

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Author(s):

Title:

Year:

Version:

Please cite the original version:

All material supplied via JYX is protected by copyright and other intellectual property rights, and

duplication or sale of all or part of any of the repository collections is not permitted, except that

material may be duplicated by you for your research use or educational purposes in electronic or

print form. You must obtain permission for any other use. Electronic or print copies may not be

offered, whether for sale or otherwise to anyone who is not an authorised user.

Performance evaluation of OpenFlow enabled Commodity and Raspberry-pi Wireless

Routers

Asghar, Muhammad; Habib, M. Ahsan; Hämäläinen, Timo

Asghar, M., Habib, M. A., & Hämäläinen, T. (2017). Performance evaluation of

OpenFlow enabled Commodity and Raspberry-pi Wireless Routers. In O. Galinina, S.

Andreev, S. Balandin, & Y. Koucheryavy (Eds.), NEW2AN 2017, ruSMART 2017, NsCC

2017 : Internet of Things, Smart Spaces, and Next Generation Networks and Systems

(pp. 132-141). Springer International Publishing. Lecture Notes in Computer Science,

10531. https://doi.org/10.1007/978-3-319-67380-6_12

2017

Performance evaluation of OpenFlow enabled

Commodity and Raspberry-pi Wireless Routers

Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

Department of Mathematical Information Technology,
PL 35, 40014, University of Jyväskylä, Jyväskylä, Finland

{muhammad.z.asghar,mahsan.habib,timo.hamalainen}@jyu.fi

http://www.jyu.fi

Abstract. Software defined network (SDN) allows the decoupling of data
and control plane for dynamic and scalable network management. SDN
is usually associated with OpenFlow protocol which is a standard inter-
face that enables the network controllers to determine the path of network
packets across a network of switches. In this paper, we evaluate openflow
performance using commodity wireless router and raspberry pi with two
different SDN controllers. Our test setup consists of wired and wireless
client devices connected to openflow enabled commodity wireless router
and raspberry pi. All clients used traffic generator tool to transmits data
to a sink server host. The results are promising and paves the way for
further research on using software defined wireless network

Keywords: Software defined network (SDN), Wireless SDN, OpenFlow,
performance evaluation, Raspberry-pi

1 Introduction

The modern computing environment are dynamic and requires scalable comput-
ing and advanced storing needs that are not achievable by traditional network
architecture. In order to address this challenge, the existing network architecture
needs to be upgraded with additional features. This situation pushes operators
to upgrade their network management from static to dynamic and scalable com-
puting and opens doors for Software Defined Networking (SDN) research.

The SDN is an umbrella term for various ways to use software to manage and
manipulate networks. There are usually three views on SDN including, open SDN
using openflow protocol, SDN via Application Programmable Interfaces (APIs)
model where the functionality on networking devices is exposed using a rich API,
and sdn via overlays.

The SDN has potential to offer high flexibility in network management . The
key idea is to split the network forwarding function from the network control
function. This can be achieved by separating the control and data planes. This
allows a simpler and more flexible network control and management. SDN is
usually associated with OpenFlow protocol which is a standard interface that
enables the network controllers to determine the path of network packets across

2 Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

a network of switches. The network controller communicates with OpenFlow
switches using the OpenFlow protocol through a secure channel. Using this con-
nection, the controller is able to configure the forwarding tables of the switch.
OpenFlow-based SDN technologies enable us to address the high-bandwidth,
dynamic nature of computer networks; adapt the network functions to different
business needs easily; and reduce network operations and management complex-
ity significantly. As the cost involved to replace all legacy devices by new ones
is high, the possibility of using commodity wireless routers with the OpenFlow
might be a smart strategy to accelerate the deployment of SDN technologies.

This work aims at performance evaluation of Open cSwitch (OVS) running in
commodity wireless router and raspberry pi as a linux kernel module. The results
show that Openflow router provides good performance with low cost, therefore,
the adapted wireless router with openflow compatibility can be widely utilized
in home networks and small organizations. The rest of this paper is organized as
follows. Section 2 describes the related work. Section 3 presents the evaluation
strategy and proposed testbed architecture.Section 4 shows the experimental
results and analysis. We conclude by proposing future research directions.

