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Abstract. This paper describes a performance evalua-
tion study in which some efficient classifiers are tested in
handwritten digit recognition. The evaluated classifiers
include a statistical classifier (modified quadratic dis-
criminant function, MQDF), three neural classifiers, and
an LVQ (learning vector quantization) classifier. They
are efficient in that high accuracies can be achieved at
moderate memory space and computation cost. The per-
formance is measured in terms of classification accuracy,
sensitivity to training sample size, ambiguity rejection,
and outlier resistance. The outlier resistance of neural
classifiers is enhanced by training with synthesized out-
lier data. The classifiers are tested on a large data set ex-
tracted from NIST SD19. As results, the test accuracies
of the evaluated classifiers are comparable to or higher
than those of the nearest neighbor (1-NN) rule and reg-
ularized discriminant analysis (RDA). It is shown that
neural classifiers are more susceptible to small sample
size than MQDF, although they yield higher accuracies
on large sample size. As a neural classifier, the polynomial
classifier (PC) gives the highest accuracy and performs
best in ambiguity rejection. On the other hand, MQDF is
superior in outlier rejection even though it is not trained
with outlier data. The results indicate that pattern classi-
fiers have complementary advantages and they should be
appropriately combined to achieve higher performance.

Keywords: Handwritten character recognition – Pat-
tern classification – Outlier rejection – Statistical classi-
fiers – Neural networks – Discriminative learning – Hand-
written digit recognition

1 Introduction

In optical character recognition (OCR), statistical classi-
fiers and neural networks are prevalently used for classifi-
cation due to their learning flexibility and cheap compu-
tation. Statistical classifiers can be divided into paramet-

ric classifiers and non-parametric classifiers [1,2]. Para-
metric classifiers include the linear discriminant func-
tion (LDF), the quadratic discriminant function (QDF),
the Gaussian mixture classifier, etc. An improvement to
QDF, named regularized discriminant analysis (RDA),
was shown to be effective to overcome inadequate sam-
ple size [3]. The modified quadratic discriminant function
(MQDF) proposed by Kimura et al. was shown to im-
prove the accuracy, memory, and computation efficiency
of the QDF [4,5]. Non-parametric classifiers include the
Parzen window classifier, the nearest neighbor (1-NN)
and k-NN rules, the decision-tree, the subspace method,
etc. Neural networks for pattern recognition include the
multilayer perceptron (MLP) [6], the radial basis func-
tion (RBF) network [7], the probabilistic neural network
(PNN) [8], the polynomial classifier (PC) [9,10], etc. The
LVQ (learning vector quantization) classifier [11,12] can
be viewed as a hybrid since it takes the 1-NN rule for
classification while the prototypes are designed in dis-
criminative learning as for neural classifiers. The recently
emerged classifier, the support vector machine (SVM)
[13,14], has many unique properties compared to tradi-
tional statistical and neural classifiers.
For character recognition, the pattern classifiers are

usually used for classification based on heuristic feature
extraction [15] so that a relatively simple classifier can
achieve high accuracy. The efficiency of feature extrac-
tion and the simplicity of classification algorithms are
preferable for real-time recognition on low-cost comput-
ers. The features frequently used in character recognition
include the chaincode feature (direction code histogram)
[4], the K-L expansion (PCA) [16–18], the Gabor trans-
form [19], etc. Some techniques were proposed to extract
more discriminative features to achieve high accuracy [20,
21]. Neural networks can also directly work on charac-
ter bitmaps to perform recognition. This scheme needs
a specially designed and rather complicated architecture
to achieve high performance, such as the convolutional
neural network [22].
For pattern classification, neural classifiers are gener-

ally trained in discriminative learning, i.e., the parame-



192 C.-L. Liu et al.: Performance evaluation of pattern classifiers for handwritten character recognition

ters are tuned to separate the examples of different classes
as much as possible. Discriminative learning has the po-
tential to yield high classification accuracy, but training
is time-consuming and the generalization performance of-
ten suffers from over-fitting. In contrast, for statistical
classifiers, the training data of each class is used sep-
arately to build a density model or discriminant func-
tion. Neural networks can also be built in this philosophy,
called the relative density approach [23]. This approach
is possible (and usually necessary) to fit more parameters
without degradation of generalization performance. The
instances of this approach are the subspace method [24],
the mixture linear model [23], and the auto-associative
neural network [25]. We can view the statistical classi-
fiers and the relative density approach as density models
or generative models, as opposed to the discriminative
models.
In character field recognition, especially integrated

segmentation-recognition (ISR) [26–28], we are concerned
not only with the classification accuracy of the underly-
ing classifier, but also resistance to outliers. In this paper,
we mean by “outliers” the patterns out of the classes that
we aim to detect and classify. In ISR, because the charac-
ters cannot be segmented reliably prior to classification,
the trial segmentation will generate some intermediate
non-character patterns. The non-character patterns are
outliers and should be assigned low confidence by the
underlying classifier so as to be rejected. In this paper,
we will evaluate the outlier rejection performance as well
as the classification accuracy of some classifiers.
The evaluated classifiers include a statistical classifier

