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Performance Evaluation of Object Detection
Algorithms for Video Surveillance

Jacinto C. Nascimento, Member, IEEE, and Jorge S. Marques

Abstract—In this paper, we propose novel methods to evaluate
the performance of object detection algorithms in video sequences.
This procedure allows us to highlight characteristics (e.g., region
splitting or merging) which are specific of the method being used.
The proposed framework compares the output of the algorithm
with the ground truth and measures the differences according to
objective metrics. In this way it is possible to perform a fair com-
parison among different methods, evaluating their strengths and
weaknesses and allowing the user to perform a reliable choice of
the best method for a specific application. We apply this method-
ology to segmentation algorithms recently proposed and describe
their performance. These methods were evaluated in order to as-
sess how well they can detect moving regions in an outdoor scene
in fixed-camera situations.

Index Terms—Ground truth, metrics, multiple interpretations,
performance evaluation, segmentation, surveillance systems.

I. INTRODUCTION

V
IDEO surveillance systems rely on the ability to detect

moving objects in the video stream which is a relevant in-

formation extraction step in a wide range of computer vision ap-

plications. Each image is segmented by automatic image anal-

ysis techniques. This should be done in a reliable and effective

way in order to cope with unconstrained environments, non sta-

tionary background and different object motion patterns. Fur-

thermore, different types of objects are manually considered,

e.g., persons, vehicles, or groups of people.

Many algorithms have been proposed for object detection in

video surveillance applications. They rely on different assump-

tions, e.g., statistical models of the background [1]–[3], mini-

mization of Gaussian differences [4], minimum and maximum

values [5], adaptivity [6], [7] or a combination of frame differ-

ences and statistical background models [8]. However, little in-

formation is available on the performance of these algorithms

for different operating conditions.

Two approaches have been recently considered to char-

acterize the performance of video segmentation algorithms:

pixel-based methods, template based methods and object-based

methods. Pixel based methods assume that we wish to detect

all the active pixels in a given image. Object detection is

therefore formulated as a set of independent pixel detection
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problems. This is a classic binary detection problem provided

that we know the ground truth (ideal segmented image). The

algorithms can therefore be evaluated by standard measures

used in Communication theory, e.g., misdetection rate, false

alarm rate and receiver operating characteristic (ROC) [9].

Several proposals have been made to improve the computa-

tion of the ROC in video segmentation problems, e.g., using a

perturbation detection rate analysis [10] or an equilibrium anal-

ysis [11]. The usefulness of pixel-based methods for surveil-

lance applications is questionable since we are not interested

in the detection of point targets but object regions instead. The

computation of the ROC can also be performed using rectan-

gular regions selected by the user, with and without moving ob-

jects [12]. This improves the evaluation strategy since the sta-

tistics are based on templates instead of isolated pixels.

A third class of methods is based on an object evaluation.

Most of the works aim to characterize color, shape and path

fidelity by proposing figures of merit for each of these issues

[13]–[15] or area based performance evaluation as in [16]. This

approach is instrumental to measure the performance of image

segmentation methods for video coding and synthesis but it is

not usually used in surveillance applications.

These approaches have three major drawbacks. First object

detection is not a classic binary detection problem. Several

types of errors should be considered (not just misdetection and

false alarms). For example, what should we do if a moving

object is split into several active regions? or if two objects are

merged into a single region? Second some methods are based

on the selection of isolated pixels or rectangular regions with

and without persons. This is an unrealistic assumption since

practical algorithms have to segment the image into background

and foreground and do not have to classify rectangular regions

selected by the user. Third, it is not possible to define a unique

ground truth. Many images admit several valid segmentations.

If the image analysis algorithm produces a valid segmentation

its output should be considered as correct.

In this paper, we propose objective metrics to evaluate the per-

formance of object detection methods by comparing the output

of the video detector with the ground truth obtained by manual

edition. Several types of errors are considered: splits of fore-

ground regions; merges of foreground regions; simultaneous

split and merge of foreground regions; false alarms, and detec-

tion failures. False alarms occur when false objects are detected.

The detection failures are caused by missing regions which have

not been detected.

In this paper, five segmentation algorithms are considered as

examples and evaluated. We also consider multiple interpreta-

tions in the case of ambiguous situations, e.g., when it is not
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clear if two objects overlap and should be considered as a group

or if they are separated apart.

The first algorithm is denoted as basic background sub-

traction (BBS) algorithm. It computes the absolute difference

between the current image and a static background image

and compares each pixel to a threshold. All the connected

components are computed and they are considered as active

regions if their area exceeds a given threshold. This is perhaps

the simplest object detection algorithm one can imagine. The

second method is the detection algorithm used in the

system [17]. Three features are used to characterize each pixel

of the background image: minimum intensity, maximum inten-

sity and maximum absolute difference in consecutive frames.