2 Related Work

In this section we briefly describe the related work. There have been few studies
about the performance evaluation of SDN architectures and openflow. Tootoonchian
et al. [6] studied the SDN controller performance by focusing on the control
plane only. Rotsos et al. [7] proposed a tool for evaluating performance of SDN
architecture consisting of several OpenFlow implementations, and measured raw
performance of OpenFlow without comparison to other SDN solutions authors
presented an architecture in [4] to improve the loopup performance of teh Open-
Flow Linux kernerl module implementation. A cost effective alternative of im-
plementing SDN testbed with Open vSwithc (OVS) is proposed in [5]. They
used raspberry-pi as an alternate choice for the SDN switch. They implemented
the SDN testbed with thte OpenFlow specification 1.0. The performance of net-
FPGA and OpenFlow based software swicthed is compared in terms of maximum
throughput. The results shows the similar performance with 1Gbps net-FGPA
device. The shortcoming of this work is that the testbed is implementing SDN
functionalities for wired network only and therefore it is not scalable.

A comparative study of the performance evaluation of a commodity wireless
router and different SDN controllers is presented in [6]. The performance evalua-
tion is conducted using the performance metrics such as throughput, delay, jitter
and packet loss. The results show bottleneck when using UDP protocol with high
rates and therefore, the commodity wireless router can be only deployed in re-
duced size networks. Other recent research work on SDN includes [7–12]. Some
recent works on SDN testbed with raspberry-pi are [5, 8]. The performance of
OpenFlow in commodity wireless networks are given in [6].

Lecture Notes in Computer Science: Authors’ Instructions 3

3 Proposed Testbed Architecture

In this section we describe our proposed testbed architecture and methodology to
collect the performance measurements such as average bitrate, packet dropped,
average delay and average jitter. The architecture overview of SDN testbed is
shown in figure 1.

3.1 Network Achitecture

Our test setup consists of wired and wireless client devices and these devices
connected to openflow enable commodity wireless router and raspberry pi. All
the clients used traffic generator tool to transmits data to a server. The net-
work design shown in figure 2. There are four clients and a server connected to
the wired ports and one client connected through the wireless link. The SDN
controller connected to wan port. In our testbed, we have selected TP-LINK
WR1043ND ver 2.1 [13] and raspberry pi 3 [14] devices. The TP-LINK wireless
router has a Qualcomm Atheros QCA9558 processor with 720MHz clock speed,
64MB memory, which is decent amount memory for a wireless router. The router
has 4 LAN and 1 WAN Gigabit Ethernet interfaces and also has a 802.11n/g/b
wireless network interface. On the other hand, raspberry PI 3 has a 4 core ARM
Cortex-A53, 1.2GHz processor, 1 GB LPDDR2 memory and a Gigabit Ethernet
interface. The device has also 4 USB 2 interfaces which allow for up to 4 addi-
tional Ethernet interfaces via USB-to-Ethernet adapters. We used 10/100Mbps
USB to Ethernet adapters to connected clients to the raspberry pi OpenvSwitch.
All our wired and wireless clients and the SDN controller are real machines have
been running the Ubuntu 14.04 operation system. The SDN controller has an
Intel dual core i5-5300U with 2.30 GHz processor and 4 gigabyte of memory.

Fig. 1. Network topology used in the experiments. Wired and wireless client devices
are generate traffic to a sink server. The wireless router interconnects all devices and
is controlled by Ryu SDN controller

4 Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

3.2 Software Design

We have used popular open source traffic generate tool called Distributed Inter-
net Traffic generator D-ITG [15] which is a platform capable to produce IPV4
and IPV6 traffic by precisely reproducing traffic from many popular internet
applications. D-ITG is also a network measurement tool able to generate most
useful information from packet level such as throughput, delay, jitter, packet
loss. In our experiment, Using D-ITG tools we were able restrict the packet size
and control the total number of packets to be transmit and the duration of the
generation experiment. In order to correctly measure the packet delay, we have
implemented Network Time Protocol (NTP) [16] in our testbed environment so
that all the clients and the server can be synchronization between them.

To ensure all clients and server can generate and receive rate up to 10 Gbps,
we have replaced the default Libcap module in linux kernel with the PF_RING

library [17]. PF_RING is a linux kernel module and user-space framework that
allows us to process packets in high rates. The main idea is to bypass any and
all notion of what is actually data on the wire and transmits as quickly as
possible.