(MQDF), three neural classifiers (MLP, RBF classifier,
PC), and an LVQ classifier. We selected these classifiers
as objects because they are efficient in the sense that high
accuracy can be achieved at moderate memory space and
computation cost. SVM does not belong to this category
because it is very expensive in learning and recognition
even though it gives superior accuracy [29]. In the test
case of handwritten digit recognition, we will give the re-
sults of classification accuracy, ambiguity rejection, and
outlier rejection. The performance of outlier rejection is
measured in terms of the tradeoff between the false accep-
tance of outlier patterns and the false rejection of char-
acter patterns.
In classification experiments, some additional statis-

tical classifiers are used as benchmarks. The statistical
classifiers are “automatic” in the sense that the perfor-
mance is not influenced by human factors in design [30].
Among the benchmark classifiers, the 1-NN rule is very
expensive in recognition. QDF and RDA also have far
more parameters than the evaluated classifiers. Whereas
LDF has far fewer parameters and the performance is
less sensitive to training sample size, its accuracy is in-
sufficient. A single-layer neural network (SLNN) with
the same decision rule as LDF but trained by gradi-
ent descent to minimize the empirical mean square error
(MSE), is tested as well.
To enhance the outlier rejection capability of neural

classifiers, some artificial non-character images are gen-

erated and used in training together with the character
data. The enhanced versions of MLP, RBF classifier, and
PC are referred to as EMLP, ERBF, and EPC, respec-
tively. For the LVQ classifier, the deviation of prototypes
from the sample distribution is restricted via regulariza-
tion in training. Experimental results prove that training
with outlier data and the regularization of prototype de-
viation improve the outlier resistance with little loss of
classification accuracy.
To our knowledge, this study is the first to systemat-

ically evaluate the outlier rejection performance of pat-
tern classifiers. MQDF has produced promising results
in handwriting recognition [5,31,32]. In previous works,
it was compared with statistical classifiers [33] but was
rarely compared with neural classifiers. Besides this, in
the implementation of the RBF and LVQ classifiers, we
have made efforts to promote their classification accu-
racy. In training the RBF and ERBF classifiers, the cen-
ter vectors as well as the connecting weights are updated
in discriminative learning [34,35]. The prototypes of the
LVQ classifier are learned under the minimum classifi-
cation error (MCE) criterion [36]. The resulting classifier
gives better performance than the traditional LVQ of Ko-
honen [11].
The rest of this paper is organized as follows. Section 2

reviews related previous works. Section 3 describes the
experiment database and the underlying feature extrac-
tion method. Section 4 briefly introduces the evaluated
classifiers. Section 5 gives the decision rules for classifi-
cation and rejection. Section 6 presents the experimental
results and Section 7 draws concluding remarks.

2 Previous works

Some previous works have contributed to the perfor-
mance comparison of various classifiers for character
recognition and other applications. In the following we
will first outline the results of special evaluations in char-
acter recognition and then those of other evaluations. Lee
and Srihari compared a variety of feature extraction and
classification schemes in handwritten digit recognition
[37]. Their results showed that the chaincode feature, the
gradient feature, and the GSC (gradient, stroke, and con-
cavity) feature [20] yielded high accuracies. As for clas-
sification, they showed that the k-NN rule outperformed
MLP and a binomial classifier. Kreßel and Schürmann
compared some statistical and neural classifiers in digit
recognition. Their results favor the performance of PC
and MLP [10]. In digit recognition, Jeong et al. compared
the performance of some classifiers with variable training
sample size [38]. They showed that the 1-NN rule, MLP,
and RDA give high accuracy and their performance is
less sensitive to sample size.
Blue et al. compared some classifiers in fingerprint

classification and digit recognition and reported that the
PNN and the k-NN rule performed well for either prob-
lem, whereas MLP and the RBF classifier performed
well only in fingerprint classification [16]. Holmström et
al. compared a large collection of statistical and neural
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classifiers in two application problems: handwritten digit
recognition and phoneme classification [17]. Their results
showed that the Parzen classifier, the 1-NN and k-NN
rules, and some learning classifiers yield good perfor-
mance, while MLP, RDA, and QDF perform well in digit
recognition only. Jain et al. provided comparative results
of some classifiers and classifier combination schemes on
several small datasets including a digit dataset [39]. Their
results favor the performance of non-parametric statisti-
cal classifiers (1-NN, k-NN, Parzen). Some works have
focused on the performance of LVQ. In speech recogni-
tion experiments, Kohonen high lighted the performance
of LVQ over QDF and the k-NN rule [11,40]. Liu and
Nakagawa compared some prototype learning algorithms
(variations of LVQ) in handwritten digit recognition and
Chinese character recognition. They showed that LVQ
classifiers trained by discriminative learning outperform
the 1-NN and k-NN rules [12].
The union of the classifiers evaluated in the above

works is obviously very large, yet the intersection con-
tains few classifiers. MLP and the 1-NN and k-NN rules
were tested in most evaluation studies and they mostly
show good performance. Other classifiers of good perfor-
mance include the Parzen window classifier and RDA.
The RBF classifier, PC, and the LVQ classifier were not
widely tested. PC has shown superior performance in [10]
while the performance of the RBF and LVQ classifiers de-
pends on the implementation of learning algorithm. Re-
garding the comparison of different classifiers, the order
of performance depends on the underlying application.
In addition, for the same application, the order of per-
formance depends on the dataset, pattern representation,
and the training sample size.
The outlier resistance of pattern classifiers has been