The third method assumes that each pixel of the background is

a realization of a random variable with Gaussian distribution

(SGM—single Gaussian model) [1]. The mean and covariance

of the Gaussian distribution are independently estimated for

each pixel. The fourth algorithm represents the distribution of

the background pixels with a mixture of Gaussians [2]. Some

modes correspond to the background and some are associated

with active regions (MGM—multiple Gaussian model). The

last method is the one proposed in [18] and denoted as Lehigh

Omnidirectional Tracking System (LOTS). It is tailored to

detect small non cooperative targets such as snipers. Some

of these algorithms are described in a special issue of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE

INTELLIGENCE (August 2000), which describes a state of art

methods for automatic surveillance systems.

In this work, we provide segmentation results of these algo-

rithms on the PETS2001 sequences, using the proposed frame-

work. The main features of the proposed method are the fol-

lowing. Given the correct segmentation of the video sequence

we detect several types of errors: 1) splits of foreground regions,

2) merges of foreground regions, 3) simultaneously split and

merge of foreground regions, 4) false alarms (detection of false

objects), and 5) the detection failures (missing active regions).

We then compute statistics for each type of error.

The structure of the paper is as follows. Section II briefly

reviews previous work. Section III describes the segmentation

algorithms used in this paper. Section IV describes the proposed

framework. Experimental tests are discussed in Section V and

Section VI presents the conclusions.

II. RELATED WORK

Surveillance and monitoring systems often require on line

segmentation of all moving objects in a video sequence. Seg-

mentation is a key step since it influences the performance of

the other modules, e.g., object tracking, classification or recog-

nition. For instance, if object classification is required, an accu-

rate detection is needed to obtain a correct classification of the

object.

Background subtraction is a simple approach to detect

moving objects in video sequences. The basic idea is to subtract

the current frame from a background image and to classify each

pixel as foreground or background by comparing the difference

with a threshold [19]. Morphological operations followed by a

connected component analysis are used to compute all active

regions in the image. In practice, several difficulties arise: the

background image is corrupted by noise due to camera move-

ments and fluttering objects (e.g., trees waving), illumination

changes, clouds, shadows. To deal with these difficulties several

methods have been proposed (see [20]).

Some works use a deterministic background model, e.g.,

by characterizing the admissible interval for each pixel of the

background image as well as the maximum rate of change

in consecutive images or the median of largest interframes

absolute difference [5], [17]. Most works however rely on sta-

tistical models of the background, assuming that each pixel is a

random variable with a probability distribution estimated from

the video stream. For example, the Pfinder system (“Person

Finder”) uses a Gaussian model to describe each pixel of the

background image [1]. A more general approach consists of

using a mixture of Gaussians to represent each pixel. This

allows the representation of multi modal distributions which

occur in natural scene (e.g., in the case of fluttering trees) [2].

Another set of algorithms is based on spatio–temporal seg-

mentation of the video signal. These methods try to detect

moving regions taking into account not only the temporal

evolution of the pixel intensities and color but also their spatial

properties. Segmentation is performed in a three-dimensional

(3-D) region of image-time space, considering the temporal

evolution of neighbor pixels. This can be done in several ways,

e.g., by using spatio–temporal entropy, combined with morpho-

logical operations [21]. This approach leads to an improvement

of the systems performance, compared with traditional frame

difference methods. Other approaches are based on the 3-D

structure tensor defined from the pixels spatial and temporal

derivatives, in a given time interval [22]. In this case, detection

is based on the Mahalanobis distance, assuming a Gaussian

distribution for the derivatives. This approach has been imple-

mented in real time and tested with PETS 2005 data set. Other

alternatives have also been considered, e.g., the use of a region

growing method in 3-D space–time [23].

A significant research effort has been done to cope with

shadows and with nonstationary backgrounds. Two types of

changes have to be considered: show changes (e.g., due to the

sun motion) and rapid changes (e.g., due to clouds, rain or

abrupt changes in static objects). Adaptive models and thresh-

olds have been used to deal with slow background changes

[18]. These techniques recursively update the background

parameters and thresholds in order to track the evolution of the

parameters in nonstationary operating conditions. To cope with

abrupt changes, multiple model techniques have been proposed

[18] as well as predictive stochastic models (e.g., AR, ARMA

[24], [25]).

Another difficulty is the presence of ghosts [26], i.e., false

active regions due to statics objects belonging to the background

image (e.g., cars) which suddenly start to move. This problem

has been addressed by combining background subtraction with

frame differencing or by high level operations [27], [28].

III. SEGMENTATION ALGORITHMS

This section describes object detection algorithms used in this

work: BBS, , SGM, MGM, and LOTS. The BBS, SGM, and

MGM algorithms use color while and LOTS use grayscale

images. In the BBS algorithm, the moving objects are detected
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Fig. 1. Two regions (in bounding boxes) of an image.

by computing the difference between the current frame and the

background image. A thresholding operation is performed to

classify each pixel as foreground region if

(1)

where is a 3 1 vector being the intensity of the pixel in

the current frame, is the mean intensity (background)

of the pixel, and is a constant.

