input and output parameters (Hagan and

Demuth 1999).

& RBF can confront missing and noisy data with a good

generalisation capability (Hagan and Demuth 1999).

& RBF models can be more efficient (in relation to the num-

ber of measurements required) than polynomials for large-

scale nonlinear problems, since the approximation model

is purely driven from the collected data (through learning),

rather than assuming a fixed model type in advance (He

and Rutland 2004).

& RBF is very fast in learning the relationship between the

input and output variables because of using two-stage net-

work training. The first stage is to determine the weights

from the ‘Input’ to the ‘Hidden’ layer, and the second

stage from the ‘Hidden’ layer to the ‘Output’ layer

(Khan 2011).

Although the RBF method has proved to be an efficient

modelling technique for complex problems, such asmodelling

of internal combustion engines (Howlett et al. 1999), there is

always the possibility of over-fitting (Forrester et al. 2008),

particularly for noisy measurements.

In this paper, the performance of the RBF method is inves-

tigated by applying three of the frequently used kernel func-

tions: Gaussian, Multiquadric and Thinplate (Kim et al. 2009;

Rango et al. 2013).

2.3 Kriging

The theoretical basis of the Kriging modelling was developed

byMatheron (Matheron, 1976), based on the original work by

Krige (Forrester et al., 2008). Kriging metamodels are derived

from (3) (Sacks et al. 1989; Simpson et al. 2001a), which

postulates a combination of a global model (f) and localised

departures (G).

y xð Þ ¼ f xð Þ þ G xð Þ ð3Þ

In this equation, the response y is predicted at a point x

using a global approximation function f, which is usually a

polynomial, and ‘localized’ deviations G, which are calculat-

ed by interpolation of the measured sample points. G(x)
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denotes the realisation of a weakly stationary stochastic pro-

cess with mean 0, process variance σ2 and nonzero covariance

function, as given by (4) (Khan, 2011):

Cov G xi
� �

;G x j
� �� �

¼ σ2R xi; x j
� �

ð4Þ

R(xi, xj) represents the correlation between any two of the

measured sample points, xi and xj. R is assumed to be a func-

tion of a small set of parameters, which are estimated based on

the Likelihood function (Forrester et al. 2008). The Likelihood

function defines the probability of the measured outputs, giv-

en a specific set of parameter values (Cressie 1990).

A variety of correlation functions are available in literature

to fit a Kriging model (Couckuyt et al. 2012; Fang et al. 2005;

Kaymaz 2005; Kersaudy et al. 2015; Kleijnen 2009; Kleijnen

and van Beers 2005; Moyeed and Papritz 2002; Passos et al.

2015; Picheny et al. 2013a; Ulaganathan et al. 2014, 2015;

Wang and Shan 2005). For this study, a selection of common-

ly used correlation functions, i.e. Gaussian (de Oliveira et al.

2013; Kleijnen 2009; Passos et al. 2015; Picheny et al. 2010),

Matérn 3/2 (Picheny et al. 2013a; Ulaganathan et al. 2014,

2015) and Matérn 5/2 (Ulaganathan et al. 2014, 2015), is

considered for the study of the performance of the Kriging

metamodels. The common choice for the functional form for

the global function f (see (3)) which gives the overall trend is a

polynomial (linear or quadratic). However, for this study, a

constant term (zero order polynomial) has been chosen, sim-

ilar to the approach commonly used in engineering practice—

see for example Forsberg and Nilsson (2004) and van Gelder

(2014). This approach is referred to as ordinary Kriging, a

particular case of universal Kriging—which uses a polynomi-

al global trend function.

Furthermore, Kriging metamodels can be formulated

to deal with noise by introducing an extra variation term

(σe), which measures the amount of random variation

over the n-dimensional design space, through a so-

called nugget effect (Kleijnen, 2009; Kleijnen and van

Beers 2005; Picheny et al. 2013a; Chen et al. 2018,

2019). In a ‘nugget effect’ Kriging the nonzero covari-

ance function can be defined as:

Cov G xi
� �

;G x j
� �� �

¼ σ2R xi; x j
� �

þ σ
2
e I xi; xi

� �

ð5Þ

where I is an n × n identity matrix. The performance of

Kriging with a nugget effect is not well documented in the

existing literature.

Some of the main advantages of Kriging models can be

summarised as (Khan, 2011; Seabrook et al., 2005; Welch

et al., 1992a):

& Kriging models are highly flexible due to the wide range

of correlation functions.

& Kriging models require fewer measurements due to

the strong interpolation among the measured sample

points.

& Kriging models can either ‘honour the data’ by providing

an exact interpolation of the data, or ‘smooth the data’ by

providing an inexact interpolation.

A potential pitfall of using Gaussian Kriging models is the

curse of over-fitting (Forrester et al., 2008), particularly with

noisy sets of measurements. Also, implementation of Kriging

models is a relatively time-consuming process since determin-

ing the maximum likelihood parameters is a complex optimi-

sation problem (Khan, 2011).

It is noteworthy that the performance of Kriging can be

endangered by the type of designed experiment used to

collect the experimental data. This method has shown

some difficulty in fitting response models for Full

Factorial and Central Composite Design of Experiments

(DoE) methods (Meckesheimer et al., 2001), since the cor-

relation matrix becomes almost singular when multiple

sample points are located close to each other.

3 Research methodology

3.1 Test functions and test cases

To inve s t i g a t e t he pe r f o rmance o f d i f f e r en t

metamodelling strategies, 18 test functions were selected

from literature to be representative of the range of di-

mensionality and complexity (nonlinearity) seen across

the different engineering problems discussed in related

literature, and seen by the authors in engineering prac-

tice. The mathematical definitions of selected test func-

tions are listed in Appendix A.