addressed in handwriting recognition. The experiments
of [20,41,42] showed that neural networks are inefficient
regarding rejecting outlier patterns. Gori and Scarselli
showed theoretically that MLP is inadequate for rejec-
tion and verification tasks [43]. Some works have sought
to improve the performance of outlier rejection. Brom-
ley and Denker showed that the outlier rejection capabil-
ity could be improved if the neural network was trained
with outlier data [44]. Gader et al. assigned fuzzy mem-
bership values as targets in neural network training and
showed that the fuzzy neural network produced higher
accuracy in word recognition although the accuracy of
isolated character recognition was sacrificed [41,42]. Chi-
ang proposed a hybrid neural network for character con-
fidence assignment, which is effective to resist outliers in
word recognition [45]. Tax and Duin exploited the insta-
bility of classifier outputs to detect outliers [46], while
Suen et al. achieved outlier resistance by combining mul-
tiple neural networks [47].
Besides the efforts of giving in-built outlier resis-

tance to classifiers, some measures have been taken to
improve the overall performance of handwriting recog-
nition. Martin and Rashid trained a neural network to
signify whether an input window is a centered charac-
ter or not [48]. Gader et al. have also trained inter-

character networks to measure the spatial compatibility
of adjacent patterns so as to reduce segmentation error
[41,42]. Ha designed a character detector by combining
the outputs of neural classifiers and the transition fea-
tures of the input image [49]. Zhu et al. discriminated
between connected character images and normal charac-
ter images using the Fourier transform [50]. LeCun et
al. proposed a global training scheme for segmentation-
recognition systems, wherein the segmentation errors are
under-weighted [22].

3 Database and feature extraction

For evaluation experiments, we extracted some digit data
from the CD of NIST Special Database 19 (SD19). NIST
SD19 contains the data of SD3 and SD7, which consist
of the character images of 2,100 writers and 500 writers,
respectively. SD3 was released as the training data of the
First Census OCR Systems Conference and SD7 was used
as the test data. It was revealed that the character images
of SD3 are cleaner than those of SD7, so the classifiers
trained with SD3 failed to give high accuracy compared
to SD7 [51]. Therefore, some researchers mixed the data
of SD3 and SD7 to make new training and test datasets,
such as the MNIST database [29]. The MNIST database
has been widely used in the benchmarking of machine
learning and classification algorithms. Unfortunately, it
provides only the normalized and gray-scaled data and
we could not find the original images. We hence compiled
a new experiment database. Specifically, we use the digit
patterns of writers 0–399 (SD3) and writers 2100–2299
(SD7) for training, the digit patterns of writers 400–499
(SD3) and writers 2,300–2,399 (SD7) for cross validation,
and the digit patterns of writers 500–699 (SD3) and writ-
ers 2,400-2,599 (SD7) for testing. The validation dataset
is used in discriminative learning initialized with multiple
seeds to select a parameter set.
In total, the training, validation, and test datasets

contain the digit patterns of 600 writers, 200 writers, and
400 writers, respectively. The numbers of patterns of each
class are listed in Table 1. Some images of test data are
shown in Fig. 1.
To test the outlier rejection performance, we gener-

ated two types of outlier data. The type 1 outlier patterns
were generated via merging and splitting digit images. A
pair of digit images generate four outlier patterns: full-full
combination, full-half combination, half-full combination,
and half-half combination. Two groups of ten digits are
combined into 100 pairs. In a pair of digits, the right one
is scaled with the aspect ratio preserved such that the two
images have the same diameter of the minimum bound-
ing box. The vertical centers of two images are aligned
in the merged image, and for merging a half image, the
digit image is split at the horizontal center. We generated
16,000 training patterns of type 1 outlier from the train-
ing digit data and 10,000 test patterns from the test digit
data. Some examples of type 1 outlier data are shown in
Fig. 2.
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Table 1. Numbers of patterns of each databset and each class

Dataset Total 0 1 2 3 4 5 6 7 8 9
Training 66,214 6,639 7,440 6,593 6,795 6,395 5,915 6,536 6,901 6,487 6,513

Validation 22,271 2,198 2,509 2,245 2,275 2,158 1,996 2,201 2,353 2,161 2,175
Test 45,398 4,469 5,145 4,524 4,603 4,387 4,166 4,515 4,684 4,479 4,426

Fig. 1. Examples of test digit data

Fig. 2. Examples of type 1 outlier data

To test the resistance to confusing outlier patterns, we
collected some handwritten English letter images of NIST
SD3 as type 2 outlier data. The type 2 outlier dataset has
8,800 patterns, 200 from each of 44 classes (all letters ex-
cept “IOZiloqz”). That we use the English letter images
as outliers to reject does not imply that we aim to sepa-
rate letters from digits. Instead, we use the letter images
only to test the outlier rejection capability of the pattern
classifiers.

Each pattern (either digit or outlier) is represented as
a feature vector of 100 direction measurements (chain-
code feature). First, the pattern image is scaled into a
standard size of a 35 × 35 grid. To alleviate the distor-
tion caused by size normalization, we render the aspect
ratio of the normalized image adaptable to the original
aspect ratio [52]. The normalized image is centered in the
standard plane if the boundary is not filled. The contour
pixels of the normalized image are assigned to four direc-
tion planes corresponding to the orientations of chain-
codes in a raster scan procedure [21]. On the 35×35 grid
of a direction plane, 5 × 5 blurring masks are uniformly
placed to extract 25 measurements. The blurring mask is
a Gaussian filter with the variance parameter determined
by the sampling theorem. In total, 100 measurements are
obtained from four direction planes. We did not try more
discriminative features since our primary intention was
to evaluate the performance of pattern classifiers.
The feature measurements obtained as such are causal

variables, i.e., the value is always positive. It was shown
that by power transformation of variables, the density
function of causal variables becomes closer to a Gaussian
distribution [1]. This is helpful to improve the classifica-
tion performance of statistical classifiers as well as neural
classifiers. Experimental results have demonstrated the
effectiveness of power transformation [53]. We transform
the measurements by y = xu with u = 0.5. The trans-
formed measurements compose a new feature vector for
pattern classification.