Ideally, pixels associated with the same object should have

the same label. This can be accomplished by performing a con-

nected component analysis (e.g., using 8—connectivity crite-

rion). This step is usually performed after a morphological fil-

tering (dilation and erosion) to eliminate isolated pixels and

small regions.

The second algorithm is denoted here as since it is used in

the system to compute moving objects [17]. This algorithm

is designed for grayscale images. The background model is built

using a training sequence without persons or vehicles. Three

values are estimated for each pixel using the training sequence:

minimum intensity (Min), maximum intensity (Max), and the

maximum intensity difference between consecutive frames (D).

Foreground objects are computed in four steps: 1) thresholding,

2) noise cleaning by erosion, 3) fast binary component analysis,

and 4) elimination of small regions.

We have modified the thresholding step of this algorithm

since often leads to a significant level of miss classifications.

We classify a pixel as a foreground pixel iff

(2)

Figs. 1 and 2 show an example comparing both approaches.

Fig. 1 shows the original image with two active regions. Fig. 2(a)

and (b) displays the output of the thresholding step performed

as in [17] and using (2).

The third algorithm considered in this study is the SGM

(single Gaussian model) algorithm. In this method, the infor-

Fig. 2. Thresholding results: (a) using the approach as in [17] and (b) using (2).

mation is collected in a vector , which defines the

intensity and color of each pixel. We assume that the scene

changes slowly. The mean and covariance of

each pixel can be recursively updated as follows:

(3)

(4)

where is the pixel of the current frame in color

space and is a constant.

After updating the background, the SGM performs a binary

classification of the pixels into foreground or background and

tries to cluster foreground pixels into blobs. Pixels in the current

frame are compared with the background by measuring the log

likelihood in color space. Thus, individual pixels are assigned

either to the background region or a foreground region

(5)

where is a vector defined for each pixel in

the current image, is the pixel vector in the background

image .

If a small likelihood is computed using (5), the pixel is clas-

sified as active. Otherwise, it is classified as background.

The fourth algorithm (MGM) models each pixel

as a mixture of Gaussians distributions, i.e.,

(6)

where is a multivariate normal distribu-

tion and is the weight of th normal,

(7)

with . Note that each pixel is a 3

1 vector with three component colors (red, green, and blue), i.e.,
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. To avoid an excessive computa-

tional cost, the covariance matrix is assumed to be diagonal [2].

The mixture model is dynamically updated. Each pixel is up-

dated as follows. 1) The algorithm checks if each incoming pixel

value x can be ascribed to a given mode of the mixture, this is

the match operation. 2) If the pixel value occurs inside the con-

fidence interval with standard deviation, a match event

is verified. The parameters of the corresponding distributions

(matched distributions) for that pixel are updated according to

(8)

(9)

where

(10)

The weights are updated by

(11)

matched models

remaining models
(12)

is the learning rate. The non match components of the mix-

ture are not modified. If none of the existing components match

the pixel value, the least probable distribution is replaced by

a normal distribution with mean equal to the current value, a

large covariance and small weight. 3) The next step is to order

the distributions in the descending order of . This criterion

favours distributions which have more weight (most supporting

evidence) and less variance (less uncertainty). 4) Finally the al-

gorithm models each pixel as the sum of the corresponding up-

dated distributions. The first Gaussian modes are used to rep-

resent the background, while the remaining modes are consid-

ered as foreground distributions. is chosen as follows: is

the smallest integer such that

(13)

where is a threshold that accounts for a certain quantity of

data that should belong to the background.

The fifth algorithm [18] is tailored for the detection of non

cooperative targets (e.g., snipers) under non stationary environ-

ments. The algorithm uses two gray level background images

, . This allows the algorithm to cope with intensity varia-

tions due to noise or fluttering objects, moving in the scene. The

background images are initialized using a set of consecutive

frames, without active objects

(14)

(15)

where denotes the time instant.

In this method, targets are detected by using two thresholds

( , ) followed by a quasi-connected components (QCC)

analysis. These thresholds are initialized using the difference

between the background images

(16)

(17)

where and are constants specified by the user.

We compute the difference between each pixel and the closest

background image. If the difference exceeds a low threshold ,

i.e.,

(18)

the pixel is considered as active. A target is a set of connected

active pixels such that a subset of them verifies

(19)

where is a high threshold. The low and high thresh-

olds and as well as the background images

and are recursively updated in a fully auto-

matic way (see [18] for details).

IV. PROPOSED FRAMEWORK RAMEWORK

In order to evaluate the performance of object detection algo-

rithms we propose a framework which is based on the following

principles:

• A set sequences is selected for testing and all the moving

objects are detected using an automatic procedure and

manually corrected if necessary to obtain the ground truth.

This is performed 1 frame/s.

• The output of the automatic detector is compared with the

ground truth.

• The errors are detected and classified in one of the fol-

lowing classes: correct detections, detections failures,

splits, merges, split/merges, and false alarms.

• A set of statistics (mean, standard deviation) are computed

for each type of error.