Raspberry-pi linux kernel is 3.7.11+ version based on debian Jessie. We in-
stalled OVS 2.3.1 to create an OpenFlow enabled switch which supports Open-
Flow 1.3. The wireless router running the original equipment manufacturer
(OEM) firmware The firmware OEM substitued by the OpenWRT 14.0 without
OpenFlow module The OpenFlow 1.3 support in the OpenWRT firmware, using
the OVS kernel module, was enabled.

3.3 SDN Controller

For this study, we have used some most popular controller in research area such
as RYU [18] and Floodlight [19] to perform our experiment. Both controllers
run simple switch learning application. The OpenFlow ver 1.3 protocol used to
communication between OVS and SDN controller.

3.4 OpenvSwitch

In our experiment, we have installed and configured OpenvSwitch on OpenWrt
[20] to showcase openflow capabilities. We complied OVS with openWrt running
in linux kernel module. We have used OpenvSwitch ver 2.3.1 and OpenWrt ver
14.07 Barrier breaker image on TP-Link wireless router. The OpenFlow ver 1.3
protocol support was enabled in OVS on OpenWrt firmware. OpenVswitch is also
run on Raspberry Pi as a kernel module. We have download the openvSwitch
from the source code and its dependencies and complied with kernel header.

The raspberry Pi is driven by the raspbian Jessie with pixel (raspbian is
a Debian based operating system) with kernel version 4.4.34. We have been
running OVS version 2.7.90. OVS fail mode can be set to either standalone or
secure mode.

Lecture Notes in Computer Science: Authors’ Instructions 5

In standalone mode, OVS will take the responsibility for forwarding the pack-
ets if the controller fails. In secure mode, only the controller responsible for for-
warding the packets, and if the connect between OVS and controller lost all the
packets are going to be dropped. In our test case scenarios, both OpenWrt and
Raspberry Pi OVS switch set standalone as a fail mode, in order to eliminate
the impact of any SDN controller in the process.

4 Experimental Results

In this section we describe the experimental results with different scenarios. The
performance factors for the experiments were traffic generator clients, packet
size, packet sending rate and transport protocols. In the experiments we used
two different controllers i.e., ryu and floodlight. We evaluated average bitrate,
average packet dropped, average delay and average jitter.

Figure 2 compares the average bitrate between SDN controller ryu and flood-
light over openwrt and raspberry pi. The comparison shows that both sdn con-
trollers have similar performance. Both controllers with openwrt shows high
average bitrate around 40 - 50 kpps over opernwrt. However, the avergae bitrate
in case of raspberry pi stays lower than the openwrt. Openwrt and raspberry-pi
average bitrate almost same from 4kpps to 6kpps but raspberry-pi bitrate does
not increase much between 7kpps and 30kpps, it starts to increase from 30kpps to
50kpps. On the other hands, openwrt shows similar pattern but openwrt bitrate
increases significantly from 30 kpps and both controller shows almost similar bi-
trate. Raspberry-pi shows lower bitrate then openwrt because raspberry-pi has
4 (usb 2) ports which has limited data transfer rate.

0

10000

20000

30000

40000

50000

A
v

e
ra

g
e

 b
it

ra
te

 (
b

p
s)

lan_lan_64bytes_UDP

fl_openwrt

fl_raspi

ryu_openwrt

ryu_raspi

Fig. 2. Average bitrate for experiments with UDP 64-bytes packets, using different
OpenFlow controllers

Figure 3 shows packet dropped for different SDN controller ryu and floodlight
over openwrt and raspberry pi. The comparison shows that both sdn controllers

6 Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

have similar performance. There is no packet dropped in the scenario with open-
wrt. however in case of raspberry-pi there is significantly high. As can be seen
in the figure 3, the ryu controller performance is slightly better than flood-
light controller. There are not many packets drop until 40 kpps in openwrt for
both controller but the packets dropped starts around 50kpps. If we look at the
raspberry-pi openVswitch, we can see huge amount of packets drop using both
controller. As mentioned previously raspberry-pi has limited data transfer rate
so packets dropped increase significantly for huge number of packets specially
6kpps.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