Table 2 summarizes the balanced structure of the test cases

for the experimental study based on the test function used,

showing that each combination of problem scale and com-

plexity is tested with three problems.

In terms of problem dimensionality (i.e. the number of

function variables k), the 18 functions can be classified into

three categories:

– Small-scale (k ≤ 4) (6 test functions)

– Medium-scale (5 ≤ k ≤ 8) (6 test functions)

– Large-scale (k ≥ 9) (6 test functions)

In terms of problem complexity, the 18 functions represent

two levels:

– Low-order nonlinear problems (9 test functions)

– High-order nonlinear problems (9 test functions)
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For the classification of complexity, the test functions for

which the value of R2 is more than 0.99, when constructing a

second-order polynomial metamodel, are considered low-

order nonlinear, otherwise they are considered as high-order

nonlinear (Jin et al. 2001; Mullur and Messac 2005; Zhao and

Xue 2010).

The performance of the chosen metamodelling tech-

niques was also examined in relation to the modelling

conditions. To reflect the common choices of sample

sizes for Model Building (MB) engineering experiments,

two DoE sizes were considered:

– Small DoE sample size (denoted as MBs in Table 2): an

Optimal Latin Hypercube (OLH) designwith a number of

test points ‘10×number of parameters’ (Jin et al. 2001;

Loeppky et al. 2009).

– Large DoE sample size (MBl in Table 2): an OLH

design a with number of test points ‘30×number of

parameters’ (Jin et al. 2001; Mullur and Messac

2005; Zhao and Xue 2010).

The main reason of using an OLH design to generate the

test points is the ability of this sampling strategy to deliver

uniformly distributed test points within the range of parame-

ters and also the flexibility on the number of test points (Fang

et al. 2010; Sacks et al. 1989). In this paper, a Permutation

Genetic Algorithm is used to generate the Optimal Latin

Hypercube test point based on the Audze-Eglais objective

function (Kianifar et al. 2015).

The validation sets designed to check the metamodels’ pre-

diction accuracy were also OLH DoE. Two different valida-

tion DoE sizes were considered, ranging between 1000 and

2000 validation tests, based on the problem dimensionality, as

shown in Table 2.

Table 2 summarizes the base experiment which includes

the evaluation of the effect of problem dimensionality and

complexity, and the scale of the experimental DoE used for

metamodel building. In order to evaluate the impact of exper-

imental uncertainty/noisiness of the response on the perfor-

mance of different metamodelling techniques, the experiment

was repeated 3 times with different noise conditions. Noise

was introduced in the experiment by adding a random term to

the function response, generated from a standard Gaussian

distribution multiplied by set values of noise-to-signal ratio

(expressed/referred to as a “% noise”), as follows:

– Base test—‘0%’ noise condition (or smooth data);

– Repeat 1—‘5%’ noise condition;

– Repeat 2—‘10%’ noise condition;

– Repeat 3—‘15%’ noise condition.

The choice of these level of noise was based on the com-

prehensive experimental studies such as those reported in

Berger (2012) and Kianifar et al. (2014), which systematically

Table 2 Experimental matrix for

the study—summary of test

functions and their characteristics

Test

function

No of variables

(n)

Problem type Modelling conditions

Scale Nonlinearity DoE size (test points) Noise

MBs (10n) MBl (30n) Validation

Test 1 2 Small Low 20 60 1000 0–15%

Test 2 3 Small Low 30 90 1000 0–15%

Test 3 4 Small Low 40 120 1000 0–15%

Test 4 2 Small High 20 60 1000 0–15%

Test 5 3 Small High 30 90 1000 0–15%

Test 6 4 Small High 40 120 1000 0–15%

Test 7 5 Medium Low 50 150 1500 0–15%

Test 8 6 Medium Low 60 180 1500 0–15%

Test 9 8 Medium Low 80 240 1500 0–15%

Test 10 6 Medium High 60 180 1500 0–15%

Test 11 7 Medium High 70 210 1500 0–15%

Test 12 8 Medium High 80 240 1500 0–15%

Test 13 10 Large Low 100 300 2000 0–15%

Test 14 16 Large Low 160 480 2000 0–15%

Test 15 20 Large Low 200 600 2000 0–15%

Test 16 10 Large High 100 300 2000 0–15%

Test 17 14 Large High 140 420 2000 0–15%

Test 18 18 Large High 180 540 2000 0–15%
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considered the experimental variability associated with

modelling different engine responses.

3.2 Selection of Metamodelling techniques

As discussed, the metamodelling techniques considered with-

in the scope of this study include Polynomial, RBFs and

Kriging. Several options, selected based on the common

choices in engineering practice, were considered for each

type, as follows:

– Two polynomial metamodels: order 2 (‘Poly 2’) and three

(‘Poly 3_c2’—i.e. cubic polynomial with interaction or-

der 2);

– Three RBF metamodels: using Gaussian, Thinplate and

Multiquadric kernel functions (shown as ‘RBF_G’,

‘RBF_TP’ and ‘RBF_MQ’);

– Three Kriging metamodels: using Gaussian (‘Krig_G’),

Matérn 3/2 (‘Krig_M32’) and Matérn 5/2 (‘Krig_M52’)

correlation functions;

– Three Kriging metamodels with nugget factor, using

Gaussian (‘KrigN_G’), Matérn 3/2 (‘KrigN_M32’) and

Matérn 5/2 (‘KrigN_M52’) correlation functions;

Thus, the base experiments included a total of 11

metamodels fitted for each of the 18 test functions considered.