To perform the first step we made a user friendly interface

which allows the user to define the foreground regions in the

test sequence in a semi-automatic way. Fig. 3 shows the inter-

face used to generate the ground truth. A set of frames is ex-

tracted from the test sequence (one per second). An automatic

object detection algorithm is then used to provide a tentative

segmentation of the test images. Finally, the automatic segmen-

tation is corrected by the user, by merging, splitting, removing

or creating active regions. Typically the boundary of the object

is detected with a two pixel accuracy. Multiple segmentations of

the video data are generated every time there is an ambiguous

situation, i.e., two close regions which are almost overlapping.

This problem is discussed in Section IV-D.

In the case depicted in the Fig. 3, there are four active regions:

a car, a lorry and two groups of persons. The segmentation algo-
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Fig. 3. User interface used to create the ground truth from the automatic seg-
mentation of the video images.

rithm also detects regions due to lighting changes, leading to a

number of false alarms (four). The user can easily edit the image

by adding, removing, checking the operations, thus providing a

correct segmentation. In Fig. 3, we can see an example where

the user progressively removes the regions which do not belong

to the object of interest. The final segmentation is shown at the

bottom images.

The test images are used to evaluate the performance of object

detection algorithms. In order to compare the output of the al-

gorithm with the ground truth segmentation, a region matching

procedure is adopted which allows to establish a correspondence

between the detected objects and the ground truth. Several cases

are considered:

1) Correct Detection (CD) or 1-1 match: The detected re-

gion matches one and only one region.

2) False Alarm (FA): The detected region has no correspon-

dence.

3) Detection Failure (DF): The ground truth region has no

correspondence.

4) Merge Region (M): The detected region is associated to

several ground truth regions.

5) Split Region (S): The ground truth region is associated to

several detected regions.

6) Split-Merge Region (SM): When the conditions pointed

in 4, 5 are simultaneously satisfied.

A. Region Matching

Object matching is performed by computing a binary cor-

respondence matrix , which defines the correspondence be-

tween the active regions in a pair of images. Let us assume that

we have N ground truth regions and M detected regions

. Under these conditions is a matrix, defined as

follows:

if

if

(20)

where is the threshold which accounts for the overlap require-

ment. It is also useful to add the number of ones in each line or

column, defining two auxiliary vectors

(21)

(22)

When we associate ground truth regions with detected re-

gions six cases can occur: zero-to-one, one-to-zero, one-to-one,

many-to-one, one-to-many, and many-to-many associations.

These correspond to false alarm, misdetection, correct detec-

tion, merge, split, and split-merge.

Detected regions are classified according to the following

rules:

(23)

Detection failures (DF) associated to the ground truth region

occurs if .

The two last situations (FA, DF) in (23) occur whenever

empty columns or lines in matrix are observed.

Fig. 4 illustrates the six situations considered in this analysis,

by showing synthetic examples. Two images are shown in each

case, corresponding to the (left) ground truth and (right) de-

tected regions. It also depicts the correspondence matrix . For

each case, the left image contains the regions defined by the

user (ground truth) and the right image contains the regions

detected by the segmentation algorithm. Each region is repre-

sented by an white area containing a visual label. Fig. 4(a) shows

an ideal situation, in which each ground truth region matches

only one detected region (correct detection). In Fig. 4(b), the

“square-region” has no correspondence with the detected re-

gions; thus, it corresponds to a detection failure. In Fig. 4(c), the

algorithm detects regions which have no correspondence to the

image; thus, indicating a false alarm occurrence. Fig. 4(d) shows

a merge of two regions since two different regions (“square” and

“dot” regions in ) have the same correspondence to the “square

region” in . The remaining examples in this figure are self ex-

plaining, illustrating the (e) split and (f) split-merge situations.

B. Region Overlap

The region based measures described herein depends on an

overlap requirement [see (20)] between the region of the

ground truth and the detected region. Without this requirement,

this means that a single pixel overlap is enough for establishing

a match between a detected region and a region in the ground

truth segmentation, which does not make sense.

A match is determined to occur if the overlap is at least as

big as the Overlap Requirement. The bigger the overlap require-

ment, the more the boxes are required to overlap hence perfor-
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Fig. 4. Different matching cases: (a) correct detection; (b) detection failure;
(c) false alarm; (d) merge; (e) split; (f) split-merge.

Fig. 5. Matching cases with an overlap requirement ofT = 20%. (a) Detection
failure (overlap < T). (b) Correct detection (overlap > T); (c) two detection
failures (overlap < T) and (d) split (overlap > T).

mance usually declines as the requirement reaches 100%. In this

work we use a overlap requirement of .

Fig. 5 illustrates the association matrices in two different

cases considering an overlap requirement of . It can

be seen that in Fig. 5(a) the region in the ground truth (“circle”

region) is not represented by any detected region since the

overlap is below the overlap requirement, leading to a detection

Fig. 6. Correct split example: (a) supervised segmentation and (b) SGM seg-
mentation.