P
a

ck
e

t
d

ro
p

p
e

d

lan_lan_64bytes_UDP

fl_openwrt

fl_raspi

ry_openwrt

ryu_raspi

Fig. 3. Average Packet dropped for experiments with UDP 64-bytes packets, using dif-
ferent OpenFlow controllers

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

A
v

e
ra

g
e

 d
e

la
y

 (
s)

lan_lan_64bytes_UDP

fl_openwrt

fl_raspi

ryu_openwrt

ryu_raspi

Fig. 4. Average delay for experiments with UDP 64-bytes packets, using different Open-
Flow controllers over openwrt and raspberry pi

Lecture Notes in Computer Science: Authors’ Instructions 7

In figure 4 the average delay is not much when we used OpenWrt or raspberry-
pi but average delay is high when we used openwrt with ryu controller. There
were similar kinds of delay until 30 kpps but it increase significantly around
40kpps and 50kpps. In figure 5, similar to previous figure average Jitter are sim-

0

0,05

0,1

0,15

0,2

0,25

A
v

e
ra

g
e

 J
it

te
r

(s
)

lan_lan_64bytes_UDP

fl_openwrt

fl_raspi

ry_openwrt

ryu_raspi

Fig. 5. Average Jitter for experiments with UDP 64-bytes packets, using ryu controller
over openwrt and raspberry pi

ilar in both openwrt and raspberry-pi but average jitter incrementally increases
in the case of ryu controller. These results show that there is a bottleneck around
30 kpps. In figure 6, When wifi client is used to transmit data to LAN client

0

1000

2000

3000

4000

5000

6000

7000

A
v

e
ra

g
e

 b
it

ra
te

 (
b

p
s)

wifi_lan_64bytes_UDP

ryu_openwrt

ryu_raspi

Fig. 6. Average bitrate for experiments with UDP 64-bytes packets, using ryu controller
over openwrt and raspberry pi

raspberry-pi bitrate does not increase because of wifi adapter data transfer rate
limitation but for the openwrt it is totally opposite, bitrate increases as more

8 Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

packets are transmitted from wifi client to lan client. As we can see from the

0

50000

100000

150000

200000

250000

P
a

ck
e

t
d

ro
p

p
e

d

wifi_lan_64bytes_UDP

ryu_openwrt

ryu_raspi

Fig. 7. Average packet dropped for experiments with UDP 64-bytes packets, using ryu
controller over openwrt and raspberry pi

figure 7, that openwrt shows stable results and no packet dropped at all how-
ever, raspberry-pi shows huge number of packets dropped as more packets are
transmitted on from wifi client to lan client. In figure 8,The openwrt shows high

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

A
v

e
ra

g
e

 J
it

te
r

(s
)

wifi_lan_64bytes_UDP

ryu_openwrt

ryu_raspi

Fig. 8. Average jitter for experiments with UDP 64-bytes packets, using ryu controller
over openwrt and raspberry pi

jitter on small number of packet and it started to decrease as more packets
are transmitted. In case of raspberry-pi average jitter is high at 4kpps but it
is low between 5kpps and 7kpps. The average jitter increases again at 8kpps
and show a decaying pattern between 10kpps and 40kpps. In figure 9, results for
TCP transport protocol are shown traffic generated from wifi client to lan client.

Lecture Notes in Computer Science: Authors’ Instructions 9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

A
v

e
ra

g
e

 b
it

ra
te

 (
b

p
s)

wifi_lan_64bytes_TCP

ryu_openwrt

ryu_raspi

Fig. 9. Average bitrate for experiments with TCP 64-bytes packets, using ryu controller

Both openwrt and raspberry-pi showed similar increasing trend. The openwrt
bitrate increased around 120kpps but average bitrate of raspberry-pi started to
decrease because of external wifi adapter limitation.