In order to account for the impact of the modelling conditions

(sample size and noisiness of the response), the base experi-

ment was repeated for “Small” and “Large” DoE sizes and

different noise conditions (5%, 10% and 15%, in addition to

the base experiments which considered a smooth signal—0%

noise).

3.3 Performance metrics and analysis procedure

The metrics used to investigate the performance of the con-

structed metamodels are as follows:

(a) Normalised Root Mean Squared Error (NRMSE) of

the validation set, as the indicator of a metamodel’s

prediction accuracy over the design range (Mullur

and Messac 2005; Ulaganathan et al. 2014, 2015),

expressed by (6).

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

v
:∑v

i¼1 yi−ŷi

� �2
r

max yð Þ−min yð Þ
ð6Þ

NRMSE is the normalised discrepancy between the real

values (y) of the v validation sample points and the corre-

sponding prediction values (ŷ ) (Hartmann et al. 2013). The

smaller the value of NRMSE, the more accurately the

metamodel predicts.

The main reason for using an external validation met-

ric (based on additional validation samples) to define the

prediction accuracy, instead of statistical properties of the

constructed model such as root mean squared error

(RMSE) (Forsberg and Nilsson 2004; Kaymaz, 2005;

Mullur and Messac, 2005; Zhu et al. 2009) and R2

(Ben-Ari and Steinberg 2007; Fang et al. 2005; Jin

et al. 2003; Vicente-Serrano et al. 2003), is that non-

parametric metamodels are susceptible to over-fitting, es-

pecially in noisy data conditions. Thus, by measuring the

validation NRMSE, an evaluation is provided for the

capability of a metamodel to predict the response behav-

iour over the design range rather than the ability to con-

struct a model which follows the sample points (Fang

et al. 2005; Vicente-Serrano et al. 2003).

(b) The variance of NRMSEs for a problem type; this

provides an indicator of modelling robustness, co-

herent with Jin et al. (2001) and Chen et al. (2018,

2019), which relates to the capability of achieving

good accuracy for different problems, thus providing

an indicator whether a modelling technique is highly

problem dependent. In the context of this study, the

variance of NRMSE was calculated across the test-

problem clusters defined through the experimental

matrix, illustrated in Table 2. A smaller variance

of NRMSE value indicates consistent performance

of the methodology across the type of problem,

which can be taken as an indication of robustness.

(c) The computational effort was taken as an indicator

of efficiency. The required time to construct a

metamodel is used to define the computational effi-

ciency of different metamodelling techniques for

each of the problem types.

3.4 Validation test cases

The analysis of the experimental data generated from the

study planned for this research will facilitate the articu-

lation of a set of practitioner guidelines for the robust

choice of a metamodelling technique for a problem type

and modelling conditions. In order to validate the guide-

lines provided, an empirical validation exercise was in-

cluded in the research methodology, by choosing a set of

four real-world engineering problems, summarised in

Table 3. The test problems were selected from reported

case studies (including authors’ previous work—test

problems V1–V3) where actual DoE data was available/

accessible, with the aim of covering a good mix of

modelling conditions—the size of the data set and the

level of noise.
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4 Results and analysis

Based on the designed research methodology, for each of the

18 case studies listed in Table 2, 11 model types are created

under four noise conditions and two sampling sizes. Thus, a

total of 1584 metamodels were constructed.

This section provides a systematic analysis of the results of

the study. Taking the engineering practitioner viewpoint, the

analysis of the results focusses on the modelling choices and

conditions across the types of problems. Thus, the analysis

will consider the comparative performance (based on the

criteria outlined in Section 3.3) of the metamodelling tech-

niques for different scale and nonlinearity of test problems,

following the sequence below:

1. Small sample DoE

2. Large sample DoE

3. Sensitivity to noise

The efficiency of the metamodelling techniques (in terms

of computation cost) will be also evaluated, before articulating

a set of practical guidelines for the choice of metamodelling

techniques.

4.1 Evaluation of metamodelling techniques for small
sample DoEs

Figure 1 summarises the performance of modelling tech-

niques aggregated based on the results across the fitted

models for all the 18 test functions for small sampling

sizes. This figure includes both NRMSE (showing the av-

erage across all fitted models and whiskers extending to

the minimum and maximum NRMSE across the fitted

models) and variance of NRMSE, to give an overall si-

multaneous measure of accuracy and robustness, respec-

tively. As discussed, a smaller value for the mean of

NRMSE indicates that the modelling strategy is more ac-

curate, and a smaller range and variance of NRMSE across

the fitted models indicates a higher robustness of the

modelling strategy. In line with the literature, considering

the limited number of test functions to calculate the vari-

ance, if the variance of NRMSE is less than 0.05 (i.e. less

than 5% of the average response value), the modelling

methodology can be accepted as robust.

The results in Fig. 1 show that for small DoE sizes,

Kriging without a nugget factor outperforms other model-

ling strategies in terms of robustness—judged based on

the average and range of NRMSE across the fitted

models and the variance of NRMSE. In particular,

Kriging with the Matérn 5/2 correlation function (shown

as ‘Krig_M52’) performs slightly better than other corre-

lation functions. It should be noted that the variance of

NRMSE for all the modelling strategies is within an ac-

ceptable range (less than 0.05). Polynomial models can

have very good performance (in some cases NMRSE is

0), but their robustness is quite poor—as shown by the

large range and variance of NRMSE. RBFs do not per-

form very well with small sample sizes; the Gaussian

kernel appears to provide more robustness, but the worst

accuracy (highest average NRMSE).