4 Evaluated classifiers

4.1 Statistical classifiers

Statistical classifiers are generally based on the Bayesian
decision rule, which classifies the input pattern to the
class of maximum a posteriori probability. The QDF is
obtained under the assumption of equal a priori proba-
bilities and multivariate Gaussian density for each class.
The LDF is obtained by further assuming that all the
classes share a common covariance matrix.
Derived from negative log-likelihood, the QDF is ac-

tually a distance metric, i.e., the class of minimum dis-
tance is assigned to the test pattern. On an input pattern
x, the QDF of a class has the form:

g0(x, ωi) = (x − µi)TΣ−1
i (x − µi) + log |Σi|

=
d∑

j=1

1
λij
[(x − µi)Tφij ]2 +

d∑
j=1

log λij ,
(1)
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where µi and Σi denote the mean vector and the covari-
ance matrix of class ωi, respectively. λij , j = 1, 2, . . . , d,
denote the eigenvalues of class ωi sorted in decreasing
order, and φij , j = 1, 2, . . . , d, denote the corresponding
eigenvectors.
In the QDF, replacing the minor eigenvalues λij (j >

k) with a larger constant δi, the modified quadratic dis-
criminant function (MQDF2) 1 is obtained:

g2(x, ωi)

=
k∑

j=1

1
λij
[(x − µi)Tφij ]2 +

d∑
j=k+1

1
δi
[(x − µi)Tφij ]2

+
k∑

j=1

log λij + (d− k) log δi

=
k∑

j=1

1
λij
[(x − µi)Tφij ]2 +

1
δi
Dc(x)

+
k∑

j=1

log λij + (d− k) log δi,

(2)

where k denotes the number of principal components and
Dc(x) is the square Euclidean distance in the complement
subspace:

Dc(x) = ‖x − µi‖2 −
k∑

j=1

[(x − µi)Tφij ]2

Compared to the QDF, the MQDF2 saves much mem-
ory space and computation cost because only the princi-
pal components are used. The parameter δi of MQDF2
can be set class-independent as proposed by Kimura et
al. [4], which performs fairly well in practice. It can also
be class-dependent as the average variance in the com-
plement subspace spanned by the minor eigenvectors [54,
55].
The RDA improves the performance of the QDF in

another way. It smoothes the covariance matrix of each
class with the pooled covariance matrix and the identity
matrix. We simply combine the sample estimate covari-
ance matrix with the identity matrix:

Σ̂i = (1− γ)Σi + γσ2
i I, (3)

where σ2
i =

1
d tr(Σi), and 0 < γ < 1. We also combine

the principle of RDA into MQDF. After smoothing the
covariance matrix as in (3), the eigenvectors and eigenval-
ues are computed and the class-dependent constant δi is
set as the average variance in the complement subspace.
To differentiate from the MQDF2 without regularization,
we refer to the discriminant function with regularization
as MQDF3.

1 In [4], MQDF1 referred to another modification of the
QDF without truncation of eigenvalues.

4.2 Neural classifiers

We use an MLP with one hidden layer to perform the
classification task. Each unit in the hidden layer and the
output layer has sigmoid nonlinearity. The error back-
propagation (BP) algorithm [6] is used to learn the con-
necting weights by minimizing the mean square error
(MSE) over a set of Nx examples:

E =
1
Nx

{ Nx∑
n=1

M∑
k=1

[
yk(xn,w)− tnk

]2 + λ
∑

w∈W

w2
}
, (4)

where λ is a coefficient to control the decay of the con-
necting weights (excluding the biases). yk(xn,w) is the
output for class k on an input pattern xn; tnk is the de-
sired value of class k, with value 1 for the genuine class
and 0 otherwise. If xn is an outlier pattern, however, all
the target values are set to 0. The criterion function of
(4) is used for the training of MLP, RBF classifier, and
PC.
The RBF classifier has one hidden layer with each

hidden unit being a Gaussian kernel, and each output is
a linear combination of the Gaussian kernels with sigmoid
non-linearity to approximate the class membership. For
training the RBF classifier, the BP algorithm (stochastic
gradient descent to minimize the empirical MSE) can be
used to update all the parameters [7]. It was reported in
[34,35] that the updating of the kernel widths does not
benefit the performance. Hence we compute the kernel
widths from the sample partition by k-means clustering
and fix them during BP training. The center vectors are
initialized from clustering and are updated by gradient
descent along with the connecting weights.
The polynomial classifier (PC) is a single layer net-

work with the polynomials of the input measurements as
inputs. We use a PC with binomial inputs on the feature
subspace learned by PCA (principal component analysis)
on the pooled sample data. Denoting the feature vector
in the m-dimensional (m < d) subspace as z, the output
corresponding to a class is computed by:

yk(x) = s
[ m∑

i=1

m∑
j=i

w
(2)
kijzi(x)zj(x) +

m∑
i=1

w
(1)
ki zi(x) + wk0

]

(5)

where zj(x) is the projection of x onto the jth principal
axis of the feature subspace.