Fig. 7. Wrong split example: (a) supervised segmentation and (b) W4
segmentation.

failure. If we increase the overlap between these two regions

[see Fig. 5(b)] we see that now we have a correct detection

(second line, second column of ). Finally it is illustrated a

situation where two detection failures [in Fig. 5(c)] become

a split [in Fig. 5(d)] if we increase the overlap among these

regions.

C. Area Matching

The match between pairs of the two regions (ground truth/au-

tomatically detected) is also considered to measure the perfor-

mance of the algorithms. The higher is the percentage of the

match size, the better are the active regions produced by the al-

gorithm. This is done for all the correctly detected regions. The

match metric is defined by ,

where is the index of the corresponding detected region. The

metric is the area of the overlap normalized by the total area

of the object. The average of in a video sequence will be

used to characterize the performance of the detector.

D. Multiple Interpretations

Sometimes the segmentation procedure is subjective, since

each active region may contain several objects and it is not al-

ways easy to determine if it is a single connected region or

several disjoint regions. For instance, Fig. 6(a) shows an input

image and a manual segmentation. Three active regions were

considered: person, lorry and group of people. Fig. 6(b) shows

the segmentation results provided by the SGM algorithm. This

algorithm splits the group into three individuals which can also

be considered as a valid solution since there is very little overlap.

This segmentation should be considered as an alternative ground

truth. All these situations should not penalize the performance

of the algorithm. On the contrary, situations such as the ones de-

picted in Fig. 7 should be considered as errors. Fig. 7(a) shows

the ground truth and in Fig. 7(b) the segmentation provided by
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Fig. 8. Two different segmentations, provided by SGM method on the same
group taken at different time instants.

Fig. 9. Regions linking procedure with three objects A B C (from left to right).
The same number of foreground regions may have different interpretations:
three possible configurations (a), or four configurations (b). Each color repre-
sent a different region.

the algorithm. In this situation the algorithm makes a wrong

split of the vehicle.

Since we do not know how the algorithm behaves in terms

of merging or splitting, every possible combinations within ele-

ments, belonging to a group, must be taken into account. For in-

stance, another ambiguous situation is depicted in Fig. 8, where

it is shown the segmentation results of the SGM method. Here,

we see that the same algorithm provides different segmenta-

tions (both can be considered as correct) on the same group in

different instants. This suggests the use of multiple interpreta-

tions for the segmentation. To accomplish this the evaluation

setup takes into account all possible merges of single regions

belonging to the same group whenever multiple interpretations

should be considered in a group, i.e., when there is a small

overlap among the group members.

The number of merges depends on the relative position of

single regions. Fig. 9 shows two examples of different merged

regions groups with three objects ABC (each one representing

a person in the group). In the first example [Fig. 9(a)] four in-

terpretations are considered: all the objects are separated, they

are all merged in a single active region or AB (BC) are linked,

and the other is isolated. In the second example, an addition in-

terpretation is added since A can be linked with C.

Instead of asking the user to identify all the possible merges

in an ambiguous situation, an algorithm is used to generate all

the valid interpretations in two steps. First we assign all the pos-

sible labels sequences to the group regions. If the same label is

assigned to two different regions, these regions are considered

as merged. Part (a) of (24) shows the labeling matrix for the

example of Fig. 9(a). Each row corresponds to a different la-

beling assignment. The element denotes the label of the

th region in the th labeling configuration. The second step

checks if the merged regions are close to each other and if there

is another region in the middle. The invalid labeling configura-

tion are removed from the matrix . The output of this step for

Fig. 10. (a) Input frame, (b) segmented image by the user, and (c) output of
SGM.

Fig. 11. Multiple interpretations given by the application. The segmentation
illustrated in (g) is selected for the current frame.

the example of Fig. 9(a) is in part (b) of (24). The labeling se-

quence 121 is discarded since region 2 is between regions 1 and

3. Therefore, regions 1 and 3 cannot be merged. In the case of the

Fig. 9(b), all the configurations are possible .

A detailed description of the labeling method is included in Ap-

pendix A.

Figs. 10 and 11 illustrate the generation of the valid inter-

pretations. Fig. 10(a) shows the input frame, Fig. 10(b) shows

the hand segmented image, where the user specifies all the ob-

jects (three objects must be provided separately in the group

of persons), and Fig. 10(c) illustrates the output of the SGM.

Fig. 11 shows all possible merges of individual regions. All of

them are considered as correct. Remain to know which segmen-

tation should be selected to appraise the performance. In this

paper we choose the best segmentation, which is the one that

provides the highest number of correct detections. In the present

example, the segmentation illustrated in Fig. 11(g) is selected.

In this way we overcome the segmentation ambiguities that may

appear without penalizing the algorithm. This is the most com-

plex situation which occurs in the video sequences used in this

paper.

(24)

V. TESTS ON PETS2001 DATASET

This section presents the evaluation of several object detec-

tion algorithms using PETS2001 dataset. The training and test

sequences of PETS2001 were used for this study. The training

sequence has 3064 and the test sequence has 2688 frames. In
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both sequences, the first 100 images were used to build the back-

ground model for each algorithm.