In order to better understand the behaviour of different

metamodelling techniques, a deeper analysis is provided by

evaluating the performance in relation to the problem

characteristics—nonlinearity and scale.

Table 3 Summary of the validation experiments

Type of experiment Test problem Problem characteristics

Physical V1: Modelling of fuel consumption response

for a diesel engine based on dynamometer

testing data (Kianifar et al. 2014)

•Medium scale

•High-order nonlinearity

•Medium/large data set

•Low noise

V2: Modelling of NOx response for a diesel

engine based on dynamometer testing

data (Kianifar et al. 2014)

•Medium scale

•High-order nonlinearity

•Medium/large data set

•High noise

Computer-based/CAE V3: Modelling the head injury criteria (HIC)

response for a tall man during a car-pedestrian

impact based on dynamic CAE experiments

(Zhao et al. 2010)

•Medium scale

•High-order nonlinearity

•Small sample data set

•Medium noise (induced

in the experiment)

V4: Modelling of contaminant concentrations

response in the upper aquifer of a waste

disposal site in Moscow based on numerical

simulation data (Marrel et al. 2008; Volkova

et al. 2006).

•Large scale

•High-order nonlinearity

•Small sample data set

•No noise
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Therefore, Kriging modelling technique with Matérn 5/2

correlation function is shown to be the best method in terms of

both accuracy and robustness over all types of problems for

small sampling sizes.

Figures 2 and 3 illustrate the mean of NRMSE for each of

the nonlinearity order categories, i.e. low and high nonlinear-

ity, respectively. Figure 2 indicates that with small sampling

size, for low-order nonlinear problems, the Polynomials ap-

pear to perform better than all other methods. Kriging models

(without nugget) perform reasonably well in terms of both

average NRMSE and robustness (measured by the range of

NRMSE across the fitted models)—although not as good as

polynomials. RBF models do not perform robustly—as

shown by the large range of NRMSE. The results in Fig. 3

show that for high-order nonlinear problems, Kriging

metamodels outperform all the others in terms of accuracy

and robustness. While polynomial models can still deliver

good models in some cases (the whiskers extend to 0), in

general, they do not have enough flexibility to model nonlin-

earity, which gives poor robustness (the range of NRMSE is

quite large). RBFs perform relatively better in terms of robust-

ness, although they have inferior average NRMSE.
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Figures 4, 5 and 6 summarise the analysis of the performance

of metamodelling techniques in relation to problem dimension-

ality. The average and range of NRMSE across the fitted models

are illustrated for small (Fig. 4), medium (Fig. 5), and large

(Fig. 6) scale test functions. The results across show that

Kriging performs best in terms of model accuracy and robust-

ness across the problem scales. In particular, Kriging with cor-

relation function Matérn 5/2 provides the best performance

across the tests. Thus, it can be concluded that the problem scale

has a negligible effect on the performance of the modelling

techniques, which was also reported by Jin et al. (2001).

Other notable observations from the results in Figs. 4 to 6

include:

– Polynomial models can deliver good models (the

NRMSE whiskers extend to 0), but their robustness

is worse than most other models. In particular, the

cubic polynomial model shows a very wide

NRMSE range for the large-scale test functions,

which can be explained by the number of coeffi-

cients needed for the larger scale test problems in

relation to the DoE size.
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– The performance of the RBF models improves relative to

polynomials for the large-scale problems, in particular in

terms of robustness.

– Kriging with nugget metamodelling delivers robust per-

formance, but inferior to the standard Kriging in terms of

accuracy (average NRMSE), which is not surprising giv-

en that there is no noise in the response.

To provide an even more granular view of the results,

Figs. 7 and 8 show the performance of modelling techniques

in terms of the average NRMSE for different problem scales

with low nonlinearity (Fig. 7) and high nonlinearity (Fig. 8),

respectively.

The results in Fig. 7 confirm that for low nonlinearity

problems and small sample DoEs, the polynomials (in

particular the cubic polynomials) deliver the best average

NRMSE performance. The Kriging models (without nug-

get) provide very good models with NRMSE below 0.05

in all cases. RBFs can provide competitive NRMSE per-

formance, but not in all cases, so not a robust choice.

For high-nonlinearity problems, the results in Fig. 8

show that the Kriging method with both Matérn 3/2
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and Matérn 5/2 correlation functions perform the best in

terms of average NRMSE across the test functions

considered.

It is worth reflecting that if the problem scale is large and the

sample size is small, using a non-parametric model like Kriging

can be preferable since it uses fewer model parameters (i.e. while

the Polynomial will require many model coefficients in relation

to the Poly order). In other words, the performance of

Polynomials is very ‘problem-type’ and ‘sample-size’ dependent

(Jin et al., 2001).

4.2 Evaluation of metamodelling techniques for large
sample DoEs

The analysis of the results for the large sample DoE follows

the same sequence as the analysis of small sample DoE results

presented in the previous section.

Figure 9 summarises the performance of modelling tech-

niques aggregated based on the results across the fittedmodels

for all the 18 test functions for large sampling sizes, in terms of

NRMSE mean and range (minimum/maximum across the
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fitted models) and variance of NRMSE. The results show that

Kriging, in particular Kriging with Matérn 5/2, perform over-

all better (more robust) than the other metamodelling tech-

niques, results similar to the conclusion drawn from the results

seen in Fig. 1. It can also be noted that, unlike the results in

Fig. 1 for small size DoE, Polynomial order 3 (i.e. cubic mod-

el) performs marginally better than Poly order 2 with larger

sampling DoE test plans. The performance of the RBF model

with Thinplate kernel function is also improved significantly

by increasing the number of sampling points. Moreover, Fig. 9

shows that in comparison with the results in Fig. 1 for small

sample DoE, the robustness of all modelling strategies is

improved noticeably with the large DoE sizes (as shown by

both NRMSE and variance of NRMSE values).