4.3 LVQ Classifier

For the LVQ classifier, we adopt the prototype learning
algorithm with the minimum classification error (MCE)
criterion [36]. The prototypes are updated by stochastic
gradient descent on a training sample set with aim of
minimizing a loss function relevant to the classification
error. We give in the following the learning rules, while
the details can be found in [12].
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On an input pattern x, the closest prototype mki in
the genuine class k and the closest rival prototype mrj

from class r are searched for. The misclassification loss is
computed by

lk(xn) = lk(µk) =
1

1 + e−ξµk
, (6)

with

µk(x) = d(x,mki)− d(x,mrj).

The distance metric is the square Euclidean distance.
On a training pattern, the prototypes are updated by




mki = mki + 2α(t)ξlk(1− lk)(x − mki)

mrj = mrj − 2α(t)ξlk(1− lk)(x − mrj)
, (7)

where α(t) is a learning rate, which is sufficiently small
and decreases with time. It was suggested that the pa-
rameter ξ increases progressively in learning [12]. Never-
theless, our recent experiments showed that a constant ξ
leads to convergence as well.
To restrict the deviation of prototypes from the sam-

ple distribution, we incorporate the WTA (winner-take-
all) competitive learning rule to give the new learning
rule:



mki = mki + 2α(t)[ξlk(1− lk)(x − mki) + λ(x − mki)]

mrj = mrj − 2α(t)ξlk(1− lk)(x − mrj)
,

(8)

where λ is the regularization coefficient. The regulariza-
tion trades off the classification accuracy but is effective
to improve the outlier resistance.

5 Decision rules

In classification, the neural classifiers take the class cor-
responding to the maximum output while MQDF and
the LVQ classifier take the class of minimum distance.
For the neural classifiers, whether the output is linear
or nonlinear does not affect the classification result. For
ambiguity rejection and outlier rejection, this also makes
little difference. We take linear outputs in subsequent ex-
periments. For the LVQ classifier, the distance of a class
is defined as the distance between the input pattern and
the closest prototype from this class.
In classification, a pattern is considered ambiguous if

it cannot be reliably assigned to a class, whereas a pat-
tern assigned low confidence for all hypothesized classes
is considered as an outlier. Chow gave a rejection rule
whereby the pattern is rejected if the maximum a poste-
riori probability is below a threshold [56]. Dubuison and
Masson gave a distance reject rule based on the mixture
probability density of hypothesized classes [57], which can
be used for outlier rejection. Due to the difficulty of prob-
ability density and a posteriori probability estimation,

pattern recognition engineers are prone to use empiri-
cal rules based on the classifier outputs (class scores or
distances) [58]. Usually, two thresholds are set for the
measure of the top rank class and the difference of scores
between two top rank classes, respectively. Even though
the two thresholds can be used jointly, we assume they
play different roles and will test their effects separately.
We call the rejection rule based on the top rank class
and the one based on two top rank classes rejection rule
1 (RR1) and rejection rule 2 (RR2), respectively.
For the neural classifiers, we denote the maximum

output and the second maximum output as yi and yj ,
corresponding to class i and class j, respectively. By RR1,
if yi < T1, the input pattern is rejected; while by RR2, if
yi − yj < T2, the input is rejected. RR1 rejects the input
pattern because all classes have low confidence so the
pattern is considered as an outlier, whereas RR2 rejects
because the two top rank classes cannot be discriminated
reliably, so the pattern is ambiguous. For distance-based
classifiers, including MQDF and the LVQ classifier, we
denote the distances of two top rank classes as di and
dj , respectively. The relation di ≤ dj holds. By RR1, if
di > D1, the input pattern is rejected; while by RR2, if
dj − di < D2, the input pattern is rejected.
Even though in the experiments we make hard de-

cisions regarding classification, ambiguity rejection, and
outlier rejection with variable thresholds, they are not
necessarily made for intermediate patterns in practical
handwriting recognition integrating segmentation and
classification. Instead, the classifier gives membership
scores to the hypothesized classes for each pattern, and
the class identities of patterns are determined in the
global scoring of the character field. However, the perfor-
mances of classification accuracy, ambiguity discrimina-
tion, and outlier resistance are important for the overall
recognition system all the time. Our experimental results
with hard decisions hence provide an indication of the
performance of classifiers.

6 Experimental results

6.1 Accuracy on variable parameter complexity

We first trained the five evaluated classifiers with a vari-
able number of parameters so as to choose an appropriate
parameter complexity for each classifier. The parame-
ter δi of the MQDFs was set in three ways. The class-
independent δi (this classifier is referred to as Const)
was set to be proportional to the average variance of ten
classes. The class-dependent δi was set to the average of
minor eigenvalues for both the MQDF2 (this classifier
is referred to as Aver) and the MQDF3. The regular-
ization coefficient of the MQDF3 was set to γ = 0.2.
The number of principal eigenvectors was set to k = 10i,
i = 1, 2, . . . , 8.
The number of hidden units of MLP and RBF clas-