5 Conclusion

In this paper we evaluated the performance of a commodity wireless router
and raspberry-pi used as an OVS linux kernel module. Our proposed testbed is
built on latest versions of controllers. The experiments are conducted with two
different OpenFlow controllers and we observed the performance variations when
using with different packet size, variable packet rate generation, traffic generating
clients and transport protocols. It is found out that the performance of two
different controllers is similar which indicates that the performance bottleneck
is at OVS module. The experiments with UDP transport protocol show that
the performance bottleneck exists when traffic rate exceed 40 kpps. The results
show that the usage of the SDN architecture and OpenFlow standard introduces
benefits in terms of maximum throughput, delay and jitter. The performance
obtained suggests that a commoduty wireless router and raspberry pi can be
used in scenarios of small networks. The results shows that adapted wireless
router and raspberry-pi with Openflow can be widely used in small networks such
as home networks, university campus, and small organizations. The proposed
testbed is low-cost, less complex and scalable. The future work involves running
experiments with complex scenarios using multiple controllers, thus allowing to
evaluate the performance differences and bottlenecks.

References

1. Open Networking Foundation, Available: http://opennetworking.org
2. Tootoonchian, A., Gorbunov, S.: On controller performance in software-defined net-

works. In: Proc. USENIC Hot-ICE, (2012)

10 Muhammad Zeeshan Asghar, M. Ahsan Habib, and Timo Hämäläinen

3. Rotsos, C., Sarrar, N., Uhlig, S., Sherwoord, R., Moore, A. W.: An Open Framework
for OpenFlow Switching Evaluation: Composing a Complex Biological Workflow
through Web Services. In: Nagel, W.E., Walter, W.V., Lehner, W. (eds.) Euro-Par
2006. LNCS, vol. 4128, pp. 1148–1158. Springer, Heidelberg (2006)

4. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco (1999)

5. Kim, H., Kim, J. and Ko, Y.B.: Developing a cost-effective OpenFlow testbed for
small-scale Software Defined Networking. In Advanced Communication Technology
(ICACT), 2014 16th International Conference on (pp. 758-761). IEEE.(2014)

6. Lima, L., Azevedo, D. and Fernandes, S.: Performance evaluation of OpenFlow in
commodity wireless routers. In Network Operations and Management Symposium
(LANOMS), Latin American (pp. 17-22). IEEE. (2015)

7. Araniti, G., Cosmas, J., Iera, A., Molinaro, A., Morabito, R. and Orsino, A.: Open-
Flow over wireless networks: Performance analysis. In Broadband Multimedia Sys-
tems and Broadcasting (BMSB), 2014 IEEE International Symposium on (pp. 1-5).
IEEE (2014)

8. Ariman, M., Seinti, G., Erel, M. and Canberk, B., 2015, November. Software defined
wireless network testbed using Raspberry Pi of switches with routing add-on. In
Network Function Virtualization and Software Defined Network (NFV-SDN), 2015
IEEE Conference on (pp. 20-21). IEEE. (2015)

9. Brock, J.D., Bruce, R.F. and Cameron, M.E.: Changing the world with a Raspberry
Pi. Journal of Computing Sciences in Colleges, 29(2), pp.151-153. (2013)

10. Sezer, S., Scott-Hayward, S., Chouhan, P.K., Fraser, B., Lake, D., Finnegan, J.,
Viljoen, N., Miller, M. and Rao, N.: Are we ready for SDN? Implementation chal-
lenges for software-defined networks. IEEE Communications Magazine, 51(7), pp.36-
43.(2013)

11. Shalimov, A., Zuikov, D., Zimarina, D., Pashkov, V. and Smeliansky, R., 2013,
October. Advanced study of SDN/OpenFlow controllers. In Proceedings of the 9th
central & eastern european software engineering conference in russia (p. 1). ACM.
(2013)

12. Vissicchio, S., Vanbever, L. and Bonaventure, O.: Opportunities and research chal-
lenges of hybrid software defined networks. ACM SIGCOMM Computer Communi-
cation Review, 44(2), pp.70-75. (2014)

13. 300Mbps Wireless N Gigabit Router TL-WR1043ND, http://static.tp-link.
com/resources/document/TL-WR1043ND_V2_datasheet.pdf

14. Raspberry Pi Foundation, https://www.raspberrypi.org/
15. Distributed Internet Traffic Generator (D-ITG), http://www.grid.unina.it/

software/ITG/

16. The Network Time Protocol (NTP), http://www.ntp.org/
17. pf ring, http://www.ntop.org/products/packet-capture/pf_ring/
18. Ryu, https://osrg.github.io/ryu/
19. Floodlight, http://www.projectfloodlight.org/
20. Openwrt, https://openwrt.org/