Therefore, Kriging modelling technique with Matérn 5/2

correlation function is shown to be the best method in terms of

both accuracy and robustness over all types of problems for

not only the small but also large sampling sizes.

Figures 10 and 11 show that when a large sampling data is

accessible, Kriging, and in particular Kriging withMatérn 5/2,

delivers the best accuracy and robustness across both low and

high nonlinearity test functions. As expected, and similar to

what can be observed in Figs. 2 and 3 for small sample DoE,

the NRMSE is lower for low-nonlinearity problems compared
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to high- nonlinearity problems, for all modelling techniques.

Similarly, contrasting the range of NRMSE (visually illustrat-

ed by the whiskers) seen in Figs. 10 and 11 for a large DoE

sample, with Figs. 2 and 3 (small DoE size), it is noted that the

robustness improves with the DoE sample size for all model-

ling techniques. RBF models, in particular with Gaussian and

Multiquadric kernel functions, show less robustness compared

to the other methods.

Figures 12, 13 and 14 summarise the analysis of the per-

formance of metamodelling techniques in relation to problem

scale. These results show that the Kriging 5/2 outperforms all

the other modelling techniques regardless of problem scale,

similar to what was seen for small DoE sizes. Kriging models

with Matérn 3/2 correlation function are also competitive.

Figures 15 and 16 provide further granularity for the analy-

sis, showing the performance of metamodelling techniques in

terms of the average NRMSE for different problem scales with

low nonlinearity (Fig. 15) and high nonlinearity (Fig. 16), re-

spectively. Figure 6 shows that for large sampling sizes, for

high-order nonlinear problems the Kriging method with both

Matérn 3/2 and Matérn 5/2 correlation functions perform the

best in terms of accuracy (Kriging 5/2 is the best) across prob-

lem scales. However, for low-order nonlinear problems, it was

noted that Polynomials (in particular cubic polynomials)
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perform as well as Krigingmodels. It is also noted that for small

and medium-scale problems Kriging with Gaussian correlation

function performs particularly well. Of the RBF models, the

RBFs with Thinplate kernel appear to perform best.

4.3 Sensitivity to noise

In order to investigate the effects of noise in the response

va r i ab l e mea su r emen t on th e pe r f o rmance o f

metamodelling techniques, in terms of both accuracy and

robustness, all the 18 test case functions in Table 1 were

modelled under three noise conditions, i.e. 5%, 10% and

15% Gaussian random noise artificially added to the

response data. The whole set of experiments (including

both small and large DoE sampling size) was repeated

with the three levels of noise.

Figs. 17 and 18 summarise the prediction accuracy of

different modelling techniques under four different noise

conditions for the small and large DoE sizes, respectively.

These figures show that while Kriging with Matern 5/2

correlation function overall performance outperforms other

modelling techniques for smooth data (i.e. 0% noise) re-

gardless of the DoE size (as also seen in Figs. 1 and 9),

Kriging with Matern 3/2 correlation function appears to

perform marginally better under noisy data conditions, in

terms of average NRMSE.
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Other important observations from these results can be

summarised as follows:

– The performance of the Kriging with nugget

metamodelling technique is remarkably quite insensitive

to noise levels within the range considered in the study.

However, the average NRMSE of Kriging with nugget

(with Matern 5/2 correlation function) outperforms the

standard Kriging under highest levels of noise (15%)

and with a large DoE sample size.

– As expected, a general trend of worsening NRMSE

wi t h h ighe r no i s e i s obs e r ved ac ro s s t h e

metamodelling techniques, with the exception of

Kriging with nugget. The polynomial models also

show good stability in relation to increase noise for

large DoE sample sizes.

– It is also seen that the accuracy of modelling improves

with the large DoE sample size, except for the RBF with

Gaussian Kernel. In general, RBF metamodels show the

greatest sensitivity to noise.
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4.4 Evaluation of computational efficiency
of Metamodelling techniques

The efficiency of metamodelling techniques was evaluated by

the time required to fit a model on an Intel i5, 2.60 GHz com-

puter (with 8GB RAM), as summarised in Table 2 for each

problem scale and sample size. This table indicates that fitting

a model using either Polynomial or RBF methods is quite fast

regardless of the problem dimensionality (i.e. took less than 1 s

to fit a model). Therefore, relatively speaking, while

Polynomial is observed to be the most time-efficient method,

Kriging method is relatively very time-consuming. This result

was expected since the Kriging modelling technique without

nugget factor requires a k-dimensional optimisation, regardless

of the correlation function, to find the optimum value of the

maximum likelihood function parameters. The optimisation
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problem is even more complex for Kriging with nugget factor

which requires a (k + 1)-dimensional optimisation problem,

having an extra parameter to optimise for the nugget.

Table 4 illustrate that the time required to fit a model in-

creases by the increase of the problem dimensionality, espe-

cially for the Kriging method. It is also noted that modelling

using a larger sampling data (i.e. MBl) is less time-efficient

than a small sampling data (i.e. MBs) which matches well

with intuition considering that the optimisation process be-

comes computationally more expensive.

4.5 Overall guideline for choosing a robust
metamodelling method

Summarising all the presented results, in order to recommend

on the selection of the most robust metamodelling technique,

it can be concluded that for smooth response data:

– Kriging with Matérn 5/2 correlation function outperforms

all the other modelling methods, regardless of problem

scale and DoE size.