sifier was set to Nh = 50i, i = 1, 2, . . . , 6. For the LVQ
classifier, each class has the same number of prototypes
np = 5i, i = 1, 2, . . . , 6. For the PC, the dimension
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of feature subspace was set so that the total number
of parameters (including the eigenvectors and connect-
ing weights) approximately equals the number of pa-
rameters of MLP. Consequently, the dimensions of the
subspace corresponding to the hidden unit numbers are
m = 24, 37, 47, 56, 64, 71. The weight decay coefficient
was set to 0.05 for MLP, 0.02 for the RBF classifiers,
and 0.1 for the PC. The regularization coefficient of the
LVQ classifier was set to λ = 0.05/var, where var is the
average within-cluster variance after k-means clustering
of the sample data. Each configuration of neural classi-
fiers and LVQ was trained with three sets of initialized
parameters from different random seeds. After training,
the parameter set that gives the highest accuracy in the
validation was retained.
The accuracies of the MQDFs on the test data are

plotted in Fig. 3. We can see that the accuracy of the
MQDF3 increases with the number of eigenvectors but
saturates at a certain point, while the accuracy of the
MQDF2 (Aver) and the MQDF2 (Const) decreases with
the number of eigenvectors from a certain point. The
performance of the MQDF2 (Const) and the MQDF3
are superior to that of the MQDF2 (Aver), while the
MQDF3 performs better than the MQDF2 (Const) on
a large number of eigenvectors. We choose the number
k = 40 for the MQDF3 for subsequent tests.
The accuracies of the neural and LVQ classifiers

(which are typical of discriminative models) on the test
data are plotted in Fig. 4 (the hidden unit number of the
LVQ classifier is the total number of prototypes and the
PC has a corresponding dimension of subspace). We can
see that the discriminative models yield fairly high ac-
curacy even when the parameter complexity is low, and
the accuracy increases slowly with parameter complexity
until it saturates at a certain point. The four classifiers
achieve the highest accuracy at 250 hidden units or 300
hidden units while these two points make little difference.
To make the four classifiers have approximately the same
complexity, we selected the classifier configurations cor-
responding to 250 hidden units. In comparison of the four
classifiers, PC gives the highest accuracy, globally. It is
also evident that the RBF classifier outperforms MLP,
and the LVQ classifier is inferior to MLP. An additional
advantage of PC is that the performance is not influenced
by the random initialization of connecting weights, so it
is not necessary to train with multiple trials.
Comparing the results of Fig. 3 and Fig. 4, we can see

that the accuracy of the discriminative models is promi-
nently higher than that of the MQDFs. It will be shown
later that the discriminative models also have fewer pa-
rameters than the MQDF.

6.2 Accuracy on variable sample size

The evaluated classifiers as well as some benchmark clas-
sifiers were trained with a variable number of patterns.
In addition to the whole set of 66,214 training patterns
(s66k), the classifiers were trained with variable sizes of
subsets of the whole training data. To generate training

Fig. 3. Recognition accuracies of the MQDFs

Fig. 4. Recognition accuracies of the discriminative models

subsets, a fraction of patterns are uniformly extracted
from the samples of each class. At the fractions 1/2, 1/4,
1/8, 1/16, and 1/32, we obtained subsets of 33,103 pat-
terns (s33), 16,549 patterns (s16k), 8,273 patterns (s8k),
4,134 patterns (s4k), and 2,064 patterns (s2k). The pa-
rameter complexity of MLP, the RBF classifier, and the
LVQ classifier is variable on the training sample size,
while the parameter complexity of other classifiers is
fixed. On the sample sizes s33, s16k, s8k, s4k, and s2k,
the number of hidden units is 200, 160, 120, 80, and 40,
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Fig. 5. Recognition accuracy versus training sample size

respectively, for the MLP, RBF, and LVQ classifiers. It
was observed that their performance saturates at fewer
hidden units on a smaller sample size. However, even on
a small sample size, the PC yields high accuracy on high
dimensions of feature subspace. Hence, we fixed the di-
mension of subspace as 56 (corresponding to 200 hidden
units for MLP).
Trained with variable sample sizes, the accuracies on

45,398 test patterns are plotted in Fig. 5. We can see that
the sensitivity of classification accuracy to the training
sample size differs drastically from classifier to classifier.
The accuracy of the MQDF3 is almost identical to that
of RDA, and their performance is highly stable against
the training sample size. The discriminative models give
higher accuracies than the 1-NN rule in all sample sizes,
and the accuracy of PC is the highest except on the small-
est sample size. It is evident that the accuracies of the
discriminative models are rather sensitive to the training
sample size. As for the benchmark classifiers, the accu-
racy of the 1-NN rule is fairly high, but is as sensitive
to sample size as the discriminative models. QDF is very
sensitive to the training sample size. While the perfor-
mance of LDF is insensitive to sample size, its accuracy is
insufficient. The SLNN trained by gradient descent gives
much higher accuracy than LDF. Comparing the MQDF3
to the discriminative models, we can see that the discrim-
inative models yield higher accuracy on large sample sizes
while the MQDF3 yields higher accuracy on small sample
sizes.
The parameter and computation complexities of the

classifiers are listed in Table 2. The number of param-
eters and the number of multiplications in classifying
an input pattern are given, and the ratio of parame-

ters/computations to LDF/SLNN is given to indicate the
relative complexity. The number d (= 100) denotes the
dimensionality of the input pattern. MLP and the RBF
classifier have 250 hidden units each, the subspace di-
mension of the PC is m = 64, and the LVQ classifier
has 25 prototypes for each class. The given computation
number of the LVQ classifier and the 1-NN rule is the
upper bound because the search of the nearest neighbor
can be accelerated using partial distances. The computa-
tion of some classifiers (such as the RBF classifier and the
MQDF) is a little more complicated than the given index
because they involve division, exponential or logarithm
calculation in addition to the multiplications. We can see
that for each classifier, the computation complexity is
approximately proportional to the parameter complex-
ity. The four discriminative models have approximately
the same complexity. The MQDF has more parameters
and costs more in computation than the discriminative
models, but when compared to the QDF and the RDA,
it saves more than half of the memory space and compu-
tation.