The resolution is half-resolution PAL standard (288 384

pixels, 25 frames/s). The algorithms were evaluated using

1 frame/s. The ground truth was generated by an automatic seg-

mentation of the video signal followed by a manual correction

using a graphical editor described in Section IV. The outputs

of the algorithms were then compared with the ground truth.

Most algorithms require the specification of the smallest area

of an object. An area of 25 pixels was chosen since it allows to

detect all objects of interest in the sequences.

A. Choice of the Model Parameters

The segmentation algorithms described herein depend on

a set of parameters, which are mainly the thresholds and the

learning rate . In this scenario, we must figure out which are

the best values for the most significant parameters for each

algorithm. This was done using ROC curves which display the

performance of each algorithm as a function of the parame-

ters. The receiver operation characteristic (ROC) have been

extensively used in communications [9]. It is assumed that all

the parameters are constant but one. In this case we have kept

the learning rate constant and varied the thresholds in the

attempt to obtain the best threshold value . We repeated this

procedure for several values of . This requires a considerable

number of tests, but in this way it is possible to achieve a

proper configuration for the algorithm parameters. These tests

were made for a training sequence of the PETS2001 data set.

Once the parameters are set, we use these values in a different

sequence.

To ROC curves describe the evolution of the false alarms (FA)

and detection failures (DF) as varies. An ideal curve would be

close to the origin, and the area under the curve would be close

to zero. To obtain these two values, we compute these measures

(for each value of ) by applying the region matching trough

the sequence. The final values are computed as the mean values

of FA and DF.

Fig. 12 shows the receiver operating curves (ROC) for all the

algorithms. It is observed that the performance of BBS algo-

rithm is independent of . We can also see that this algorithm

is sensitive with respect to the threshold, since there is a large

variation of FA and DF for small changes of T, this can be

viewed as a lack of smoothness of the ROC curve ( is

the best value). There is a large number of false alarms in the

training sequence due to the presence of a static object (car)

which suddenly starts to move. The background image should

be modified when the car starts to move. However, the image

analysis algorithms are not able to cope with this situation

since they only consider slow adaptations of the background.

A ghost region is therefore detected in the place where the car

was (a false alarm).

The second row of the Fig. 12 shows the ROC curves of the

SGM method, for three values of (0.01, 0.05, 0.15). This

method is more robust than the BBS algorithm with respect

to the threshold. We see that for , and

, we get similar FA rates and a small varia-

tion of DF. We chose , .

The third row show the results of the MGM method. The

best performances are obtained for (first and second

column). The best value of the parameter is . In

fact, we observe the best performances for . We notice

that the algorithm strongly depends on the value of , since for

small variations of there are significant changes of FA and DF.

The ROC curve suggest that it is acceptable to choose .

The fourth row shows the results of the LOTS algorithm for a

variation of the sensitivity from 10% to 110%. As discussed in

[29] we use a small parameter. For the sake of computational

burden, LOTS does not update the background image in every

single frame. This algorithm decreases the background update

rate which takes place in periods of frames. For instance an

effective integration factor is achieved by adding

approximately 1/13 of the current frame to the background in

every 256th frame, or 1/6.5 in every 512th frame. Remark that

, with . In our case, we have

used intervals of 1024 [Fig. 12(j)] 256 [Fig. 12(k)] 128 [Fig.

12(l)], being the best results achieved in the first case. The latter

two cases [Fig. 12(k) and (l)] present a right shift in relation to

(12j), meaning that in these cases one obtains a large number of

false alarms.

From this study we conclude that the best ROC curves are

the curves associated with LOTS and SGM since they have the

smallest area under the curve.

B. Performance Evaluation

Table I(a) and (b) shows the results obtained in the test

sequence using the parameters selected in the previous study.

The percentage of correct detections, detection failures, splits,

merges and split-merges were obtained by normalizing the

number of each type of event by the total number of moving

objects in the image. Their sum is 100%. The percentage of

false alarms is defined by normalizing the number of false

alarms by the total number of detected objects. It is therefore

a number in the range 0–100%.

Each algorithm is characterized in terms of correct detections,

detection failures, number of splits, merges and split/merges

false alarms as well as matching area.

Two types of ground truth were used. They correspond to dif-

ferent interpretations of static objects. If a moving object stops

and remains still it is considered an active region in the first

case [Table I(a)] and it is integrated in the background after one

minute in the second case [Table I(b)]. For example, if a car

stops in front of the camera it will always be an active region

in the first case. In the second case it will be ignored after one

minute.

Let us consider the first case. The results are shown in

Table I(a). In terms of correct detections, the best results are

achieved by the LOTS (91.2%) algorithm followed by SGM

(86.8%).