– Kriging with Matérn 5/2 correlation function performs

best for highly nonlinear functions, regardless of the

problem scale and DoE size, while also performing rea-

sonably accurate for low nonlinear problems.

Polynomials (especially Cubicmodels) are also providing

competitive results to the Krig_M52 method for low-

order non-linear functions, however; a Polynomial might

require a larger DoE sample to calculate the model

coefficients.

And for noisy data:

– Kriging with Matérn 3/2 correlation function excels other

modelling techniques in terms of accuracy and

robustness.

– Kriging with nugget factor (Matérn 5/2 correlation func-

tion) can be a better modelling option for highly noisy

data (15% noise) with large DoE samples.

5 Validation case studies

In order to provide empirical validation for the guidelines

provided in section 4.5, a modelling analysis was performed

for four real-world engineering test problems, as outlined in

the methodology section 3.4. For each of these four validation

test case problems, all the considered metamodelling tech-

niques were deployed, and the performance of the techniques

measured in terms of NRMSE of validation test points was

analysed. The results are discussed in the following sections.

5.1 Diesel engine fuel consumption

The aim of this case study was to predict the fuel consumption

response of a Diesel engine on an engine calibration test. The

test data was collected using 127 test points scheduled based

on an adaptive D-Optimal DoE, covering the range of 6 design

parameters, with 15 additional space-filling test points for val-

idation (for more details see (Kianifar et al. 2014)).

This case study can be categorised as a problem of:

– Medium scale: 6 design parameters;

– Medium- to high-order nonlinearity: due to the expected

physical behaviour of the fuel consumption response

(Kianifar et al. 2014);

– Medium DoE sample: 127 Model Building points for 6

parameters, which is bigger than a small DoE of 60 (i.e.

10 × 6) points, but smaller that the “large” DoE (i.e. 30 ×

6 = 180);

– Low noise condition (< 5%): measurement of fuel flow

for a Diesel engine on an engine dynamometer test setting

is reasonably accurate—though not 0% noise.

Figure 19 illustrates the performance of different

metamodelling techniques for the case study in terms of

NRMSE. This figure indicates that Kriging model with

Matérn 3/2 correlation function performs best, while RBF

with Thinplate kernel function is also providing competitive

accuracy.

Table 4 Time needed (in second) to fit a model

DoE size

MBs MBs MBs MBl MBl MBl

Model/scale Small Medium Large Small Medium Large

Poly 2 0.01 0.01 0.46 0.00 0.02 0.20

Poly 3_c2 0.00 0.00 0.05 0.00 0.15 0.43

RBF_G 0.00 0.00 0.06 0.01 0.01 0.20

RBF_TP 0.00 0.00 0.02 0.01 0.02 0.09

RBF_MQ 0.00 0.00 0.02 0.00 0.03 0.06

Krig_G 1.81 8.61 102.22 5.88 55.03 653.34

Krig_M32 1.96 8.85 131.79 8.43 82.31 645.37

Krig_M52 1.92 8.09 109.66 7.12 48.38 1365.52

KrigN_G 1.82 7.39 58.17 6.59 56.17 724.76

KrigN_M32 1.50 5.44 71.21 6.70 50.34 603.08

KrigN_M52 1.81 8.08 109.49 5.24 55.88 781.47
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This result is consistent with the guideline provided—

which would have suggested the Kriging model with Matérn

3/2 correlation function—given the presence of noise.

5.2 Diesel engine NOx emissions

This test case aims to predict the NOx emission response of a

Diesel engine, based on data collected from the same engine

dynamometer testing experiment as described in the previous

section. The main difference is that measurement of NOx is

characterised by higher uncertainty—hence higher noise

modelling conditions. Accordingly, this problem type is also

a: medium-scale, high-order nonlinear with large sample size,

but it is under 15% noise condition. The accuracy of

metamodelling techniques is again compared based on the

NRMSE of the 15 space-filling validation test points.

Figure 20 indicates that Kriging with Matérn 3/2 outper-

forms other modelling techniques, validating the results pro-

vided in the guideline. Moreover, similar to the trends ob-

served in section 4.3, for such a problem, which is under a
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large noise condition with a large sampling data, Kriging

models with nugget factor are also providing highly accurate

response models.

5.3 Metamodelling for crashworthiness/pedestrian
impact simulation

This case study aims to use an efficient metamodelling tech-

nique to model the head injury criteria as simulation response.

The study focusses on the vehicle impact event simulation

with a tall male pedestrian, based on a Optimal Latin

Hypercube design of 100 test points; 70 points for construct-

ing the models and 30 points for validation, over the range of 7

design parameters (for more details see (Zhao et al. 2010)).

This problem can be categorised as:

– Medium scale: with 7 design parameters

– High-order nonlinear: due to the highly nonlinear behav-

iour of head injury response in relation to the design pa-

rameters (Zhao et al. 2010)

– Small sampling data: 70 points for 7 parameters (i.e. 10 × 7)

– About 10% noise condition, due to the applied error range

during the simulation process

Figure 21 illustrates the accuracy of different modelling

techniques. It is noted that Kriging model with Matérn 3/2

correlation function performs best (i.e. slightly better than

Krig_M52). Therefore, the proposed modelling method by

the guideline for this type of problem excels other techniques.

This figure also shows that the RBF models are also

performing comparatively well, matching the author’s deci-

sion in the original study (Zhao et al. 2010) that they preferred

RBFs to the polynomials.