6.3 Ambiguity rejection

We tested the performance of eight classifiers, namely,
MLP, RBF, PC, LVQ, MQDF3, EMLP, ERBF, and EPC,
in terms of ambiguity rejection (reject-error tradeoff) and
outlier rejection. The enhanced versions of the neural
classifiers have the same parameter complexity as their
original counterparts. They were trained with 66,214
digit patterns and 16,000 outlier patterns of type 1. The
cumulative accuracies of the classifiers on 45,398 test pat-
terns are shown in Table 3. It is shown that on training
with outlier data, the enhanced neural classifiers do not
lose accuracy compared to their original versions.
Two rejection rules (RR1 and RR2) were used to test

the reject-error tradeoff of eight classifiers. Comparing
the results of two rules as in Fig. 6, we can see that
the rejection rule RR2 is more appropriate for ambiguity
rejection than RR1. The reject-error tradeoff of RR2 is
better than that of RR1 for all the classifiers. The reject-
error plots of the discriminative models are evidently bet-
ter than that of the MQDF3, and among them, the plot
of PC is the best. The reject-error tradeoff of the en-
hanced neural classifiers is close to that of their original
versions. From the results, we can say that the contrast
of reject-error tradeoff is approximately consistent with
the contrast of classification accuracy. This implies that
improving the classification accuracy generally benefits
the rejection of ambiguous patterns.

6.4 Outlier rejection

Two rejection rules RR1 and RR2 were used to test the
rejection of 10,000 type 1 outlier patterns with variable
thresholds. The thresholds of RR1 and RR2 for outlier
rejection were also used to test the digit patterns (45,398
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Table 2. Parameter and computation complexities of classifiers

Classifier Parameters Para. ratio Multiplications Comp. ratio
MLP/RBF 10(250 + 1) + 250(d + 1) 27.49 250 · d + 10 · 250 27.5

PC m · d + 10[
(

m
2

)
+ 2m + 1] 27.57 m · d +

(
m
2

)
+ 10[

(
m
2

)
+ 2m] 29.86

LVQ 10 · 25 · d 24.75 ≤ 10 · 25 · d 25
MQDF 10[(40 + 1)d + 41] 41 10[40(d + 1) + 40 + 1] 41.41

QDF/RDA 10(d + d2) 100 10 · d(d + 2) 102
LDF/SLNN 10(d + 1) 1 10 · d 1

1-NN 66, 214 · d 6,555.8 ≤ 66, 214 · d 6,621.4

Fig. 6. Reject-error tradeoff of character classification

images) so as to give the tradeoff between the false rejec-
tion of character patterns and the false acceptance (false
alarm) of outlier patterns. The plots of the false reject-
alarm tradeoff are shown in Fig. 7. We can see that for
the majority of classifiers, the outlier rejection perfor-
mance of RR1 is better than that of RR2. As exceptions,
for the neural classifiers trained without outlier data, the
performance of RR2 is better than that of RR1. While
for the enhanced neural classifiers, RR1 performs much
better than RR2. For the MQDFs and the LVQ classifier,
the performance of RR2 is very poor. Based on these re-
sults, we conclude that the rejection rule RR1 is more
appropriate for outlier rejection.
Comparing the false reject-alarm plots of eight classi-

fiers on type 1 outlier data, we can see that the outlier re-
jection performance of the MQDF3 is by far the best. The
performance of the enhanced neural classifiers has been
largely improved compared to their original versions and
the reject-alarm tradeoff approaches that of the MQDF3.
By restricting the prototype deviation from the sample
distribution, the LVQ classifier also performs fairly well
in outlier rejection. The performance of the MQDF3 is

very promising in that its parameters were trained with-
out outlier data.
On the type 2 outlier data, the rejection rule RR1 per-

forms better than RR2 for all the classifiers. The reject-
alarm plots on type 2 outlier data are shown in Fig. 8.
Since the type 2 outlier data was not used in training and
the pattern shapes of English letters inherently resemble
the digit patterns, the false acceptance rate is relatively
high. Additionally, in this case, the difference of perfor-
mance between different classifiers is not so remarkable as
for type 1 outlier data. However, as shown in Fig. 8, some
classifiers can still reject more than 50% of English letter
images at a low rejection rate of digit patterns. We can
see that the MQDF3 and the ERBF classifier are the top
performers, whereas the EMLP and the EPC are inferior
despite performing very well on type 1 outlier data. The
LVQ classifier also performs fairly well on type 2 outlier
data, even though it was not trained with outlier data as
for the MQDF3.
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Fig. 7. False reject-alarm tradeoff on type 1 outliers

Table 3. Cumulative accuracies on the test data (%)