Concerning the detection failures, the LOTS (8.5%) followed

by (9.6%) outperforms all the others. The worst results

are obtained by MGM (13.1%). This is somewhat surprising

since MGM method, based on the use of multiple Gaussians

per pixel, performs worse than the SGM method based on a

single Gaussian. We will discuss this issue later. The has the

highest percentage of splits and the BBS, MGM methods tend
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Fig. 12. ROC for different values of �: BBS (first row: (a) � = 0:05, (b) � = 0:1, (c) � = 0:15), SGM (second row: (d) � = 0:01, (e) � = 0:05, (f) � = 0:15),
MGM (third row: (g) � = 0:008, (h) � = 0:01, (i) � = 0:05, LOTS (fourth row with background update at every: (j) 1024th frame, (k) 256th frame, (l) 128th
frame.

to split the regions as well. The performance of the methods in

terms of region merging is excellent: very few merges are ob-

served in the segmented data. However, some methods tend to

produce split/merges errors (e.g., , SGM, and BBS). The

LOTS and MGM algorithm have the best score in terms of

split/merge errors.
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TABLE I
PERFORMANCE OF FIVE OBJECT DETECTION ALGORITHMS

Let us now consider the false alarms (false positives). The

LOTS (0.6%) is the best and the MGM and BBS are the worst.

The LOTS, , and SGM methods are much better than the

others in terms of false alarms.

The LOTS has the best tradeoff between CD and FA. Al-

though the produces many splits (splits can often be over-

come in tracking applications since the region matching algo-

rithms are able to track the active regions though they are split).

The LOTS algorithm has the best performance if all the errors

are equally important.

In terms of matching area the LOTS exhibit the best value in

both situations.

In this study, the performance of the MGM method, based

on mixtures of Gaussians is unexpectedly low. During the ex-

periments we have observed the following: 1) when the object

undergoes a slow motion and stops, the algorithm ceases to de-

tect the object after a small period of time; 2) when an object

enters the scene it is not well detected during a few frames since

the Gaussian modes have to adapt to this case.

This situation justify the percentage of the splits in both ta-

bles. In fact, when a moving object stops, the MGM starts to split

the region until it disappears, becoming part of the background.

Objects entering into the scene will cause some detection fail-

ures (during the first frames) and splits, when the MGM method

starts to separate the foreground region from the background.

Comparing the results in Table I(a) and (b), we can see that

the performance of the MGM is improved. The detection fail-

ures are reduced, meaning that the stopped car is correctly in-

tegrated in the background. This produces an increase of cor-

rect detections by the same amount. However, we stress that the

percentage of false alarms also increases. This means that the

removal of the false positives is not stable. In fact, some frames

contain, as small active regions, the object which stops in the

scene. In regard to the other methods, it is already expected that

the false alarms percentage suffers an increase, since these al-

gorithms remain with false positives throughout the sequence.

The computational complexity of all methods was studied

to judge the performance of the five algorithms. Details about

the number of operations in each method is provided in the

Appendix B.

VI. CONCLUSIONS

This paper proposes a framework for the evaluation of ob-

ject detection algorithms in surveillance applications. The pro-

posed method is based on the comparison of the detector output

with a ground truth segmented sequence sampled at 1 frame/s.

The difference between both segmentations is evaluated and the

segmentation errors are classified into detection failures, false

alarms, splits, merges and split/merges. To cope with ambiguous

situations in which we do not know if two or more objects be-

long to a single active region or to several regions, we con-

sider multiple interpretations of the ambiguous frames. These

interpretations are controlled by the user through a graphical

interface.

The proposed method provides a statistical characterization

of the object detection algorithm by measuring the percentage

of each type of error. The user can thus select the best algorithm

for a specific application taking into account the influence of

each type of error in the performance of the overall system. For

example, in object tracking detection failures are worse than

splits. We should therefore select a method with less detection

failures, even if it has more splits than another method.

Five algorithms were considered in this paper to illustrate the

proposed evaluation method. These algorithms are BBS, ,

SGM, MGM, and LOTS. The best results were achieved by the

LOTS and SGM algorithms.

APPENDIX

A. Merge Regions Algorithm

The pseudo-code of the region labeling algorithm is given in

Algorithms 1 and 2.

Algorithm 1 describes the synopsis of the first step, i.e., gen-

eration of the labels configurations. When the same label is as-

signed to two different regions, this means that these regions are

considered as merged. Algorithm 2 describes the synopsis of the

second step, which checks and eliminates label sequences which

contain invalid merges. Every time the same label is assigned to

a pair of regions we define a strip connecting the mass center of

the two regions and check if the strip is intersected by any other

region. If so, the labeling sequence is considered as invalid.

In these algorithms, denotes the number of objects, is

a labeling sequence, is the matrix of all label configurations,

and is a matrix which contains the information (final

label configurations) needed to create the merges.

To illustrate the purposes of Algorithms 1 and 2, we will con-

sider the example illustrated in the Fig. 14, where each rectangle

in the image represents an active region.
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Fig. 13. Generation of the label sequences for the example in the Fig. 14.

Fig. 14. Four rectangles (A, B ,C, D) representing active regions in the image.