5.4 Metamodelling for the MARTHE simulation data

The MARTHE data problem has been used in literature to

test the performance of metamodels (Marrel et al. 2008;

Volkova et al. 2006). For this problem, 300 data points

are available from the MARTHE code, which provides a

numerical simulation of Strontium-90 transport in the up-

per aquifer of a waste disposal site in Moscow (Volkova

et al. 2006). The data were collected over the range of 20

design parameters to model the contaminant concentra-

tions. In this paper, 200 test points were randomly selected

to construct the response model, and the remaining 100

points used as the validation set. Accordingly, the test

problem type can be described as:

– Large scale: with 20 design parameters

– High-order nonlinear: due to the high-order nonlinear be-

haviour of the response (Volkova et al. 2006)

– Small sampling data: 200 points for 20 parameters (i.e.

10 × 20)

– 0% noise condition: collected from the MARTHE simu-

lation code

Figure 22 shows the NRMSE of the validation set for dif-

ferent metamodelling techniques. This figure indicates that

Kriging with Matérn 5/2 correlation function outperforms
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other methods (i.e. slightly better than Krig_M32), validating

the guideline provided in this research for such problem types.

6 Discussion, conclusions and future work

The main aim of this study was to carry out a comprehen-

sive and systematic evaluation of the performance of sev-

eral metamodelling techniques frequently utilised by engi-

neers, considering the characteristics of the problems and

the modelling choices and conditions—i.e. sample size

and noise conditions. The motivation for this research

was given by the need to provide guidelines for engineers

who might seek to select a robust metamodelling strategy

(from a diverse choice available) for real-world engineer-

ing problems.

The paper introduced a framework for the study of the

metamodeling techniques designed to provide a balanced

evaluation against all the characteristics that define the

metamodeling typology—dimensionality, nonlinearity, sam-

ple size and noise. The careful selection of synthetic bench-

mark problems/test functions ensured a balanced set is avail-

able for each problem type. The systematic consideration of

noise as a factor in metamodeling is important because it pro-

jects the validity of the study onto both physical and

computer-based experiments.

The choice of techniques to be included in the evaluation

was driven by the review of related studies from literature, and

the scope/focus of the study on providing guidance for prac-

tical product development engineering metamodeling

problems, where affordability of large sample sizes for the

experiments to generate the data for model building is often

a limiting factor. Therefore, a range of techniques that in liter-

ature have shown promising results in relation to high dimen-

sional problems and large sample sizes (e.g. HDMR) have not

been included in this study. The study was also limited in

relation to the selection of correlation functions for Kriging

and kernels for RBF, confined to the choice of a set that was

seen from previous studies to give consistently good results

for engineering problems. For the same reason, we have not

considered global trend functions for either Kriging (i.e.

Universal Kriging) or RBF (i.e. hybrid RBFmodels).We have

also not considered in this study the effect of hyperparameters

that can be used to further improve the fit that can be achieved

with a specific metamodeling technique. The main reason for

this rests with engineering practice considerations: real-world

modelling problems often require many models to be devel-

oped as part of a larger modelling exercise. For example,

modelling engine performance—either through physical tests

or computer-based experiments (for example using CFD

models for combustion) requires many models (10 s and often

100 s) to be developed at different conditions (e.g. based on

data collected at a range of engine speed/load setpoints).

Through hyperparameters tuning and choosing from a wider

pool of correlation functions or kernels, slightly better models

fits could perhaps be achieved for each individual data set.

However, this might mean that overall we end up with 100 s

of different model structures—for the same fundamental en-

gineering problem modelled. This will not only be confusing

for the analyst, but will raise issues of confidence in the
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robustness of the models and modelling, as well as the inter-

pretability of the models. Such issues have been also

discussed by other researchers that sought to develop guide-

lines for the practitioners, see for example Van Gelder et al.

(2014). Therefore, our strategy has been to focus on the de-

velopment of a consistent framework for describing engineer-

ing modelling problem types, and to design a systematic ex-

periment to evaluate a set of candidates that have already been

proven as good modelling choices, leading to practitioner

guidelines for choosing a metamodeling technique for their

specific problem type.

Considering the results from the systematic evaluation of

metamodels experiments, it was observed that:

& Under 0% noise condition, Kriging with Matérn 5/2 cor-

relation function outperforms the other methods for high-

order nonlinear problems; however, for low-order prob-

lems, Polynomials are providing competitive response

models in terms of accuracy, and have the advantage that

are easier to interpret;

& Problem scale has an insignificant effect on the perfor-

mance of modelling techniques in terms of accuracy, and

Kriging with both Matérn 5/2 and Matérn 3/2 correlation

functions provide highly accurate response models;

& Increasing the number of sampling points usually results

in an enhancement in the performance of modelling tech-

niques, in terms of accuracy and robustness; however, this

is also dependent on the noise condition;

& For both small and large DoE sample sizes, Kriging with

Matérn 5/2 correlation function excels in terms of accura-

cy and robustness;

& For engineering problems under noise condition, Kriging

modelling technique with Matérn 3/2 correlation function

performs better than other techniques; however, its perfor-

mance might deteriorate under very high-noise conditions

(i.e. 15% noise or more), where using a Kriging model

with nugget factor might provide better models;

& In terms of computation-efficiency, both Polynomials and

RBFs take a trivial amount of time to construct the

models, while the Kriging can be very time-consuming,

in particular for large samples; however, from a practical

engineering point of view, the cost of computation is per-

haps less significant compared to the benefits gained from

a better quality model.