Classifier Top rank 2 ranks 3 ranks
MQDF3 98.32 99.51 99.80

LVQ 98.80 99.71 99.91
MLP 98.89 99.72 99.90

EMLP 98.85 99.68 99.87
RBF 99.00 99.78 99.94

ERBF 99.04 99.77 99.92
PC 99.09 99.81 99.94

EPC 99.10 99.82 99.92

6.5 Rejection analysis

In this section we will show some examples of false ac-
ceptance of outliers and false rejection of characters by
RR1. We will not proceed with the ambiguity rejection
because it has been addressed in many previous works.
We analyse the outlier rejection performance of five

classifiers, namely, MQDF3, LVQ, EMLP, ERBF, and
EPC. By tuning the rejection threshold, we made the re-
jection rate of character patterns to be around 2%. The
rejection rates and the false acceptance rates are listed in
Table 4. We can see that at a similar rejection rate, the
MQDF3 yields low acceptance rates to both type 1 and
type 2 outliers. On the type 2 outliers, the LVQ classifier
and the ERBF classifier also show good outlier resistance.
Some examples of falsely rejected digit patterns by the

five classifiers are shown in Fig. 9, where each pattern is
rejected by at least one classifier. The recognition result
of each classifier is given in Fig. 9, and “-1” denotes rejec-
tion. We can see that the digit patterns rejected by RR1
are mostly contaminated by noise or unduly deformed.

Fig. 8. False reject-alarm tradeoff on type 2 outliers

They are prone to be assigned low confidence to all hy-
pothesized classes or misclassified to another class. Ac-
tually, some of the rejected dig it patterns can be viewed
as mis-segmentation or mis-labelled patterns.
Some examples of falsely accepted outliers of type 1

and type 2 are shown in Figs. 10 and 11, respectively.
They are accepted by at least one classifier. The recog-
nition result of each classifier is given, and the blank cell
denotes correct rejection. We can see that the pattern
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Table 4. False rejection and false acceptance rates (%)

Classifier False rej. False acc. 1 False acc. 2
MQDF3 1.95 1.46 32.5

LVQ 2.04 10.06 33.9
EMLP 2.03 6.82 49.1
ERBF 2.01 4.35 33.5
EPC 2.02 5.15 42.6

“False acc. 1” and “False acc. 2” denote the false
acceptance rates of type 1 outliers and type 2 out-
liers, respectively

Fig. 9. Examples of false rejection of digit patterns

shapes of the accepted outliers resemble digit patterns to
a large extent. Some of them are assigned different classes
by the classifiers. Thus, we assume that combining multi-
ple classifiers by majority voting can also reduce the false
acceptance of outliers.
Now we qualitatively explain the mechanism of out-

lier rejection. The MQDF is a density model in that its
parameters are estimated from character data in a similar
way to ML (maximum likelihood). LVQ can be viewed as
a hybrid of a density model and a discriminative model
because the restriction of prototype deviation from the
sample data is connected to the principle of ML. With
a density model, the patterns fitting this model are ex-
pected to have a high score while the outlier patterns are
expected to have a low score. This is why the MQDF
and the LVQ classifier perform well in outlier rejection.
The promising outlier resistance of the ERBF classifier
is also due to the hybrid nature of density model (the
Gaussian kernels model the sample distribution) and dis-
criminative learning. The EMLP and the EPC have the
potential to give better outlier rejection performance if
they are trained with a large set of outlier data of var-

Fig. 10. Examples of false acceptance of type 1 outliers

Fig. 11. Examples of false acceptance of type 2 outliers

ious shapes or an outlier-oriented learning algorithm is
adopted.

7 Concluding remarks

We selected five classifiers (MQDF, MLP, the RBF classi-
fier, PC, and the LVQ classifier) to evaluate their perfor-
mance in handwritten digit recognition. These classifiers
are efficient in the sense that they yield fairly high ac-
curacies with moderate memory space and computation
cost. The results show that their accuracies are compara-
ble to or higher than the 1-NN rule while their complex-
ity is much lower. The MQDF is a statistical classifier
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and can be viewed as a density model, whereas the other
four classifiers are discriminative models. It was shown
in the experiments that the discriminative models give
higher classification accuracies than the MQDF but are
susceptible to small sample sizes. As a density model, the
MQDF exhibits superior performance in outlier rejection
even though it was not trained with outlier data. The
outlier resistance of the neural classifiers was promoted
by training with outlier data, yet the outlier rejection
performance is still inferior to that of the MQDF.
Based on the nature of the classifiers and the experi-

mental results, we can suggest some guidelines regarding
choice of classifiers. This amounts to the choice between
density models and discriminative models. The density
model, such as the MQDF, is preferable for small sample
sizes. It is also well scalable to large category problems
such as Chinese character recognition. The training pro-
cess is computationally cheap because the discriminant
function of each class is learned independently. This also
facilitates the increment/decrement of categories without
re-training all categories. On the other hand, the discrim-
inative models are appropriate when high accuracy is de-
sired and a large sample size is available. This is generally
true for small category problems.
The experimental results also reveal the insufficien-

cies of the classifiers and hence suggest some research
directions. The density model gives low classification ac-
curacy while the discriminative models are weak in out-
lier resistance. A desirable classifier should give both high
accuracy and strong outlier resistance. This can be real-
ized by hybridizing density models with discriminative
models internally or combining them externally. Internal
integration points to the design of new architectures and
learning algorithms, whereas external combination points
to the mixture of multiple experts.
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