Algorithm 1 computes the leaves of the graph shown in the

Fig. 13 with all label sequences.

Algorithm 1 Main

1) N  Num;
2) M(1)  1;
3) for t = 2 to N do
4) AUX  [ ];
5) for i = 1 to size(M,1) do
6) label  max(M(i; :)) + 1;
7) AUX [AUX; [repmat(M(i; :); label; 1)(1 : label) ]];
8) end for
9) M  AUX;

10) end for
11) M  FinalCon�guration(M);

Algorithm 2 checks each sequence taking into account the

relative position of the objects in the image. For example, con-

figurations 1212, 1213 are considered as invalid since object A

cannot be merged with C (see Fig. 14). Parts (a) and (b) of (25)

show the output of the first and the second step respectively.

All the labeling sequences considered as valid (the content of

Fig. 15. Valid merges generated from the example on the Fig. 14.

the matrix ) provides the resulting images shown in

Fig. 15.

Algorithm 2 M = FinalCon�guration(M)

1) M  [ ];
2) for i = 1 to length (M) do
3) Compute the centroids of the objects to be linked in M(i,:);
4) Link the centroids with strip lines;
5) if the strip lines do not intersect another object region then
6) M  [M M(i; :) ] ;
7) end if
8) end for

(25)

B. Computational Complexity

Computational complexity was also studied to judge the per-

formance of the five algorithms. Next, we provide comparative

data on computational complexity using the “Big-O” analysis.

Let us define the following variables.

• N: number of images in the sequence;

• L, C: number of lines and columns of the image;

• R: number of regions detected in the image;

• : number of Gaussians.

The BBS, , SGM, MGM, and LOTS methods share sev-

eral common operations namely: 1) morphological operations,

for noise cleaning, 2) computation of the areas of the regions,

and 3) labeling assignment.
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The complexity of these three operations is

(26)

where , are the kernel dimensions ( —
connectivity is used), , are the image dimensions and is

the number of detected regions. The first term, ,

is the number of products and summations required for the

convolution of each pixel in the image. The second term,

, is the number of differences taken to compute the

areas of the regions in the image. Finally, the term

is the number of operations to label all the regions in the image.

BBS Algorithm: The complexity of the BBS is

(27)

where is the number of operations required to

perform the thresholding step [see (1)], which involves

differences and logical operations.

W4 Algorithm: The complexity of this method is

(28)

where the first term is related to the conversion of the images to

grayscale level, (RGB space). The second one is con-

cerned with the threshold operation [see (2)] which requires

operations (eight logical and one difference oper-

ations). The term corresponds to the background subtrac-

tion and morphological operations inside the bounding boxes of

the foreground regions

(29)

where , are the dimensions of the bounding boxes, as-

suming that the bounding boxes of the active regions have the

same length and width.

SGM Algorithm: The complexity of the SGM method is

(30)

The first term is related to the conversion of the images to YUV

color space (in (30) ). The second term is the number of

operations required to compute the likelihood measure [see (5)].

The third term is related to the threshold operation to classify the

pixel as foreground if the likelihood is greater than a threshold,

or classified as background otherwise.

MGM Algorithm: The number of operations of the MGM

method is

(31)

The first term depends on the number of Gaussians . This

term is related to the following operations: 1) matching opera-

tion— , 2) weight update— [see (11)],

3) background update— [see (8)], 4) covari-

ance update for all color components— [see

(9)]. The second term accounts for 1) weight normalization—

and 2) computation

of the Gaussian mixture for all pixels.

LOTS Algorithm: The complexity of the LOTS method is

given by the expression (32), shown at the bottom of the page. In

(32), the first term is related to the conversion of the images and

it is similar with the first term in (28). The second term is related

to the QCC algorithm. A number of operations

are needed to compute (18) and (19).

The QCC analysis is computed in a low resolution image ,

. This is accomplished by converting each block of

pixels (in high resolution images) into a new element of the new

(32)
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TABLE II
SECOND COLUMN GIVES THE SIMPLFIED EXPRESSION FOR (27), (28), (30)–(32).

THE SECOND COLUMN GIVES THE NUMBER OF TOTAL OPERATIONS

matrices ( , ). Each element of , contains the active

pixels of each block in the respective images. This task requires

operations [second term of QCC

in (32)] where is the size of each block and is

the number of blocks in the image. A morphological operation

(4-connectivity is used) over is performed, taking

operations where is

the dimension of the resized images. The targets candidates are

obtained by comparing and . This task takes

operations (fourth term in QCC).

For example, the complexity of the five algorithms is shown

in Table II assuming the following conditions for each frame:

• the kernel dimensions, ;

• the block dimensions, , i.e.,

(for LOTS method);

• the number of Gaussians, (for MGM method);

• a single region is detected with an area of 25 pixels, (

, L );

• the image dimension is .

From the table, it is concluded that the four algorithms (BBS,

LOTS, , and SGM) have a similar computational complexity

while MGM is more complex requiring a higher computational

cost.
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