These findings, based on the results from the evaluation

against the 18 test problems, have supported the development

of a set of modelling guidelines for engineers, which in es-

sence can be summarised as follows: (i) for engineering prob-

lems with smooth-data (i.e. 0% noise), Kriging with Matérn

5/2 correlation function is the most dependable metamodeling

method, and (ii) when experimental noise conditions are sig-

nificant, Kriging with Matérn 3/2 correlation function pro-

vides a robust metamodeling choice. The capability of

Kriging with the Matérn class of correlation functions is due

to the flexibility and realistic smoothness assumptions in

modelling many physical processes (Stein 2012). Within our

study, the proposed guidelines have been validated with four

engineering case studies, which showed that the suggested

modelling technique based on the problem type confirmed

the performance expectations.

The framework developed in this paper should provide a

basis for further research on evaluation of metamodeling tech-

niques. The structure of the experiment, including the balanced

set of benchmark functions structured on problem types, pro-

vides a good testbed for further studies, which could include a

broader set of metamodelling techniques as well as the effect of

hyperparameters. The role of dynamic approaches for optimal

metamodel selection, e.g. as discussed by Zhao et al. (2011),

could also be evaluated within the context of this framework.

Most importantly, we see the impact of this paper onto the

engineering practitioners dealing with modelling problems.

The principle of the guidelines developed in this paper is to

identify a robust metamodeling choice for a problem type.

This encourages the engineer to start by analysing the problem

in relation to its characteristics, firstly in relation to dimension-

ality and complexity (either nonlinearity, or in terms of inter-

actions and importance of terms, which could be evaluated

through smaller screening experiments), and then in relation

to the sample size affordability and the level of noise affecting

the variables and the experiment (which could be assessed

with standard repeatability and reproducibility tests, which

are common practice in engineering). This should not only

provide a more robust basis for metamodeling, but also in-

crease the confidence and ultimately the take-up of

metamodeling in engineering practice.

7 Replication of results

The test functions are listed in the Appendix, and the

hyperparameters of the metamodelling techniques imple-

mented in the paper are discussed in Section 3; therefore,

the results should be fully reproducible by other re-

searchers. The implementation was in Matlab, and the

scripts can be made available by request to interested re-

searchers via the corresponding author.
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j¼1x
i
j

� �

−bi

h i2

Global Optimization Test Problems n.d.

4 f xð Þ ¼ −aexp −b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
∑2

i¼1x
2
i

q
� �

−exp 1
2
∑2

i¼1cos cxið Þ
� �

þ aþ exp 1ð Þ Bäck 1996

5 f xð Þ ¼ −∑4
i¼1aiexp −∑3

j¼1Aij x j−Pij

� �2
� �

Global Optimization Test Problems n.d.

6 f xð Þ ¼ 1
0:839

1:1−∑4
i¼1aiexp −∑4

j¼1Aij x j−Pij

� �2
� �h i

Picheny et al. 2013b

7 f xð Þ ¼ ∑5
i¼1 xi−1ð Þ2−∑5

i¼2xixi−1 Global Optimization Test Problems n.d.

8 Vm xð Þ ¼ Vb1þ0:74ð Þβ Rc2þ9ð Þ
β Rc2þ9ð ÞþR f

þ
11:35R f

β Rc2þ9ð ÞþR f
þ

0:74R f β Rc2þ9ð Þ

β Rc2þ9ð ÞþR fð ÞRc1

Ben-Ari and Steinberg 2007; Moon et al. 2012

9 f xð Þ ¼ 2piTu Hu−H lð Þ

ln r
rw
ð Þ 1þ 2LTu

ln r
rwð Þr2wKw

þTu
Tl

� � Gramacy and Lian 2012; Xiong et al. 2013;

Zhou et al. 2012

10 f xð Þ ¼ −∑4
i¼1aiexp −∑6

j¼1Aij x j−Pij

� �2
� �

Picheny et al. 2013b

11 C xð Þ ¼ 2pi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M

kþS2
P0V0
T0

T0

V2

r

Ben-Ari and Steinberg 2007; Moon et al. 2012

12 f xð Þ ¼ ∑4
i¼1Licos ∑i

j¼1θ j

� �

þ ∑4
i¼1Lisin ∑i

j¼1θ j

� �� �0:5

An and Owen 2001

13 f xð Þ ¼ x21 þ x22 þ x1x2−14x1−16x2 þ x3−10ð Þ2 þ 4 x4−5ð Þ2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x7
2 + 7(x8 − 11)2 + 2(x9 − 10)

2 + (x10 − 7)2 + 45

Jin et al. 2001

14 f xð Þ ¼ ∑16
i¼1∑

16
j¼1aij x

2
i þ xi þ 1

� �

x2j þ x j þ 1
� �

Jin et al. 2001

15 f xð Þ ¼ 5x12
1þx1

þ 5 x4−x20ð Þ2 þ x5 þ 40x319−5x19 þ 0:05x2 þ 0:08x3−0:03x6

þ 0:03x7−0:09x9−0:01x10−0:07x11 þ 0:25x213−0:04x14 þ 0:06x15

−0:01x17−0:03x18

Welch et al. 1992b

16 f xð Þ ¼ ∑10
i¼1x

2
i þ ∑10

i¼10:5ixi
� �2

þ ∑10
i¼10:5ixi

� �4
Global Optimization Test Problems n.d.

17 f xð Þ ¼ x1−1ð Þ2 þ ∑14
i¼2i 2x

2
i −xi−1

� �2
Global Optimization Test Problems n.d.

18 f xð Þ ¼ ∑17
i¼1 100 xiþ1−x

2
i

� �2
þ xi−1ð Þ2

h i

Dixon 1978; Picheny et al. 2013b
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